
### CSCI 5541: Natural Language Processing

#### **Lecture 1: Class Overview**

Dongyeop Kang (DK), University of Minnesota

dongyeop@umn.edu | twitter.com/dongyeopkang | dykang.github.io





#### Overview

- Instructors
- ☐ Course information
- ☐ Grading and Late Day Policy
  - Class Participation
  - o Homework
  - o Project
  - Reading Assignment
- Outline of Topics
- Computing resources
- ☐ Pre-class Survey

#### Instructors



Dongyeop Kang (DK)
Instructor



Shirley Anugrah Hayati Graduate TA



James Mooney Graduate TA



Zheng Robert Jia Undergraduate TA

- ☐ DK: Friday 2:30pm 3pm in Shepherd 259
- ☐ Shirley: Monday 3:30pm 4pm via **Zoom**
- ☐ James: Wednesday 3pm 4pm via **Zoom**
- ☐ Robert: Tuesday 10-11am in Lind 4-th floor at Lind/ME Lab

#### Course Information

- ☐ Class meets:
  - o Tuesday and Thursday, 11:15AM to 12:30PM
  - o Keller Hall 3-125
  - UNITE / Remote (recording will be available for everyone right after the class)
- Class homepage
  - https://dykang.github.io/classes/csci5541/F24
- ☐ HW/Project discussion on Slack
  - https://csci5541f24.slack.com/
- ☐ HW/Project submission and grading on Canvas
  - o canvas.umn.edu/courses/460609

#### Outline

- ☐ The purpose of this course is to provide an overview of the *computational techniques* developed to enable computers to **understand** and **respond** appropriately to ideas expressed using natural languages.
- ☐ This course will cover a broad range of *computational models* in NLP,
  - o from language representations, to development and evaluation of NLP applications, to practical coding/machine-learning skills to implement them.
  - o text classification, distributional representation methods of language, large language models, and advanced techniques used in chatGPT

# IMPORTANT NOTE for background

- ☐ This course covers NLP techniques based on recent *deep learning* models, assuming students' knowledge of basic machine learning
- ☐ This course focuses *practical learning* of NLP knowledge
  - o Programming & reading assignments and a semester-long project
  - Assignments and project require programming with PyTorch
  - We use Python for programming and LaTex for report writing
- If students are not familiar with either one of the fields, they should consider dropping the course as it would be very challenging and the course is not designed to cover all aspects.

M

## Prerequisite

- ☐ Required:
  - o CSCI 2041 <u>Advanced Programming Principles</u>
  - CSCI 5521 <u>Machine Learning Fundamentals</u>,
- ☐ Recommended but not mandatory:
  - o CSCI 5527 Deep Learning, or
  - Any other relevant course that covers fundamental machine learning algorithms.
- ☐ Furthermore, this course assumes:
  - Background in basic probability, linear algebra, and calculus.
  - Good coding ability, corresponding to senior undergraduate CS major.
    - ✓ Assignments will be in Python with PyTorch.

CSCI 5541 NLP

### What we don't cover in this class (1)

- ☐ Classical ML techniques and NLP algorithms
  - o E.g., SVM, HMM, CRF, Viterbi
  - o Take CSCI 5521 Machine Learning
- Advanced techniques for NLP models
  - o E.g., GNNs, Recursive Nets, Diffusion, latent variable models,
  - o Take CSCI 5980 NLP with Deep Learning
- ☐ Human aspects of AI and NLP systems
  - o E.g., interaction design, formative/field study, Qual analysis, theory grounding
  - o Take CSCI 5115 <u>User Interface Design</u> or other HCI classes

### What we don't cover in this class (2)

- ☐ Linguistic aspects or computational linguistics:
  - Take classes in Institute of Linguistics
     <a href="https://cla.umn.edu/linguistics/graduate/courses">https://cla.umn.edu/linguistics/graduate/courses</a>
- ☐ Emerging and latest NLP techniques and research skills
  - o Take the CSCI 8980 Intro to NLP Research
- ☐ Basic Python programming skills
  - o Basic tutorials on PyTorch and HuggingFace programming will be given by TAs

