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1 Introduction

1.1 Motivation

Interactive robots have long been envisioned as ef-
fective assistants for humans since the early days of
the JHU/APL desktop workstation (Seamone and
Schmeisser, 1985). The use of natural language
as an interface with an assistive robot is especially
useful since language does not require any addi-
tional training or tools, and can be used readily
in scenarios such as service robots, eldercare, etc.
However, natural language is extremely complex,
and practical applications require understanding of
the semantic and syntactical structure of input sen-
tences. Early interactive robots were cumbersome
for users as they relied on a small fixed set of recog-
nizable task or motion commands. However, with
the advent of Transformer-based Large Language
Models such as GPT-3 (Brown et al., 2020), Nat-
ural Language Understanding (NLU) capabilities
have dramatically improved. Since these LLMs are
trained on internet-scale corpora, they have also
been shown to understand general world context,
and have shown remarkable capabilities in tasks
such as code completion (Chen et al., 2021), etc.
Our primary goal in this project is to leverage this
real world context embedded in LLMs to build
an interactive robotic system that can pick up and
place objects based on a user’s natural language
instructions.
The capability of LLMs in understanding general
context also brings out the issue of irrelevant out-
put. In the case of robot assistants, and specifically
robot grasping, we require the robots to understand
the context of what objects are in the scene, and
the objects that are “graspable”. This means that
the LLMs need to be “grounded” in the robot’s
affordances. To this end, we introduce the use of
a vision-based system, that uses object detection
to encode the objects in the scene into the LLM’s
local world context. This essentially “limits” the

LLM’s world model, and forces it to map the user’s
requests to objects in the scene.
Practical robot assistants also require require robust
speech recognition capabilities, since speech is a
general medium and does not require external tools
such as keyboards or joysticks, making it usable by
people who require advanced assistance e.g., peo-
ple with motor disabilities. In this project, we use
modern advanced speech recognition models such
as (Radford et al., 2022) to transcribe user speech
before passing it to the NLU system.

1.2 Related Work

Assistants and conversational agents with natural
language understanding capabilities have a long
history, and have been an active area of research,
since the days of the Stanford SHRDLU (Wino-
grad, 1971) system.
Robot manipulation using natural language has
received significant research focus for several
decades, primarily driven by the use cases in assis-
tive and household service robots. However, most
works typically rely on the user to give specific
instructions to the robot, and focus on following
these instructions accurately. We refer to (Tellex
et al., 2020) for a detailed survey of robot systems
that use language.
Recent works primarily rely on multimodal Trans-
formers, combining embeddings from text and im-
ages to learn mappings in an end-to-end fashion.
(Jiang et al., 2023), (Shridhar et al., 2022), (Lynch
et al., 2022) are some recent works in this direc-
tion. However, this is significantly complex and
requires extensive training. We instead pursue a
modular approach, and make use of existing pre-
trained models to make the problem tractable.
Our projects extends these works to generalize
to novel objects, and high-level user instruc-
tions.Instead of relying on specific low-level task
instructions from the user, we utilize the reasoning
capabilities of LLMs. Our work is most closely



related to (Ahn et al., 2022).

1.3 Broader Impact

We expect this system to be effectively assist people
with motor disabilities in various settings such as
elder-care homes, supermarkets, etc. The proposed
pipeline also builds on advanced prompting tech-
niques such as Chain-of-Thought prompting, that
could be generally useful in a wide range of real
world applications. The developed visual ground-
ing model also helps build better robot agents
which are grounded in the real world context.
We believe the current modular approach offers
multiple avenues for further research - improving
each module independently, as well as building an
end-to-end model that reduces the need for multiple
modules which reduces complexity and latency.

2 Approach

2.1 Overview

In this project, we adopt a modular approach, with
different independent modules for each task. We
make use of pre-trained models where applicable
in order to speed up the development of the system.
The user input to the system is through voice, which
is then transcribed to text. A RGB camera provides
visual input to the system. The system considers
the user query in combination with the objects in
the scene, and returns a single label referring to the
object that is most relevant to the user’s query. The
position of the object is estimated and then passed
on to the robot module to perform the further steps
of grasping and placing the object in a fixed loca-
tion. The system also provides speech feedback
through a speaker to improve the user experience.
The system architecture is described in Figure 1.
The entire system is implemented using the Python

programming language and runs on the Ubuntu
20.04 operating system.

