
Due: Sep 13 CSCI 5541 (F24) HW0: Building MLP-based text classifier with pytorch page 1 of 2

The lead TA for this assignment is Shirley Anugrah Hayati (hayat023@umn.edu). Please communicate
with the lead TA via Slack or office hours. All questions MUST be discussed in the homework channel
(#HW0). Questions through emails, Direct Messages, and other channels will not be answered.

The goal of this assignment is to make sure you get used to machine learning (ML) programming
with PyTorch and implement a simple neural network based text classifier. By following the steps
below, you can train your own classifier from scratch. This assignment will be the basis of your next
assignment and class project that require more advanced Python/PyTorch programming, analysis, and
deep learning knowledge.

First, carefully read tutorial slides and notebooks on Scikit-learn and Pytroch, and try to run the same
scripts on your local machine with Jupyter Notebooks in Google Colab. Please apply for Google Colab
Pro and get reimbursement from the CS&E department following this instruction. In the tutorials,
we developed a multi-layer perceptron (MLP) based binary classifier for predicting whether a tweet is
about a real disaster or not. Now, let’s build a simple text classifier using PyTorch. In this homework,
you will simply stack one more layer to your MLP and develop a two-layer MLP text classifier
using Pytorch on a new dataset.

Step 1: Choose a dataset from TorchText.datasets

You can choose any dataset from PyTorch’s torchtext. If you are using a laptop or local machine,
choose a small dataset, such as IMDb (train/test: 25000/25000 samples) or SST2 (train/test:
67349/1821 samples). The train split is used to train your model, and test split is used to evaluate
the trained model’s performance. Your test set must not be used in any way during training. Below
is an example script for loading the original IMDB dataset.

# import datasets

from torchtext.datasets import IMDB

train_iter = IMDB(split='train ')

def tokenize(label , line):

return line.split ()

tokens = []

for label , line in train_iter:

tokens += tokenize(label , line)

Step 2: Stack two layers of MLP

You implemented a one-layer MLP classifier in the tutorial. This homework simply requires adding
one more layer to your one-layer MLP, as shown in the pseudo-code below. Note that you added a
100-dimensional intermediate layer between the embedding layer and the last class layer by setting
num layer = 100.

class MLP(nn.Module):

def __init__(self , vocab_size , embed_dim , num_class):

super().__init__ ()

self.embedding = nn.EmbeddingBag(vocab_size , embed_dim , sparse=True)

num_layer = 100

# self.fc = nn.Linear(embed_dim , num_class )

self.fc1 = nn.Linear(embed_dim , num_layer)

self.fc2 = nn.Linear(num_layer , num_class)

# initialize the weights

hayat023@umn.edu
https://pytorch.org/
https://dykang.github.io/classes/csci5541/F24/index.html#classification1
https://colab.research.google.com/github/jckantor/CBE30338/blob/master/docs/01.01-Getting-Started-with-Python-and-Jupyter-Notebooks.ipynb
https://colab.research.google.com/
https://docs.google.com/document/d/1Kdo6BN1h2yISYHTTSC6DVLWhNEaEcRxk/edit#heading=h.gjdgxs
https://pytorch.org/text/main/datasets.html
https://pytorch.org/text/main/datasets.html#imdb
https://pytorch.org/text/main/datasets.html#sst2
http://ai.stanford.edu/~amaas/data/sentiment/


Due: Sep 13 CSCI 5541 (F24) HW0: Building MLP-based text classifier with pytorch page 2 of 2

self.init_weights ()

def init_weights(self):

..

def forward(self , text , offsets):

embedded = self.embedding(text , offsets)

return self.fc2(self.fc1(embedded))

Step 3: Training and Analysis

Following the PyTorch tutorial, you can start training your model after loading a dataset and designing
a classifier model. You can check out the following questions throughout different experiments:

• On the test set, what is the accuracy? Please draw a graph of test performance at each epoch of
training.

• What is the performance (i.e., accuracy on the test set) of a two-layer MLP compared to a single-
layer MLP?

• What happens in the performance if you increase the number of dimensions of the intermediate
layer from 100 to 200?

• Do you have a look at the test set samples that are incorrectly predicted by the model? Why are
the errors occurring?

Deliverables

Your Jupyter notebook in Google Colab should be submitted. Your notebook file should contain all
answers to the questions above, showing test accuracy and curves, performance changes in various
setups (e.g., different number of intermediate layer sizes, number of layers), and incorrectly predicted
samples with justification. Please submit your notebook file to Canvas by Sep 13, 11:59pm.

Rubric (12 points)

• Code looks good, i.e., each cell in the Jupyter Notebook runs without error and outputs intended
results. (+3)

• Description of the task, dataset, and hardware used (+1)
• Test accuracy is reported (+1)
• Graph of test performance on each epoch (+1)
• Explain the performance comparison between two-layer MLP and single-layer MLP (+2)
• Shows and explains the results of changing the number of dimension of the intermediate layer from
100 to 200 (+2)

• Includes hyperparameters used in the experiment (+1)
• Error analyses on the test set samples (+1)

https://canvas.umn.edu/courses/460609/assignments/4123951

