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I aim to build human-centric language technologies, focusing on cognitively aligning hu-
man and machine thinking, advancing AI as thinking partners. My work bridges language
and cognition to develop novel algorithms, benchmarks, and interaction frameworks that
support experts in complex, real-world cognitive workflows. I design AI that augments
humans: models that learn from how people plan, reason, and create; anticipate cognitive
bottlenecks; scaffold difficult tasks; and adapt dynamically to expert strategies.
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The central premise of my work is that AI should extend and enhance human cogni-
tion: supporting expert reasoning, reducing cognitive burdens, and accommodating di-
verse individual goals. I prioritize three tightly interconnected directions: (i) collecting
and modeling human cognition (§1), (ii) building cognitively-aligned AI models (§2) and
evaluation frameworks (§3), and (iii) designing expert- (§4) and society-facing (§5) AI
systems.

§1 Understanding human cognition: Human cognition involves complex, multi-layered
thinking processes. For example, writing is a non-linear and iterative cognitive process.
By analyzing human writing data [16, 57, 50, 64], we can gain insights into these thought
processes, which can then be used to improve the planning and reasoning capabilities of
AI models [72, 15]. Similarly, human perception can be studied through reading behav-
iors, such as eye-tracking data or explicit perception annotations, offering clues on how
people perceives and process information through reading [21, 10, 24]. Understanding
both writing and reading behaviors enables us to enhance the cognitive capabilities of
LLMs and develop AI assistants that better support human thinking.

§2 Cognitively-informed AI models: Cognitive alignment seeks to extend LLM capa-
bilities to complex human behaviors, including neurosymbolic reasoning [41], task com-
positionality [72, 20], hierarchical planning [32, 37], abstraction, and social cognition
[11]. We develop novel learning paradigms that either mimic human cognitive processes



directly or incorporate cognitive data (e.g., writing, reading, expert reasoning, interac-
tion) into training objectives. This includes self-supervised planning, structural align-
ment, multi-attribute alignment, and cognitively-efficient modeling strategies.

(§3) Cognitive benchmarking: Current LLM evaluation largely relies on shallow, mono-
tonic tasks. We address this through two directions: (i) assessing both the potential
[63, 82, 45, 46, 71, 44, 3] and risks [54, 7, 50, 64] of AI-generated data and AI-based eval-
uation, identifying issues such as cognitive bias, stylistic artifacts, and shallow synthesis,
and (ii) building a large-scale cognitive assessment framework to evaluate and contrast
human and machine cognition. The framework [12, 13] integrates rigorous cognitive sci-
ence methodologies with scalable evaluation, in open collaboration with interdisciplinary
researchers.

§4 Expert-level AI: Assist Expert Thinking Process: In domains such as science and
law, there is a significant cognitive gap between human experts and current LLMs. We de-
sign interactive, domain-specific AI systems that facilitate productive collaboration, adapt
to expert workflows, and provide cognitively-aligned assistance. For scientists, we have
developed reading tools like Semantic Reader [24, 62] and SciTalk [70], as well as writing
assistants that detect overloaded symbols, discourse-level inconsistencies, and promote
iterative refinement [15, 57]. For legal professionals, we are collecting complex legal
reasoning dataset LawFlow [8] and building legal assistants, that capture long-horizon
planning and reasoning in legal tasks.