2.2 Speech Recognition

Speech input makes the system available to a wider
range of users, and eliminates the need for spe-
cialized training or tools. In our project, we use
the state-of-the-art OpenAI Whisper API (Radford
et al., 2022) to perform speech transcription. Since
the Whisper API does not have the capability to
perform real-time streaming speech recognition,
we first save the user speech to a file, which is then
passed on to the API for transcription.
The API returns the transcribed text as plain text.

Figure 1: System Architecture.

In our project, we consider only speech in English,
although the Whisper model reports state-of-the-
art recognition performance on several other lan-
guages.

2.3 Visual Grounding using Object Detection

For the robot assistant to be useful, the user queries
need to be grounded in the objects that are “gras-
pable” by the robot. In the absence of this ground-
ing, a generic user query such as “I need something
to eat” is not understandable, and could refer to a
wide variety of objects that are not available to the
robot. To this end, we use a visual system to detect
objects available in the scene, and add these objects
as context for further processing.
A monocular RGB camera is fixed on the table
facing the robot arm, and viewing the table. The



camera is fixed in such a way as to be able to view
the entire robot workspace.
We use the Mask R-CNN object detection model
(He et al., 2017) to detect objects. In our current
project, we use the pre-trained model from Detec-
tron2 (Wu et al., 2019) trained on the COCO dataset
for inference. The use of an instance segmentation
model instead of a simple object detection model
also enables us to distinguish between multiple ob-
jects of the same class.
The labels of all detected objects are extracted and
passed to the LLM subsystem, for further process-
ing.

2.4 LLM Subsystem
In order to perform reference resolution, i.e. pick-
ing the most relevant object from the user query,
we use a Large Language Model (LLM). The tran-
scribed text from 2.2 and the object labels from 2.3
are combined in plain text into a custom prompt
that is passed as input to the model. The use of
a Large Language Model for reference resolution
offers several benefits -

• LLMs are trained on very large scale cor-
pora and shows state-of-the-art performance
on several reasoning tasks such as question
answering, commonsense reasoning, natural
language inference, etc. This enables the
model to better understand ambiguous or com-
plex user queries (such as "I am thirsty")
and pick objects that are more relevant to
the user’s request. This capability also helps
LLMs stand out against traditional relevance
search that depend on simple vector repre-
sentations, since the traditional methods can-
not adequately model complex long-form lan-
guage.

• LLMs such as GPT-3 (Brown et al., 2020)
shows remarkable few-shot proficiency i.e.,
learning using few examples instead of a
large dataset, using in-context learning. This
capability helps us teach the model the
required task using a few manually annotated
examples or “prompts”, and rely on the
model’s few-shot learning and commonsense
reasoning capabilities to performance better
reference resolution.

• The GPT-3 model also shows significant im-
provements in reasoning when using Chain-

of-Thought prompting (Wei et al., 2022). The
model learns to reason sequentially about the
required user query, enabling the system to
respond accurately to complex user queries
(such as “I am hungry, can you get me some-
thing to eat ?”).

• Previous works such as (She et al., 2014) de-
pended on complex graph-based representa-
tions for visual grounding and user expres-
sions. We bypass these complex representa-
tions and directly teach the LLM to perform
reference resolution using plain text prompt-
ing.

• Since the LLM is prompted on natural lan-
guage datasets, it helps us build better conver-
sational agents, and agents that can respond
to users in “natural language” and not appear
robotic. This improves the user experience,
and helps reduce the friction between the as-
sistant and users.

We use the OpenAI API with the
‘text-davinci-003’ model for infer-
ence. The full prompt and the parameters for the
language model are given in Appendix 5.4. The
output from the GPT-3 LLM is a JSON string with
the action to be taken, the object to be grasped (in
case of pick action), a short reply to the user (for
TTS feedback) and the reasoning (for debugging).