M

#### 8980 vs 5980 vs 5541

- Some lectures will be shared across the three classes but they have different focuses;
  - 5980 (NLP with Deep Learning)
    - ✓ focuses on more "processing" parts of NLP, particularly with deep learning methods.
  - 8980 (Intro to NLP Research)
    - ✓ covers broad aspects of NLP research, including theory grounding, data annotation, error analysis, emerging topics, and applications to different fields.
  - o 5541 (NLP, this course)
    - ✓ is an *introductory* class to cover some basic computational methods with applications and representations, and learn practical skills to apply them to your work
  - 55XX (Large Language models, TBD)
    - ✓ is an advanced course that cover a broad ranges of LLMs from technical knowledge, to latest learning methods, to applications, to societal impacts

#### Class Slack

- □ https://csci5541f24.slack.com/
- ☐ Slack will be the primary method of communication.
- ☐ A separate channel for UNITE/Remote students
- □ "prj-[A/B]-MENTOR-TEAMNAME"
  - With instructors
- □ "prj-[A/B]-TEAMNAME"
  - Without instructors

# announcement # hw0 # hw1 # hw2 # hw3 # hw4 # project # random

Group Mentor

- △ prj-a-dk-golish-project △ prj-a-dk-lm\_bros ♠ pri-a-dk-the-adversaries △ unite-and-remote-students
  - △ prj-a-dk-transformative-attentors △ prj-a-shirley-clickbait-analysis △ pri-a-shirley-pilot △ prj-a-shirley-verbavores △ prj-a-zae-word-nerds △ pri-b-dk-language-model-alignment △ pri-b-dk-tbd

▼ projects

- △ prj-b-shirley-title-fight
- △ prj-b-shirley-word-wizards
- △ prj-b-zae-flashcard-generator
- △ prj-b-zae-nlp-vision
- △ prj-b-zae-semanticons

CSCI 5541 NLP

## Slack communication etiquette

- ☐ Don't ask about homework via *emails* or *Direct Messages* to TAs;
  - Questions MUST be posted in the homework channel (e.g., hw#1, hw#2) or during TA's office hours.
- ☐ Technical / coding questions should follow the stack overflow format
  - <Error message> + context < what you tried so far>
- ☐ Responses outside office hours (9-6pm) will be delayed
- ☐ Be respectful and supportive
  - Anyone can respond to each other (Slack participation point). Feel free to answer others' questions if you have already addressed similar issues.

A

#### Canvas

#### https://canvas.umn.edu/courses/460609

2024 Fall (08/12/2024-01... Home Announcements Ø UNITE Videos Assignments Discussions Grades People Pages Ø Files Ø Syllabus Outcomes Rubrics Ø Quizzes Modules Ø Collaborations Attendance Chat LockDown Browser Send or Export Grades to PeopleSoft Item Banks Course Admin Tools Check Accessibility

#### Course Summary:

| Date             | Details                                                           | Due            |
|------------------|-------------------------------------------------------------------|----------------|
| Fri Sep 13, 2024 | HW1: Building MLP-based text classifier with pytorch              | due by 11:59pm |
| Thu Sep 19, 2024 | ▼ Team formation                                                  | due by 11:59pm |
| Fri Sep 20, 2024 | HW2: Finetuning text classifier using HuggingFace                 | due by 11:59pm |
| Tue Oct 1, 2024  | Project brainstorming                                             | due by 11:59pm |
| Fri Oct 4, 2024  | F HW3: Authorship attribution using language models (LMs)         | due by 11:59pm |
| Tue Oct 8, 2024  | ₽ Proposal pitch                                                  | due by 11:59pm |
| Sun Oct 13, 2024 | Proposal report                                                   | due by 11:59pm |
| Fri Oct 18, 2024 | HW4: Generating and evaluating text generated from pretrained LMs | due by 11:59pm |
| Thu Oct 31, 2024 | Midterm office hour participation                                 | due by 11:59pm |
| Fri Nov 8, 2024  | HW5: Prompting with large language models (LLMs)                  | due by 11:59pm |
| Fri Nov 22, 2024 | HW6: Essay writing with ChatGPT                                   | due by 11:59pm |
| Thu Dec 5, 2024  | Poster presetnation                                               | due by 11:59pm |
| Thu Dec 12, 2024 | Final report                                                      | due by 11:59pm |
|                  | Class Participation                                               |                |
|                  | Office Hour Participation                                         |                |