§5 Pluralistic Alignment AI technologies must reflect diverse human perspectives to
achieve societal alignment. We develop data-centric methods to detect, characterize, and
augment underrepresented viewpoints [63, 77, 46, 43], and model-centric methods to
encode pluralism at individual, group, and societal levels using distributional alignment,
and societal value modeling [44, 22, 11]. This mitigates risks of monolithic outputs and
supports socially inclusive AI.
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Together, these agendas form my long-term vision:
human-centric thinking partners that perform com-
plex, multi-step reasoning, reduce cognitive load, and
reflect the diversity and values of human society.
My research integrates linguistics, social sciences,
and cognitive sciences, and is supported by industry
and government partners such as Grammarly, NSF,
CISCO, Sony, Accenture, and Open Philanthropy,
with active collaborations with Amazon, AI2, Naver,
and Google. I hold affiliations with cross-college labs
at UMN and collaborate widely with faculty and stu-
dents in computer science, law, psychology, educa-
tion, journalism, design, and medicine. I also con-
tribute to different synergetic activities through workshop organization: I co-organized
the first “CtrlGen: Controllable Generative Modeling” workshop at NeurIPS 2021, and
founded the “In2Writing: Intelligent and Interactive Writing Assistants” workshop se-
ries at ACL 2022, CHI 2023, and CHI 2024, fostering collaboration between ML, HCI,
NLP, and professional writing communities. I also founded the “Pluralistic Alignment”
workshop at NeurIPS 2024 to emphasize diversity in AI.
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1 Collecting Human Cognition Data
Language serves as a window into human cognition. Writing and reading are not linear
acts but complex, iterative processes that reveal how people plan, reason, and perceive
information. For example, a well-written manuscript reflects a writer’s long-term, multi-
stage thinking, far beyond simple next-token prediction. Similarly, reading behaviors cap-
tured through eye-tracking or annotated perceptions provide insights into how individuals
interpret, learn from, and engage with text. This first research pillar focuses on systemat-
ically collecting and analyzing human cognition data from both production (writing) and
perception (reading) to better understand these processes and inform cognitively-aligned
AI systems. We call this process as cognitive-scaffolding of LLMs learning from human
cognition.

1.1 Writing and Workflow Data
Although large language models
(LLMs) generate fluent text, human
writing involves richer and more
deliberate processes: drafting, re-
vising, planning, proofreading, and
synthesizing knowledge—often col-
laboratively. Domain-specific writ-
ing, such as scientific manuscripts,
adds further challenges, requiring sustained practice, peer interaction, and integration of
prior literature. We first examine the iterative nature of text revision. We have collected
revision data across domains [16, 48] and built systems that emulate iterative refinement
until quality stabilizes. Human–AI collaborative editing consistently outperforms either
working alone [15, 72, 59]. Our studies show that iterative modeling of revision process
by either AI only or human+AI collaboration has continuously shown better text quality,
showing the effective of test-time scaling of iterative revision or human-AI collabora-
tion. Also, guiding models with human revision intents (e.g., clarity, coherence) leads to
better flow of revision traces and mimic human writing process, better designed support-
ing human writing.

(a) Scholarly Writing Intents over Time [57] Writing in Science Process
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Ontology of Scientific Process: An Example of Annotated Data(b) Research Workflow with AI Tools

In ScholarWrite [55, 57], we extended prior work to capture the entire writing process1.
This dataset provides a strong empirical basis for cognitively aligned writing assistants
that model the full lifecycle of text production. Our vision is to build a longitudinal

163,000 keystrokes of text edits with intention annotations from multi-month research papers
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dataset of complete research workflows, tracing how researchers ideate, write, exper-
iment, and collaborate across domains. Unlike datasets limited to individual actions or
outputs, ours will record temporally grounded research sequences annotated with task in-
tent, cognitive states, and AI interactions. The resulting corpus forms an ontology of the
scientific process, enabling training of agents and interfaces that reflect real workflows.
Ultimately, we aim to establish a longitudinal repository of cognitive workflows (science,
law, education), allowing models to learn not isolated tasks but the temporal dynamics of
human reasoning.