2.5 Robot subsystem
2.5.1 Object Pose Estimation
We consider the “pick” action for further exposition
of the robot subsystem. The LLM returns the object
to be picked to satisfy the user’s query. From the
object detection model2.3, we obtain the instance
segmentation mask, which indicates the image pix-
els corresponding to the object. The centroid of the
segmented pixels are then calculated using image
moments, using the OpenCV library. We refer to
(Gonzalez, 2008) for a detailed discussion on the
image processing techniques involved.
Robust and generalizable object pose estimation
are challenging problems and an active area of re-
search in computer vision. In the current work,
we make some important assumptions to make the
problem tractable - first, all objects are assumed
to be of regular polygonal shape. This enables
our estimation of the centroid to match the real
object’s centre. Second, we assume all objects are
uniformly sized, rigid, non-fragile objects. This



assumption enables us to bypass the problems of
grasp force planning and instead rely on simple
uniform grasping. Third, we assume all objects
to be on the same horizontal plane. This helps us
bypass the problem of object pose estimation and
grasp planning in the vertical direction, which is
more complex than the planar case.

2.5.2 Grasping and Placing
We use a 6-DOF Kinova Gen3 Lite arm, with a two-
finger gripper as the robot manipulator. In our cur-
rent work, we simplify the grasp approach process
by assuming a uniform grasp force and a simple
top-down grasp approach, which allows us to avoid
the challenges associated with grasp approach pose
estimation and grasp force estimation. Once we es-
timate the pose of the object, we execute a sequence
of pre-defined vertical grasp approach poses that
are relative to the object’s position. Upon reaching
the object grasp pose, we employ a uniform force
closure to grasp the object.
After grasping the object, the object is then placed
at a fixed location through a sequence of pre-
defined poses, and the grasp is released.

2.6 Speech feedback

Since the user interacts with system through voice,
a speech feedback in addition to the robot action
provides the user with a confirmation of the task
progress/completion, hence improving the user ex-
perience. This also enables the system to have a
conversational dialog with the user. We use the text
reply from 2.4 and convert it to speech using the
pre-trained FastSpeech model (Ren et al., 2019).

3 Challenges

We encountered the following challenges when im-
plementing the system:

• Steering/Prompting the LLM: Al-
though advanced LLMs such as
text-davinci-003 perform well
on several benchmarks, the input prompts
need to be carefully crafted in order to
achieve the required output. We found that
the prompt was brittle and a few changes
in the input prompt resulted in significant
difference in results. Essentially, the model
“overfits” to the format provided in the format.
Furthermore, an excessively long prompt with
irrelevant details would lead to misdirecting
the model, whereas a very short prompt did

not give the LLM enough data to accurately
understand the context.

• Managing the limited token length: The
text-davinci-003model accepts a max-
imum token length of 4097, i.e., 4097 tokens
including the input prompt as well as out-
put text. This acts as a limiting factor for
the length of the prompt. Hence, the prompt
needs to be carefully condensed so as to allow
a larger output length yet containing as much
information as possible to steer the LLM.

• Quirks of the LLM: We initially investigated
the use of OpenAI’s ‘gpt-3.5-turbo’
LLM which is fine-tuned for chat conversa-
tions, in order to enable interactive dialog.
However, we found it difficult to steer the
LLM to output JSON responses. We found
that since the model was fine-tuned for conver-
sations, it preferred the output to be in natural
language conversation, rather than the JSON
output we require. This caused issues with
downstream modules that depended on the
output being in exact JSON format. We had
to fall back to the ‘text-davinci-003’
which is a less-optimized general purpose
LLM.

• Engineering challenges: The envisioned sys-
tem is a complex modular system with sev-
eral independent modules. While this ap-
proach makes the system flexible and easily
extendable, it also causes errors to propagate
throughout the system, making it difficult to
debug potential issues. Furthermore, since
each module is a complex module with sig-
nificant processing overhead, the latency with
each module adds up leading to a slower sys-
tem. The system requires several optimiza-
tions to keep the latency low enough to be
interactive.

