
Methods

Large Language Models (LLMs) like GPT-3, 

GPT-4 show SOTA performance in Natural 

Language Understanding. They also encode a 

vast amount of general context about the world 

as they’re trained on internet-scale corpora. We 

aim to use these capabilities to build a robot 

that can understand natural language 

instructions. However, to be usable in the real-

world, LLMs need to understand their current 

context. We ground LLMs using visual input, use 

SOTA prompting methods, and achieve 

excellent results.

VLanGOGh: Vision + Language-guided Generalized Object Grasping
Team: StarkInc
Nikhilanj Pelluri ( pellu003@umn.edu )

Introduction Results

[1] M. Ahn et al., “Do as I can, not as I say: Grounding language in 

robotic affordances” arXiv, Aug. 16, 2022.

doi: 10.48550/arXiv.2204.01691.

[2] W. Huang et al., “Inner Monologue: Embodied Reasoning 

through Planning with Language Models” arXiv, Jul. 12, 2022.

doi: 10.48550/arXiv.2207.05608.

[3] T. Brown et al., “Language models are few-shot learners” in 

Advances in Neural Information Processing Systems, 2020, pp. 1877–

1901.

[4] J. Wei et al., “Chain-of-Thought Prompting Elicits Reasoning in 

Large Language Models,” in Advances in Neural Information 

Processing Systems, 2022, pp. 24824–24837.

[5] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” in 

2017 IEEE International Conference on Computer Vision (ICCV), Oct. 

2017, pp. 2980–2988. doi: 10.1109/ICCV.2017.322.

[6] A. Radford, J. W. Kim, T. Xu, G. Brockman, C. McLeavey, and I. 

Sutskever, “Robust Speech Recognition via Large-Scale Weak 

Supervision” arXiv, Dec. 06, 2022. doi: 10.48550/arXiv.2212.04356.

References

Conclusions
-- Grounding for LLMs is an active research area. We 

showcase visual grounding for GPT-3/3-5.

-- Chain-of-Thought reasoning and few-shot prompts 

help fine-tune output and reduce LLM “hallucination”.

-- Relying only on prompting tricks to fine-tune LLMs is 

not a viable strategy for production/critical apps. 

Future Work

-- Make the system interactive – offer users options, etc.

-- Use multimodal models like CLIP to match objects in a 

single stage, instead of detection + matching.

-- Extend the system to unseen objects using models 

like OWL-ViT.

-- Extend the system to complex multi-step tasks.

Discussion

“I’m hungry, can you 

get me something 

to eat ?”
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### Real scenario ###

context=List[str] of objects>

user_query=“I’m hungry…”

JSON
[{

“action: “pick”,
“object”: “banana”,
“reply”: “Here’s your banana!”,

……
}]
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We demonstrate that:

-- GPT-3 shows remarkable ability in understanding 

the task at hand with just a few manual annotations.

-- LLMs can be tuned to perform a wide range of 

tasks using other sensory inputs to build a “local 

world” model for the LLM.

A short demo video of the 

system is available here:

https://z.umn.edu/vlangogh
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