1.2 Reading Data

Response A Response B

Understanding politeness through eyes or annotations

Preference decision-making through eyes

Whereas writing data reveals the generative pro-
cesses of human thought, reading data cap-
tures the perceptual and evaluative side of cog-
nition—how people interpret, prioritize, and re-
act to information. We have collected explicit an-
notations of stylistic understanding [21] and used
them to train LLMs that align with readers’ stylis-
tic judgments [23]. We have also gathered eye-
tracking data to study how readers engage with
stylistic cues and narrative content [10, 69], show-
ing that gaze patterns provide richer cognitive sig-
nals than explicit annotations or model-based interpretations. [44]. More recently, we
have collected human judgment data—such as preference rankings between texts—via
both annotations and eye-tracking By collecting data that closely mirrors human percep-
tion and evaluative behavior, we aim to train AI systems that more faithfully reproduce
human-like decision-making and perception processes.

2 Cognitively-aligned AI Models

Semantics

Grammars

Morph/Phon-
ology

Context

Pragmatics Textual 一 “How” 
☐ Structuring a text 
☐ Cohesion, discourse, 
reference

Interpersonal 一 “Who”
☐ Enacting social relations
☐ Pragmatics

Ideational 一 “What”
☐ Presenting ideas (e.g., topic)
☐ Logical, experimental

The goal of cognitive alignment is to
enhance LLMs’ ability to emulate com-
plex human behaviors, like task com-
positionality, planning, abstraction, rea-
soning, memory, by either (i) mimicking
cognitive processes directly or (ii) incor-
porating human cognition data into train-
ing objectives. In line with Halliday’s
Systemic Functional Linguistics (SFL)
framework [30], our work spans core areas of cognitive capabilities, such as reasoning,
planning, and social cognition.

2.1 Reasoning and Task Composition
Human reasoning often bridges incomplete information through external knowledge and
iterative refinement. We integrate neural and symbolic systems [41, 17, 40] to fill knowl-
edge gaps while enhancing interpretability [34]. To test and improve compositionality, we
created benchmarks for composite and chained tasks, using compositional data augmenta-
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tion and task-space densification [20, 72, 5]. Human reasoning is often iterative, refining
ideas or solutions step-by-step. We mimic this by developing models that emulate iter-
ative reasoning patterns, showing that step-by-step improvements lead to higher-quality,
more diverse outputs [16, 48, 15, 26].

2.2 Planning
Humans achieve coherence in writing by ensuring every part of a text fits together to
form a complete picture, making structural decisions such as topic choice, sentence order,
level of abstraction, and communication strategy. Planning is thus a higher-level cognitive
process that involves organizing multiple text passages and hierarchical decision-making
process, guiding the surface realization of text based on these plans. We model text plan-
ning as hierarchical decision-making, optimizing generation through:

Embark king , but he died…

Structural alignment

Perception alignment
Topological structures Reading perception

Discourse structures

Rewards

Discourse-Guided Planning. Coherent text is created through planning that aligns sen-
tence sequences with various discourse goals, guided by linguistic theories like rhetorical
structure theory (Mann and Thompson, 1988) and script theory (Tomkins, 1978). We de-
velop supervised text planners that incorporate discourse relations [34, 35], topical key-
words [37], and social goals inspired by persuasion theories [19]. This approach allows
for more controlled, coherent, and interpretable text generation by providing explicit plans
(relations, keywords, goals) through human-defined or theory-driven discourse guidance
[51, 61, 19].

Self-Supervised Planning and Structural Alignment. Unlike humans, LLM’s next-token
prediction objective creates a cognitive gap when performing complex writing and plan-
ning tasks. We address this by using alignment techniques such as reinforcement learn-
ing (RL) to optimize high-level policy decisions informed by human feedback on gen-
erated responses. Our earlier work on self-supervised role-playing framework [32] uses
RL to simulate dialogue interactions in recommendation scenarios, and optimize them to
achieve the explicit communication goal. Recently, this framework has evolved into ”RL
with AI Feedback” (RLAIF), where one agent generates responses while another provides
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explicit feedback, enabling better long-term policy learning between two agents. More re-
cently, we align text structure with human writing via structural rewards [52, 50? , 75, 83]
and integrate human perception data via dense alignment [56], such as eye-tracking and
annotated important lexicons [21, 10, 23, 56] to improve interpretability and generaliza-
tion.