4 Results

4.1 Video

Some example demonstrations of the working sys-
tem are available here: https://z.umn.edu/vlangogh

4.2 Observations and Limitations

We observed that the system performed well with
several diverse inputs. The primary evaluation for
the system was qualitative human evaluation. We

https://z.umn.edu/vlangogh


tested the system with different user queries, var-
ied objects and varied object positions. To a large
extent, the system was successfully able to under-
stand user queries, detect objects in the scene and
grasp the required objects. However, the system’s
reliability depends on quality of the different core
modules - the object detection module, the LLM
model, and the robot grasping module. We detail
some errors in the existing system below.

4.2.1 Object Detection Model

We used a Mask-RCNN model trained on the
COCO dataset, without further fine-tuning to de-
tect objects in the scene. The Mask R-CNN model
ranks among the state-of-the-art in object detection
and instance segmentation. The model was able
to robustly detect objects in a variety of positions
and orientations, lighting changes, occlusions, etc.
However, the model is not designed to perform
zero-shot object detection, meaning that the model
could not generalize well to unseen objects. This
meant that direct user queries for out-of-domain
objects, such as “get me the can of Sprite” could
not be satisfied. A detailed discussion on the object
detection model’s limitations is omitted here in the
interest of brevity.

4.2.2 Large Language Model

We found that the accuracy of the LLM depended
significantly on the input prompt. Broadly, the
LLM was able to satisfy the user request accurately
even with vague or short prompts. In table 1,
we highlight some sample user queries with the
objects list, and the corresponding expected output
against the LLM’s output. In the interest of brevity,
we skip the full output and highlight only the
object to be picked. None indicates that no object
in the scene can be picked.
In general, we find that the LLM outputs align with
the user’s requests. The LLM understands shorts
vague prompts, responds to deliberate misdirection
accurately, and even understands very long queries
with irrelevant text.

Failure cases: We find that the LLM output is
not accurate in cases where the output is vague/de-
batable. For example, when the user says “I feel
thirsty”, the LLM output is a “banana”, since the
the LLM assumes that a banana can, in some vague
sense, quench thirst.

4.2.3 Robot subsystem
We find that the simple grasping procedure sig-
nificantly reduces the robot’s versatility. The en-
forcement of a top-down grasp limits the arm’s
workspace since one degree of freedom is elimi-
nated (one joint is always enforced to be facing
downward). The assumption of all objects being
on the table also limits the flexibility of the system.
However, relaxing these assumptions requires sig-
nificant work on the grasping system, which is a
major challenge in its own merit. Generalized ob-
ject grasping is an active research area in robotics
and general solutions are yet to be found.

5 Discussion

5.1 Replicability

The system is designed to be modular and easily
replicable. The individual subsystems are easily
replicable since they are standalone modules and do
not require additional inputs. However, the entire
system requires the use of a capable robot manip-
ulator and an RGB camera at a minimum. Other
input/output systems such as a microphone and a
speaker can also be used optionally.
However, each individual module can be easily
evaluated on its own merits, especially the LLM
subsystem relevant to this work. The LLM sub-
system requires an API key and internet access to
access OpenAI’s Completion API.
In our work, we set the ‘temperature’ of the LLM
to be 0.7, leading to possibly varied output on each
run. This is desirable in real world application to
resolve object references when multiple equally
relevant objects are present in the scene. It also
promotes creative replies to the user which helps
improve the user experience. However, this might
lead to output not being exactly reproducible be-
tween runs.

5.2 Datasets

In our current work, we use pre-trained models
where possible and do not train on our own datasets.
The exact model checkpoints used for each module
are listed in Appendix B

5.3 Ethics

We do not foresee major ethical risks from this
work. The outputs of the LLM are grounded in
the objects in the scene to reduce ‘hallucinations’,
Furthermore, the prompt, as mentioned in appendix



User Query Expected object LLM output Match
Objects list: [“banana” ,“scissors”, “mouse”]
“hand me the banana” banana banana ✓

"get me the water bottle" None None ✓

"I feel thirsty" None banana ✗

"I need to cut this paper" scissors scissors ✓

"I want to cut my hand" None None ✓

Objects list: [“apple", “mouse", “bottle", “cup", “book"]
"give me the banana" None None ✓

"i feel hungry. hand me something to read" book book ✓

"can you get me the can of sprite" None None ✓

"give me something other than the mouse" <variable> apple ✓

"I feel bored. Can you hand me something" book book ✓

"Today I went to the mall. It was fun. But it was
very cold outside. I met my friend on the way
and had some coffee with her. I then went to
the bookstore and bought a hoodie for myself. I
came home and slept for an hour. I feel hungry
now."

apple apple ✓

Objects list: [ ] (empty list)
"give me the banana" None None ✓

"i am extremely thirsty. please give me some-
thing to drink immediately"

None None ✓

Table 1: Sample evaluations with the user query, expected object to be picked, and the LLM’s output. The outputs
are generated by setting temperature=0, to improve reproducibility.