|             |                                                                                                   |   | _ |
|-------------|---------------------------------------------------------------------------------------------------|---|---|
| ∄ тн        | omework                                                                                           | + | : |
| # ₽         | HW1: Building MLP-based text classifier with pytorch Due Sep 13 at 11:59pm   5 pts                | 0 | : |
| # ₽         | HW2: Finetuning text classifier using HuggingFace Due Sep 20 at 11:59pm   10 pts                  | • | : |
| # ₽         | HW3: Authorship attribution using language models (LMs)  Due Oct 4 at 11:59pm   10 pts            | 0 | : |
| # ₽         | HW4: Generating and evaluating text generated from pretrained LMs  Due Oct 18 at 11:59pm   15 pts | 0 | : |
| ₩ ₽         | HW5: Prompting with large language models (LLMs) Due Nov 8 at 11:59pm   15 pts                    | 0 | : |
| # ₽         | HW6: Essay writing with ChatGPT Due Nov 22 at 11:59pm   5 pts                                     | 0 | : |
|             |                                                                                                   |   |   |
| ii ▼ Pr     | oject                                                                                             | + | • |
| <b>∷</b> ₽  | Team formation Due Sep 19 at 11:59pm   1 pts                                                      | • | : |
| ₽           | Project brainstorming Due Oct 1 at 11:59pm   1 pts                                                | 0 | : |
| ii <b>P</b> | Proposal pitch Due Oct 8 at 11:59pm   3 pts                                                       | • | : |
|             | Dronocal report                                                                                   |   |   |

| H  | * Pro | oject                                                            | + | ÷ |
|----|-------|------------------------------------------------------------------|---|---|
| H  | ₽     | Team formation Due Sep 19 at 11:59pm   1 pts                     | • | : |
| H  | P     | Project brainstorming Due Oct 1 at 11:59pm   1 pts               | • | : |
| II | ₽     | Proposal pitch Due Oct 8 at 11:59pm   3 pts                      | • | ÷ |
| H  | P     | Proposal report Due Oct 13 at 11:59pm   5 pts                    | • | : |
| ı  | ₽     | Midterm office hour participation  Due Oct 31 at 11:59pm   5 pts | • | : |
| H  | P     | Poster presentation Due Dec 5 at 11:59pm   5 pts                 | 0 | : |
| H  | ₽     | Final report Due Dec 12 at 11:59pm   10 pts                      | 0 | : |

| ii ▼ Pa | articipation                    | + | ÷ |
|---------|---------------------------------|---|---|
| # ₽     | Slack Participation 4 pts       | • | ÷ |
| # ₽     | Office Hour Participation 4 pts | 0 | : |
| # ₽     | Class Participation 3 pts       | • | : |

# Grading and Late Day Policy

- □ 60% Homework (hw1/2/3/6 for individual, hw4/5 for team)
- 30% Project (team)
- 10% Class Participation (individual)
- Each student will be granted **5 late days** to use for homework and reading assignment over the duration of the semester. After all free late days are used up, penalty is 1 point for each additional late day.
- ☐ The late days and penalty will be applied to **all team members** for group homework and project.
- DRC and other medical urgencies can only be accommodated with a doctor's note or a letter from the DRC

A

## Class participation (10%)

| Template:<br>Weekly Participa<br>Weekly Participa<br>Weekly Participa<br>Scaled on 10 (w | ation in office hou<br>ation in class (5)         | irs (5):<br>:                                       |                                                          |                                                   |               |                           |                      |
|------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------|---------------------------------------------------|---------------|---------------------------|----------------------|
| Weekly<br>Participation<br>Count on<br>Slack                                             | Weekly<br>Participation<br>on Slack (5<br>scaled) | Weekly<br>Participation<br>Count in office<br>hours | Weekly<br>Participation in<br>office hours (5<br>scaled) | Weekly<br>Participation<br>in class (5<br>scaled) | Total<br>(15) | Repeatedly Participating? | Total<br>(scaled 10) |
| 6                                                                                        | 3                                                 | 3                                                   | 1                                                        | 5                                                 | 5             | Very active               | 10                   |

- ☐ Your class participation is **thoroughly** evaluated.
- ☐ The following metrics will be used to grade your participation:
  - Participation and discussion in class (no count for UNITE/Remote students)
  - \*\*Discussion on Slack and during Office Hours for both instructor and TAs
  - Discussion and QA during the presentation of the project proposal and poster
- ☐ We explicitly **count the number of your offline and online participation**, and (min/max) normalize them at the end of the class.
- ☐ Your participation score will be zero if you haven't participated in class, Slack or other discussions.