2.3 Social Cognition
Romance

Politeness
Happiness

Positive
Valence
Dominance

Surprise
Anger

Arousal
Offense

positive 
correlation

negative 
correlation

Language encodes interpersonal and societal di-
mensions of social cognition. Text style emerges
from interacting factors such as formality, emo-
tion, and metaphor, reflecting an author’s person-
ality and serving specific communicative goals.
Understanding these cross-style relationships is
key to capturing the nuances of human communi-
cation. We built datasets for cross-style analysis,
including PASTEL [33] and xSLUE [38], showing
that multi-style learning outperforms single-style
approaches. Certain style pairs, such as impolite-
ness–offense, are strongly correlated, while contradictory combinations yield less appro-
priate outcomes. This underexplored area remains vital for modeling complex stylistic
patterns. More recently, we expanded to high-level affective states such as nostalgia [47]
and skepticism [67], collecting annotated data for social cognition research. To align
models with multiple social aspects, we developed methods for multi-attribute control via
data balancing [9], multi-task fine-tuning [38], and policy learning with dynamic reward
re-weighting [11].

2.4 Cognitive Efficiency
Abstraction enables humans to process knowledge efficiently, bypassing detailed reason-
ing when shortcuts suffice. Inspired by this, we design algorithms that optimize data
usage, computation, and memory in LLM training, reducing hallucinations and improv-
ing reliability. Our work includes data-efficient methods that maintain performance with
fewer training samples [46, 71], and compute-efficient models which pairs parameters
across models via dynamic weight warping [65]. We continue to develop cognitively in-
spired techniques that optimize LLMs’ cognitive utility function, balancing performance
with resource efficiency [78].

2.5 End-to-end Cognitive Workflow
My long-term goal is to develop cognitively inspired AI systems that can perform com-
plex, multi-step tasks involving causality, abstraction, and memory, while reducing human
cognitive load. To build such systems, it is not sufficient to excel in a single cognitive ca-
pability. Instead, multiple functions must work in concert, enabling agents to understand
the overall workflow of complex and time-consuming tasks (e.g., scientific processes,
legal reasoning), and to process high-fidelity tasks quickly and efficiently.

Learning from Human-vs-LLM Workflow. The first step is to investigate how human
workflows differ from AI workflows and to design methods to align them. Our prior
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work on collecting long-term human workflow data (in scholarly writing [57] and legal
processing [8]) has revealed clear distinctions between human and AI processes. When
end-to-end writing data is used to train models to emulate human writing trajectories, the
resulting systems exhibit more human-aligned dynamics and improved writing quality
[57, 55]. Similarly, in legal planning and execution, we find that humans often act more
spontaneously, sometimes repeating inefficient steps [8], whereas AI tends to rigidly fol-
low pre-defined plans. We observe these contrasting behavioral patterns in human- and
AI-based legal workflow data collected in [74], providing key insights for designing cog-
nitively aligned thinking assistants that better bridge workflows between lawyers and AI
agents.

Optimizing LLM Workflow On the other hand, we also study how LLMs themselves
learn and optimize their cognitive processes during complex tasks. For example, models
can refine their own policies or workflows through self-evolving rewards [49] or test-time
scaling with verifiable rewards. This line of LLM workflow optimization can ultimately
be combined with human workflows to enable more effective collaborative workflow op-
timization.

2.6 Extension to Other Modalities
While my work primarily focuses on language, multidisciplinary collaborations have ex-
tended it to images and video, showing that multimodal models benefit from complemen-
tary cross-modal effects. Effective multimodal learning, however, requires careful design
of fusion strategies and cognitive objectives such as reasoning and planning. Key results
include:

• Vision–language models improve understanding of global connectivity and graph
motif analysis in graph images [6].
• Explicit temporal memory in video LLMs yields more coherent frames [4]; align-

ing vision–language models with LLM feedback enhances reasoning in video and
image tasks [42, 3, 2, 68].
• Integrating multimodal representations into a unified latent space (“Platonic repre-

sentation”) accelerates understanding [25].
• LLMs can plan robotic manipulation tasks from language-based instructions [79].