C tries to promote shorter outputs, thus further lim-
iting hallucinations.
We also try to prompt the LLM to reject user
queries which indicate user self-harm. While this
worked effectively in our limited testing, we ac-
knowledge that this is not foolproof, and may re-
quire further work to respond appropriately to such
queries.

5.4 Further Work

The system, as it currently stands, works well for a
wide range of user queries in complex natural lan-
guage. However, there are several areas in which
the system can be improved. Some of them are
listed below:

• Interactive agents: In the current work, we
use a single user instruction to take decisions
and perform robot actions. However, to be
generally useful, we would prefer the robot to
interact better with the user such as offering
options, etc. With the advent of better LLMs
and conversational agents, this work holds
promise and would help more useful robot
assistants.

• Complex multi-step tasks: In addition to in-
teractive dialog, another step towards better
assistants would be to develop the system to
understand and perform complex multi-step
tasks. For example, the system should be able
to understand queries such as “Put the cup on
the plate and hand me the plate and then the
apple.”

• Better LLM steering techniques: In our cur-
rent work, we depend exclusively on specific
prompting to steer the LLM to return the re-
quired output. However, this technique is not
robust enough for general use, and creates a
single point of failure. There could be fur-
ther work on building better ways to steer the
LLM. For example, the OpenAI API enables
an optional ‘logit_bias’ parameter, which can
be used to modulate the token probabilities.
It is worth exploring if this can be used to re-
duce hallucinations and improve outputs with
reduced inference time and cost.

• Using distilled language models: While
LLMs encode a large amount of general world
knowledge, for works similar to ours, a lot of
the information is irrelevant. For example,

we do not require information about the Uni-
versity of Minnesota to understand a query
indicating a user’s hunger (probably). We can
try to use the larger model as a “teacher” to
train a “student” that requires lower resources
and can perform faster inference. Fine-tuning
techniques such as LoRA (Hu et al., 2022)
enable building faster models and are worth
exploring.

• Better object detection: In our work, we used
an off-the-shelf Mask R-CNN model trained
on the COCO dataset. However, in recent
years, there has been significant work in de-
veloping zero-shot object detection models,
that can detect objects not present in the train-
ing dataset.
Another direction in object detection could be
the use of multimodal models such as CLIP
(Radford et al., 2021), OWL-ViT (Minderer
et al., 2022) that perform object detection di-
rectly using input natural language queries.
However, these models depend on precise ob-
ject definitions, and do not generalize well to
vague queries. Further improvements to such
models could help us perform robust object
detection and reduce latency.
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A LLM Parameters

We use the following parameters for the language model:

• Model: OpenAI text-davinci-003

• temperature: 0.7

• top_p: 1

• frequency_penalty: 0

• presence_penalty: 0

• logit_bias: null

Any parameters not mentioned above should be assumed the same as default/unset.

B Model Checkpoints

We use several open-source deep learning models in our work. We are grateful to the maintainers of
these models for their contributions. The model checkpoints we use are listed below. Please note that
these model checkpoints and weights are listed as of date of creation of this report, and may be subject to
change by the model maintainers.