A

### Homework Details (60%)

- ☐ HW1, 2, 3 and 6 are individual assignments
- ☐ HW4 and 5 are team assignments (the same team for projects)
- ☐ Team assignments
  - Maximum of 4 people
  - Submit your team information by Sep 19
- □ All questions regarding homework **MUST be communicated with the lead TA** over Slack homework channels (e.g., #hw1) or during their office hours.

### Homework Details (60%)

☐ The use of outside resources (books, research papers, websites), collaboration (students, professors) or Al tools (ChatGPT) are encouraged but **MUST be explicitly acknowledged**. Check out the Academic Integrity policy (<a href="https://dykang.github.io/classes/csci5541/F24/index.html#note">https://dykang.github.io/classes/csci5541/F24/index.html#note</a>).

☐ The deadline for all homework is by **Friday midnight (11:59PM)** of the due date. Since our schedule is quite tight, there will be no deadline extension, but you can still use your late days. For the delayed **team** homework and project, late days for every team member will be used.

# Use of AI Tools (e.g., chatGPT)

- ☐ Encouraged to use AI tools like ChatGPT, CoPilot, etc.
- ☐ You can use it to:
  - Clarify concepts learned in class
  - Get instant answers to your questions before emailing TAs and instructor
  - Test your knowledge by asking it questions
- ☐ Warning:
  - Please properly mention what kinds of help you get from the tools in your homework and project (missing acknowledgement will be treated as cheating)
  - Use the tools with responsibility:
    - ✓ Generative AI tools often hallucinate and only provide general answers

### Homework Details (60%)

☐ HW1: Building MLP-based text classifier with pytorch 5 points, Individual, due: Sep 13 ☐ HW2: Finetuning text classifier using HuggingFace o 10 points, Individual, due: **Sep 20** ☐ HW3: Authorship attribution using language models (LMs) o 10 points, Individual, due: Oct 4 ☐ HW4: Generating and evaluating text from pretrained LMs. o 15 points, Team, due: Oct 18 HW5: Prompting with large language models (LLMs) o 15 points, Team, due: Nov 8 ☐ HW6: Essay writing with ChatGPT 5 points, Individual, due: Nov 22

#### Homework Details (60%)

https://dykang.github.io/classes/csci5541/F24/#homework

#### Homework Details (60%)

All questions regarding homework **MUST be communicated with the lead TA over Slack homework channels** (e.g., #hw1, #hw2) or during their office hours. Homework 1, 2, 3, and 6 should be done individually, while homework 4 and 5 are team-based (maximum of 4 people). Your team for homework 4 and 5 should be the same for the project team. The use of outside resources (books, research papers, websites, etc.) or collaboration (students, professors, chatGPT, etc.) **must be explicitly acknowledged in your report**. Check out the notes for academic intergrity.

The deadline for all homework is by Friday midnight (11:59PM) of the due date. Due to a tight schedule, there will be no deadline extension, but you can still use your late days. For the delayed team homework, late days for every team member will be counted. Check out the homework description and link to canvas for submission:

Here are homework assignments with dues:

- HW2: Finetuning text classifier using HuggingFace (10 points, Individual, due: Sep 20 Friday) ( , )
- HW3: Authorship attribution using language models (LMs) (10 points, <u>Individual</u>, due: Oct 4 Friday) ( Port (P)
- HW4: Generating and evaluating text generated from pretrained LMs (15 points, <u>Team</u>, due: Oct 18 Friday) ( Priday)
- HW6: Essay writing with ChatGPT (5 points, <u>Individual</u>, due: Nov 22 Friday) ( Portion (1) Portion (2) Priday (1) Portion (3) Portion (4) Portion (4)