Beyond multimodality, I also explore (i) autoregressive–diffusion hybrids for text genera-
tion [84], (ii) model uncertainty [28, 46, 53] and generalization [1, 29], and (iii) theoretical
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analyses of learning frameworks [60].

3 Cognitive Benchmarking and Evaluation
Current LLM evaluations focus on isolated tasks and fail to capture the full cognitive
demands of real-world applications. The growing use of LLMs for data collection and
evaluation introduces new challenges, including difficulty tracing error sources and am-
plifying artifacts in AI-generated data. My work addresses these issues through two di-
rections: (i) assessing the potentials and risks of AI-generated data and evaluation (i.e.,
LLM-as-judge), and (ii) building a comprehensive framework to benchmark human and
machine cognition.

3.1 Potentials and Risks of AI-generated Data
Potentials: To reduce annotation costs, we developed data augmentation methods using
symbolic rules [17, 41], annotation imputation [63], and information-theoretic measures
[45, 46, 71, 53], as well as disagreement-aware sampling [77]. LLMs can generate an-
notations, prompts, simulated dialogues, and evaluation data, accelerating research and
development process. We have leveraged LLM-based evaluations [44, 3] and multi-agent
simulations [32, 5, 80] to enrich training data.

Differences in discourse 
distribution

Shallow 
synthesis

Cognitive 
biases

Training

High-order artifact 
amplification

Artifact

Risks and Biases: Over-reliance on AI-generated data risks creating an “artificial data
ecosystem” [7] with:

• Cognitive Biases [54] in LLM-based evaluation: e.g., egocentric and length biases
[39].
• Stylistic Discrepancies [7]: more formal and stylistically distinct from human text.
• Shallow Synthesis [64]: shallow citation and knowledge integration.
• Discourse Biases [50]: different structural patterns in long-form text.
• Artifact Amplification [7]: reinforcing biases and artifacts during training.
• Behavioral inconsistency [66, 76]: LLMs show incoherent behaviors across tasks

3.2 Benchmarking of Cognition
Traditional cognitive science experiments provide detailed insights into human cognition
but are often small-scale. Aligning LLMs with these fine-grained data [10, 23] has shown
promising results, though obtaining high-quality data remains challenging. To scale up
these efforts, we are developing a project called CogBench [12], a comprehensive cogni-
tive benchmarking framework. CogBench aims to collect high-quality human cognition
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data via controlled experiments with cognitive scientists [13, 73], and evaluate human
and LLM cognition across selective attention, working memory, reasoning, and reading
comprehension [14]. By integrating rigorous data practices with large-scale benchmark-
ing, we aim to establish a more robust, human-centered methodology for assessing and
aligning AI capabilities. Our cognitive benchmarking framework grounds AI evaluation
in established cognitive science methodologies. This dual focus, applied systems with
theoretically grounded benchmarks, ensures advances in both the scientific understanding
of human cognition and the design of practical AI tools.

4 Expert-level AI: Assist Expert Thinking Process
Expert Thinking AI ToolsIn knowledge-intensive domains such as scientific

research and legal practice, a significant cognitive
gap remains between human experts and current
LLM capabilities. These gaps arise from limita-
tions in handling complex multitasks, incorporat-
ing dynamic feedback, and adapting to evolving
contexts. Full automation often oversimplifies the
nuanced reasoning these tasks require, misaligning AI systems with expert workflows.

My objectives are twofold: (i) to benchmark the skills and knowledge required in expert
domains, and (ii) to create collaborative platforms where experts and AI agents interact,
exchange feedback, and adapt capabilities over time. This framework aims to benchmark
AI cognition in end-to-end professional tasks, identify cognitive gaps, and refine models
for closer alignment with human expertise. We first focus on building expert support
systems in two domains: science and law.