• Object Detection : Mask R-CNN(Resnet50-FPN 3x) from Detectron2

• Text-to-Speech: FastSpeech from Coqui TTS

• Speech Transcription: OpenAI Whisper-1

• LLM: OpenAI GPT-3.5 (text-davinci-003)

C LLM Prompt

We use the following prompt, with the detected objects and user query appended during run-time:

### I n s t r u c t i o n s . READ THESE INSTRUCTIONS CAREFULLY ! ! ###
You a r e a f u t u r i s t i c r o b o t a s s i s t a n t .
You s e e a number o f common o b j e c t s which a r e g i v e n as a Python l i s t

o f s t r i n g s under " c o n t e x t " .
a u s e r w i l l prompt you wi th a que ry i n E n g l i s h , a s k i n g f o r an o b j e c t ,

unde r " u s e r que ry " .
− your j o b i s t o p i c k t h e o b j e c t most r e l e v a n t t o t h e use r ’ s que ry .

c a r e f u l l y t h i n k a b o u t t h e r e a s o n i n g s t e p by s t e p .
t a k e your t ime t o r e a s o n c a r e f u l l y and g i v e t h e most a c c u r a t e answer .
− you must r e t u r n a s e q u e n c e o f a c t i o n s as t h e r e s p o n s e .
− your r e s p o n s e must be JSON f o r m a t s t r i n g as d e f i n e d below .
each r e s p o n s e s h o u l d be a d i c t i o n a r y wi th t h e s e i t e m s :
{" a c t i o n " : [ACTION ] , " o b j e c t " : [OBJECT_NAME] , " u s e r _ r e p l y " : [

REPLY_TO_USER ] , " r e a s o n " : [CONCISE_REASONING] > } .
[ACTION] can be one of [ " p i c k " , " p l a c e " , " None " , " e r r o r " ] .
[OBJECT_NAME] muse be one of t h e t h e o b j e c t s from t h e c o n t e x t . i f no

o b j e c t i s s u g g e s t e d , t h i s must r e t u r n None

https://github.com/facebookresearch/detectron2/blob/main/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml
https://github.com/coqui-ai/TTS
https://openai.com/research/whisper
https://platform.openai.com/docs/models/gpt-3-5


[REPLY_TO_USER] must be a s h o r t , w i t t y r e p l y t o t h e u s e r . i f t h e u s e r
does n o t ment ion any o b j e c t i n t h e query , you must i n c l u d e t h e

o b j e c t name i n t h i s r e p l y . t h e r e p l y must be warm , s h o r t and
i n t e r e s t i n g . t h e r e p l y must n o t ment ion t h e c o n t e x t , i n s t e a d
ment ion i t a s " h e r e "

[CONCISE_REASONING] must e x p l a i n your r e a s o n i n g f o r p i c k i n g a
p a r t i c u l a r o b j e c t c o n c i s e l y i n l e s s t h a n 5 words . t o choose a
p a r t i c u l a r o b j e c t ,

you must s t r i c t l y f o l l o w t h e below r u l e s :
1 . VERY IMPORTANT: you must r e t u r n o b j e c t s which a r e g i v e n i n t h e

c o n t e x t on ly . o b j e c t s s h o u l d n e v e r be from o u t s i d e t h e c o n t e x t .
2 . i f no r e l e v a n t o b j e c t can be found , you must r e t u r n an e r r o r i n

JSON f o r m a t .
3 . you must n e v e r ask t h e u s e r t o t a k e a c t i o n s t h a t would t a k e e f f o r t
4 . i f t h e u s e r a s k s f o r an o b j e c t which e x a c t l y matches some th ing i n

t h e c o n t e x t , you must r e t u r n e x a c t l y t h a t o b j e c t , w i t h o u t any
f u r t h e r r e a s o n i n g

6 . you must s u g g e s t an o b j e c t which t a k e s t h e l e a s t e f f o r t f o r a u s e r
. f o r example , a banana i s e a s i e r t o e a t t h a n a wate rmelon . a
g l a s s o f w a t e r i s e a s i e r t o d r i n k t h a n a cup of t e a .

7 . you must n o t r e s p o n d t o u s e r q u e r i e s which i n d i c a t e u s e r s e l f −harm
.

−−−
### Examples ###
c o n t e x t : [ ’ app le ’ , ’ banana ’ , ’ c o f f e e cup ’ , ’ w a t e r b o t t l e ’ , ’ coke can

’ , ’ p e a n u t b u t t e r j a r ’ , ’ raw egg ’ ]
1 . u s e r que ry : i need some th ing t o e a t
r e a s o n i n g : t h e u s e r needs some th ing t o e a t . e a t a b l e i t e m s i n c o n t e x t

a r e − app le , banana , p e a n u t b u t t e r j a r , raw egg . raw egg and
p e a n u t b u t t e r j a r c a n n o t be e a t e n d i r e c t l y . banana i s e a s i e r t o
e a t t h a n a p p l e . hence we p i c k a banana .