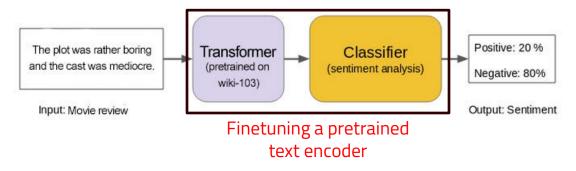
M

# HW1: Building text classifier with pytorch

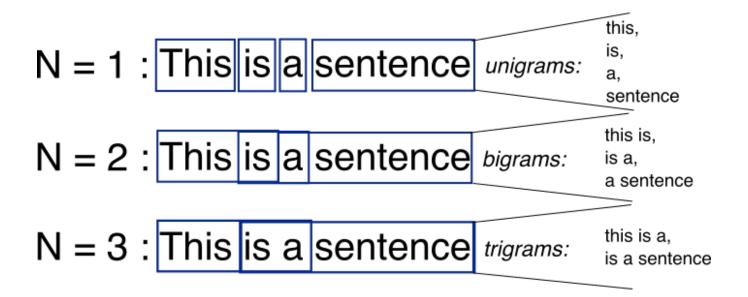
```
from torch import nn
class MLP(nn.Module):
 def __init__(self, vocab_size, embed_dim, num_class):
    super().__init__()
    self.embedding = nn.EmbeddingBag(vocab_size, embed_dim, sparse=True)
   num_layer = 100
   # self.fc = nn.Linear(embed dim, num class)
   self.fc1 = nn.Linear(embed_dim, num_layer)
   self.fc2 = nn.Linear(num_layer, num_class)
   # initialize the weights
   self.init_weights()
 def init weights(self):
   initrange = 0.5
    self.embedding.weight.data.uniform_(-initrange, initrange)
   self.fc1.weight.data.uniform_(-initrange, initrange)
   self.fc1.bias.data.zero ()
   self.fc2.weight.data.uniform_(-initrange, initrange)
    self.fc2.bias.data.zero_()
 def forward(self, text, offsets):
   embedded = self.embedding(text, offsets)
    return self.fc2(self.fc1(embedded))
```

```
end of epoch 1 | time: 6.61s | valid accuracy
                                            0.714
 end of epoch 2 | time: 6.69s | valid accuracy
                                            0.672
 end of epoch 3 | time: 6.86s | valid accuracy
 end of epoch 4 | time: 6.69s | valid accuracy
 end of epoch 5 | time: 6.60s | valid accuracy
 end of epoch 6 | time: 6.68s | valid accuracy
 end of epoch 7 | time: 6.79s | valid accuracy
                                            0.843
 end of epoch 8 | time: 6.81s | valid accuracy
----- Does my classifier learn
                                              something?
 end of epoch 10 | time: 6.61s | valid accuracy
                                            0.844
```

# HW2: Finetuning text classifier using HuggingFace







Table 1: Samples the model struggles with.

| Sample                                                | Ground-Truth<br>Label               | Predicted Label | Confidence |
|-------------------------------------------------------|-------------------------------------|-----------------|------------|
| "This shit is fire"                                   | Positive                            | Negative        | 0.870      |
| "I love when my<br>thoughts are definitely<br>valued" | Negative                            | Positive        | 0.995      |
| "Abso-fucking-lutely"                                 | Positive                            | Negative        | 0.931      |
| "Poggers"                                             | Positive                            | Negative        | 0.895      |
| "You are my favorite person to never see"             | Negative                            | Positive        | 0.682      |
|                                                       | In which cases, does the fine-tuned |                 |            |

classifier make mistakes?

Batch

# HW3: Authorship attribution using language models



<s> i thought recalling the entrenchment and in the flank had never thought nothing

Written by Tolstoy? Or Written by Hamlet?

#### **Tolstoy Samples**

<s> i thought recalling the entrenchment and in the flank had never thought nothing

perplexity: 499.5855375522907

<s> i burn my regiment and me five oclock then accept for the innumerable

perplexity: 1072.2662726616034

How plausible is text as Tolstoy language?

# HW4: Generating and evaluating text from pretrained LMs

Los Angeles Times

WORLD & NATION

Palestinian Authority joins International Criminal Court as 123rd member



**Ground Truth Summarization** 

Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June. Israel and the United States opposed the move, which could open the door to war crimes investigations against Israelis.