4.1 Assistants for Scientists
Reading Assistance In collaboration with AI2 and UC Berkeley, I contributed to the
development of Semantic Reader [24, 62], which provides in-situ definitions and expla-
nations of terms when reading scientific papers [36, 27], thereby reducing cognitive load.
More recently, we launched SciTalk, which transforms research papers into short-form
videos, making knowledge more accessible to wider audiences [70].

Writing Assistance Scientific writing is a challenging, iterative cognitive task that re-
quires sustained practice, collaboration, and integration of existing literature. I envision
the future of scientific writing as a collaborative effort between scientists and AI agents,
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Augmented Reading Interface

CLAIM VERIFICATION
Flagged Issue: The sentence may overgeneralize, implying 
all cited works rely heavily on domain-specific training. 
Notably, Jeon (2022) may use broader methods.
Suggested Action: Check whether both papers ..
Example Revision: "Unlike domain-specific approaches 
\citep{Jeon:2022} .. "

Proactive, In-Situ Writing Assistance

where both iteratively co-develop high-quality research outputs.

Writing assistance must go beyond supporting the immediate writing context. It should
understand the full workflow, capturing the writer’s intent and providing in-situ support
while minimizing distraction. Also, I focus on building interaction-centric AI systems
that evolve through user feedback to better support scientific writing.

Our design principles include:

• In-Situ Aids for Writing: Document-level tools that detect overloaded symbols, re-
dundant terminology, and logical inconsistencies using discourse-level modeling
for real-time writing support.
• Workflow-aware Interfaces: features that flag inconsistent scientific claims or over-

toned text, with suggestions. For instance, a scientist drafting a related work section
in Overleaf may trigger backend reasoning agents to automatically retrieve cited
literature, detect errors or overstatements, and suggest improved citations with in-
ferred rationales.
• Human-Centric Design and Co-Learning: Avoiding the “illusion of clarity” (Nguyen,

2021) by carefully designing interfaces that support scientists’ thinking processes
while reinforcing human–AI collaboration.
• Learning from Human Workflow: Collecting human revision and writing workflow

data to build cognitively-aligned systems for naturally integrated interactions [15,
57, 59, 80].
• Learning from Interaction: Adaptive systems that improve via user feedback, as

demonstrated in collaborative editing [15] and iterative taxonomy building [58].
• Trustworthy Models: With NSF support, we develop foundation models integrating

reliable, cross-modal knowledge for robust writing assistance.

Other Scientific Tasks Beyond reading and writing, scientific workflows involve cogni-
tively demanding stages such as peer review, collaboration, experimentation, and verifi-
cation. Our lab is developing specialized agents and interfaces to support different stages
of scientific tasks. For instance, we created PeerRead [31], the first large-scale dataset
of papers and reviews from computer science conferences, enabling research on accep-
tance prediction and aspect-specific review generation. In collaboration with visualization
researchers, we are also building systems that automatically generate effective visualiza-
tions or insights, adapting interactively to scientists’ needs and scaling insights during
interaction.
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4.2 Assistants for Lawyers
With Open Philanthropy and UMN Law School, we developed LawFlow [8], a bench-
mark for complex legal processing tasks requiring long-horizon reasoning and planning.
The dataset captures detailed workflow data from both human lawyers and AI agents,
including brainstorming, planning, research, and client communication—for tasks such
as “advising a startup.” Our findings reveal that human legal reasoning is recursive and
exploratory, whereas AI workflows are typically linear and exhaustive. From these hu-
man–AI comparisons, we derive design principles for legal interfaces, including collab-
orative planning, task division, and workflow flagging, and we are actively developing
interfaces guided by these insights. Reflections from practicing lawyers [74] further high-
light that generative AI already improves junior-lawyer performance, yet adoption lags
because evaluating AI outputs is cognitively demanding, especially for less experienced
practitioners.
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These challenges create several risks: over-
trust or over-reliance on AI, or shortcut-
driven reasoning (Kosmyna et al., 2025) as
well as the potential intensification of ex-
pert polarization. Junior lawyers, in partic-
ular, risk being sidelined without proper scaf-
folding. To mitigate these risks, we empha-
size the need for tools that up-skill juniors,
train them to critically validate AI outputs,
and provide workflow-aware assistance that
supports lawyers as thinking and co-learning
partners, ultimately lowering their cognitive
burdens rather than replacing their expertise.