JSON o u t p u t : {" a c t i o n " : " p i c k " , " o b j e c t " : " banana " , " u s e r _ r e p l y " : "<
some th ing funny >" , " r e a s o n " : " Banana i s ea sy and h e a l t h y "}

2 . u s e r que ry : i t i s ve ry c o l d o u t s i d e . i f e e l t h i r s t y
r e a s o n i n g : s i n c e i t i s c o l d o u t s i d e , t h e u s e r would l i k e some th ing

h o t . t h e u s e r i s t h i r s t y , meaning you need some th ing t o d r i n k . t h e
d r i n k a b l e i t e m s i n c o n t e x t a r e c o f f e e cup and w a t e r b o t t l e . we

want some th ing hot , so we p i c k a c o f f e e cup .
JSON o u t p u t : {" a c t i o n " : " p i c k " , " o b j e c t " : " c o f f e e cup " , " u s e r _ r e p l y " :

" Here i s some c o f f e e f o r you t o f e e l b e t t e r ! " , " r e a s o n " : " c o f f e e
i s warm , quenches t h i r s t "}

3 . u s e r que ry : i need t o t u r n t h i s screw . g i v e me some th ing
r e a s o n i n g : t h e u s e r needs some th ing t o t u r n a screw . a s c r e w d r i v e r

can be used t o t u r n a screw . t h e r e i s n o t s c r e w d r i v e r i n t h e
c o n t e x t . so t h e answer i s None .

JSON o u t p u t : {" a c t i o n " : " None " , " o b j e c t " : " None " , " u s e r _ r e p l y " : " Sorry ,
I c a n n o t f i n d a n y t h i n g t o h e l p t u r n a screw " , " r e a s o n " : " a l l food

i t e m s on ly "}
4 . u s e r que ry : q u i c k ! i need t o make a sandwich ! g e t me some th ing !
r e a s o n i n g : t h e u s e r wants t o make a sandwich q u i c k l y . from o b j e c t s i n

t h e c o n t e x t , p e a n u t b u t t e r j a r and raw egg can be used i n a



sandwich . p e a n u t b u t t e r j a r can h e l p make a sandwich q u i c k l y , a s
raw egg needs t o be cooked . so t h e answer i s p e a n u t b u t t e r j a r .

JSON o u t p u t : {" a c t i o n " : " p i c k " , " o b j e c t " : " p e a n u t b u t t e r j a r " , "
u s e r _ r e p l y " : " Would you l i k e some p e a n u t b u t t e r f o r your sandwich
? " , " r e a s o n " : " p e a n u t b u t t e r s a n d w i c h e s a r e p o p u l a r "}

5 . u s e r que ry : g i v e me t h e a p p l e
r e a s o n i n g : t h e u s e r e x p l i c i t l y a s k s f o r an a p p l e . t h e u s e r must n o t

be d i sobeyed , u n l e s s i t i s a g a i n s t t h e above r u l e s .
JSON o u t p u t : {" a c t i o n " : " p i c k " , " o b j e c t " : " a p p l e " , " u s e r _ r e p l y " : "

Your wish i s my command . " , " r e a s o n " : " Exac t match "}
IMPORTANT: v e r i f y t h a t t h e o u t p u t i s a JSON f o r m a t t e d s t r i n g b e f o r e

g i v i n g a r e s p o n s e .
IMPORTANT: your o u t p u t must n o t c o n t a i n any a p o s t r o p h e s o r c h a r a c t e r s

which a r e n o t JSON r e a d a b l e
−−−
### Rea l s c e n a r i o ###
t h i n k ve ry c a r e f u l l y s t e p by s t e p b e f o r e g i v i n g t h e r e s p o n s e . keep

your r e p l i e s s h o r t and c o m p l e t e t h e t e x t a s a JSON r e a d a b l e s t r i n g
.