**Greedy Search** Beam Search Top-K Sampling The Palestinian Authority Palestinian Authority becomes The Palestinian Authority becomes the 123rd member of becomes the 123rd member of 123rd member of the International Criminal Court. The the International Criminal Court. the International Criminal Court. The move gives the court move gives the court jurisdiction The move gives the court over alleged crimes in jurisdiction over alleged crimes jurisdiction over alleged crimes Palestinian territories. Israel and in Palestinian territories. Israel in Palestinian territories. Israel and the United States opposed the United States opposed the and the United States opposed the Palestinians' efforts to join Palestinians' efforts to join the the Palestinians' efforts to join the body. But Palestinian body. But Palestinian Foreign the body. But Palestinian Foreign Minister Riad al-Malki Minister Riad al-Malki said it Foreign Minister Riad al-Malki says it is a move toward greater was a move toward greater said it was a move toward iustice. greater justice. justice.

Different versions of generated text/summaries using various decoding algorithms

How to evaluate the generated text against the human's summary?

| Algorithm | Meteor AVG |
|-----------|------------|
| Greedy    | 37.12      |
| Beam      | 38.33      |
| Top-K     | 38.64      |
| Top-P     | 38.14      |

Other aspects humans evaluate text summaries?

| Average Coherence (out of 5) | Average Factuality (out of 5) |
|------------------------------|-------------------------------|
| 4.52                         | 4.20                          |
| 4.70                         | 4.28                          |
| 4.57                         | 4.25                          |
| 4.33                         | 4.20                          |

## HW5: Prompting with large LMs

Q: Minneapolis and Saint Paul are known as the Twin Cities in Minnesota. What's the capital?

A: Saint Paul.

Q: New York is a large city in New York state. What's the capital?

A: Albany.

Q: Kansas City is another large city. Kansas City is the capital of which state?

A: Kansas 🔀

Instructions Number of examples Examples

| ChatGPT |
|---------|

Predicted Answer by GPT3

Expected Answer

| lask Description                 | Ilistructions i | vullibel of examples | Examples                                                                                             | iliput lask                                                                          | Expected Allswei  | Fredicted Allswer by GF13 |
|----------------------------------|-----------------|----------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------|---------------------------|
| Convert movie titles into emoji. | N/A             | 0                    | N/A                                                                                                  | Convert movies with emojis: The Hunger Games                                         | <u>6</u> ≥2€      | <b>♦</b> *≥               |
| Convert movie titles into emoji. | N/A             | 1                    | This is an example of converting a movie title into an emoji. Harry Potter and the Sorcerer's Stone: | Convert movies with emojis based on the example: Harry Potter and the Goblet of Fire | <b>&amp;0</b> ₹   | <b>₫₫</b> ₹₽₹             |
| Convert movie titles into emoji. | N/A             | 0                    | N/A                                                                                                  | Convert movie titles into emoji: Full River Red                                      | <u>™</u> <b>ò</b> | <b>₽₽₽</b> ₩ <b>₽</b> ₩   |
| Convert movie titles into emoji. | N/A             | 1                    | Full River Red ☑ ▲                                                                                   | Convert movie titles into emoji: From Vegas to Macau                                 |                   | <b>₩ •</b>                |

Innut Task

Task Description

# HW6: Essay writing with ChatGPT

Q2 [Education]. How would the classroom look in the future? Do you believe AI will impact and reshape the classroom and education? If you can learn most of what you need from chatGPT or other LLMs, what is the role of teachers? What do you expect students to learn in the classroom?



# Project Goal

- ☐ A course project would be one of the following types:
  - New research results judged suitable for acceptance to a NLP or ML workshop,
  - Critical analysis of existing NLP models or datasets,
  - Collection of your own dataset on new problems or adversarial datasets that can fool the existing systems,
  - An in-depth literature survey on emerging topics,
  - Interactive demonstration (e.g., Chrome Extension, Flask) or visualization of existing systems,
  - New open-source repository or dataset with a high impact on the community
- □ Please carefully read the project guideline first (will be posted on Sep 17)

M

## Project Evaluation Rubric

- ☐ HWs are generously graded but the **projects are not**! Therefore, students should consider the potential contribution of the projects rather than trying to play it safe. Playing it safe won't give them full marks.
- ☐ Three important rubrics:
  - Novelty: Compared to the state-of-the-art methods/systems/datasets, how novel is your approach?
  - Significance: How strong is your result? Is your finding still holding if different setups or prompting tricks?
  - Clarity: How clear and easy-to-follow is your report? Do you have well organized presentation of your results and problem definition?
  - https://dykang.github.io/classes/csci5541/F24/rubrick.html