4.3 Computational Advertising and Journalism
As part of my commitment to Naver and MCAL, I contribute to developing computa-
tional metrics and algorithms for advertising in both academia and industry. For example,
in the advertising market, we model nuanced affective responses such as skepticism [67]
and nostalgia [47], moving beyond sentiment-based metrics. Recently, we also study how
advertising is shifting from keyword-based search advertising toward generative ad plat-
forms (e.g., Perplexity, Google AI Briefing). We conduct comparative research on search
patterns and consumer engagement to better understand the impact of AI on the adver-
tising ecosystem [18]. Finally, I’ve worked on transforming the workflows of advertising
services by integrating AI technologies. For instance, we are developing ad systems that
support offline policy estimation (OPE) in deterministic environment such as ad auctions
[81].

By capturing detailed expert reasoning, we aim to build cognitively inspired models and
expert-aware interfaces that adapt to the dynamic cognitive states of professionals. This
approach will extend to other domains such as education, medicine, journalism, and pro-
gramming, forming a broad Expert Benchmarking initiative to support specialized AI
systems tailored to the cognitive demands of diverse expert roles.
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5 Pluralistic Alignment
Our society thrives on diverse perspectives shaped by different backgrounds, identities,
and cultures. However, rapid AI advancements often collapse these into a generalized
“average,” erasing the richness of pluralistic viewpoints. AI must instead promote people-
centric technologies that capture and encourage diversity, ensuring inclusivity, ethical
growth, and societal alignment. My goal is to build socially aware AI models that repre-
sent the full spectrum of human opinions through two complementary approaches: data-
centric (§5.1) and model-centric (§5.2).
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5.1 Data-centric Alignment
Defining and capturing diversity is challenging, manifesting at individual, group, and
community levels, and varying over time and context. Our “pluralistic representation”
approach encodes disagreement and perspective variation directly into datasets. We de-
velop methods to detect, characterize, and augment marginal viewpoints by:

• Predicting missing annotations with collaborative filtering over annotations [63].
• Analyzing annotation properties via learning dynamics [46].
• Quantifying the disagreement level using demographic factors [77].
• Collecting perspectives from language learners to diversify model predictions [82,

43].

5.2 Model-centric Alignment
As NLP tasks grow more subjective, labels often shift from discrete to continuous val-
ues. Models that ignore this fluidity risk excluding certain groups. We design pluralistic
alignment methods at multiple granularity levels:

• Individual preferences: Model disagreement as a proxy for diversity using pairwise
preference learning [44].
• Group distributions: Extract and align diverse opinions from LLMs [22] with survey-

based distributions using distributional alignment.
• Societal values: Dynamically combine and resolve value conflicts using crowd-

sourced resolution scenarios [11].
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As AI becomes embedded in education, industry, and politics, it must reflect diversity,
plurality, and mutual respect. Without this, systems risk amplifying monolithic and biased
perspectives, increasing polarization. Pluralistic AI seeks to model coexistence among
differing values, beliefs, and cultural backgrounds, fostering inclusive and socially re-
sponsible AI that values and encourages diverse perspectives. My future work will opera-
tionalize pluralistic alignment through quantitative diversity metrics, disagreement-aware
training objectives, and cross-cultural evaluation datasets.
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