M

## Project Deliveries and Dues (30%)

- ☐ Team formation (1 point, due: Sep 19)
- □ Project brainstorming (1 point, due: Oct 1)
- ☐ Proposal pitch (3 points, due: Oct 8 and 10)
- ☐ Proposal report (5 points, due: Oct 13)
- □ Midterm office hour participation (5 points, due: Oct 31)
- □ Poster presentation (5 points, due: Dec 3 and 5)
- ☐ Final report (10 points, due: Dec 12)

#### Project Details (30%)

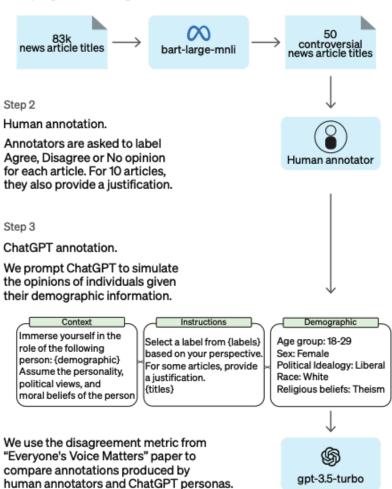
First, carefully read the project description [3], as most project information, dues, rubric, and answers to your questions are in the description document. It is your responsibility to miss any information regarding the project. Your team (maximum of 4 people) should submit their report, link to code (or a zipped code), and presentation slides/poster to Canvas before the deadline. Use official ACL style templates (Overleaf or links). Here are some dues you have to submit for project (note that some dues are during week days):

- Team formation (1 point, due: Sep 19) (<sup>(\*)</sup>
- Project brainstorming (1 point, due: Oct 1) (\*)
- Proposal pitch (3 points, due: Oct 8 and 10) (Slides decks for Group A and Group B)
- Proposal report (5 points, due: Oct 13) (<sup>(2)</sup>)
- Midterm office hour participation (5 points, due: Oct 31) (
- Poster presetnation (5 points, due: Dec 3 and 5) (<sup>(2)</sup>)
- Final report (10 points, due: Dec 12) ( (evaluation rubric)

You can find some selected project reports and posters from the previous years' NLP classes below. Some projects are extended and published top-tier workshop and conferences:

- [CSCI 5541 S23] Simulating Everyone's Voice: Exploring ChatGPTs Ability to Simulate Human Annotators 🔝 🖻
- [CSCI 5541 S23] Vision & Language-guided Generalized Object Grasping 🕞 🖻
- [CSCI 5541 S23] Generalizability of FLAN-T5 Model Using Composite Task Prompting 🔝 🖻
- [CSCI 5541 S23] Comparing the Effectiveness of Fine-tuning vs. One-Shot Learning on the Kidz Bopification Task 🄝 🖻
- [CSCI 5980 F22] Generating Controllable Long-dialogue with Coherence → Published in AAAI 2024 →
- 2023

# VLanGOGh: Vision and Language guided Generalized Object Grasping


CSCI 5541 Spring 2023 Nikhilanj Pelluri

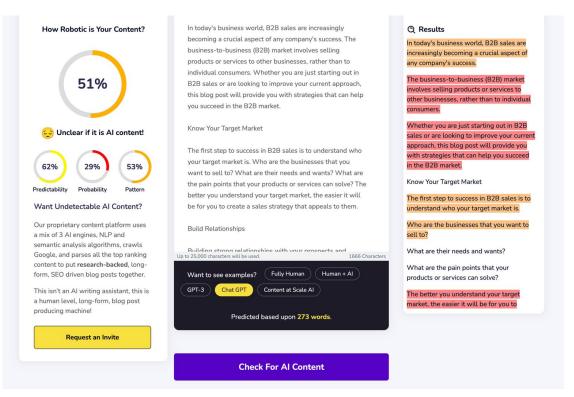


# Simulating Everyone's Voice: Exploring ChatGPTs Ability to Simulate Human Annotators CSCI 5541 Spring 2023

Step

Scraping and filtering data.



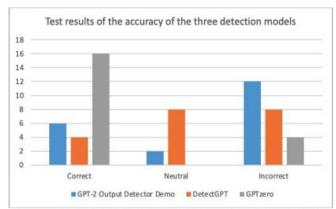

Abdirizak Yussuf, Claire Chen, Dinesh Challa, Venkata Sai Krishna

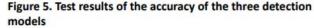
| Topic               | Human Annotators | ChatGPT Personas |
|---------------------|------------------|------------------|
| Abortion            | 0.22             | 0.32             |
| Immigration         | 0.15             | 0.40             |
| Social Issues       | 0.11             | 0.40             |
| Political Issues    | 0.017            | 0.50             |
| Racial Justice      | 0.19             | 0.40             |
| Religion            | 0.18             | 0.36             |
| All Topics Combined | 0.15             | 0.42             |

- Human annotators: 0.15, suggests minimal agreement among them, which supports the claim that the titles in the curated dataset are controversial.
- ChatGPT personas: 0.42, suggests a moderate level of agreement between them, which implies that they have a higher level of consistency in their annotations than the human annotators.

# Who is speaking? Distinguishing Artificial Intelligence Generated and Human Written Text

CSCI 5541 Spring 2023 Moyan Zhou, Mingsheng Sun, Yutong Sun





**RQ1**: Do people **agree with each other** when distinguishing
Al-generated and Human-written
text?

Fleiss' Kappa

0.05 (p-value = 0.017)

**RQ3**: How does the existing tools work?





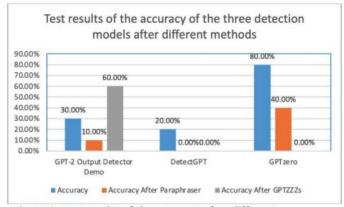
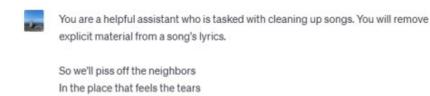



Figure 6. Test results of the accuracy after different methods

# Comparing the Effectiveness of Fine-tuning vs. One-Shot Learning on the Kidz Bopification Task


CSCI 5541 Spring 2023 Jeonghoon Kim, Matthew Olson, Marco Berriodi

"I buy a new car for the b\*\*\*\* (For real)

I tear down the mall with the b\*\*\*\* (For real)"

from Bank Account by 21 Savage

"Lean with me, pop with me
Get high with me if you rock with me
Smoke with me, drink with me
F\*\*\*\*\* up liver with some bad kidneys"
from Lean Wit Me by Juice WRLD



The place to lose your fears
Yeah, reckless behavior
A place that is so pure, so dirty and raw
In the bed all day, bed all day, bed all day
Fucking and fighting on
It's our paradise and it's our war zone

It's our paradise and it's our war zone

B



We'll tick off the neighbors In the place that feels the tears

The place to lose your fears

Yeah, wild behavior

A place that is so real, so gritty and raw

In the bed all day, bed all day, bed all day

Arguing and laughing on

It's our haven and it's our battleground

It's our haven and it's our battleground.

# Understanding Narrative Transportation in Fantasy Fanfiction

CSCI 8980 Spring 2022 Kelsey Neis, Yu Fang

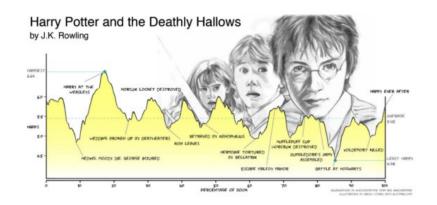



Figure 1: Sample emotion arc for Harry Potter. (Reagan et al., 2016)

Select and highlight phrases that increase your sense of presence or connection to the story library or decrease it

He'd been dreaming of it since the defeat of Voldemort. The Veil, that is. The one that Sirius had fallen behind. The last time he'd dreamed about the Department of Mysteries, Sirius had died.

The world had also finally woken up to the truth about Voldemort, but the price had been too high for him to be grateful. And once the truth was out, the attacks had gotten worse.

He wondered, briefly, why he was there. Ginny was at home, she was pregnant, she needed him.

Yet he could not seem to stay away. Voldemort was gone, true.

But then, so were so many other people, good people, who should not have died.

He counted the steps until he was standing right in front of where Sirius had fallen through.

Cedric. Sirius. Dumbledore. Hedwig. Moody. Dobby. Tonks father. Remus. Colin Creevy. Tonks. Snape. Fred. Hell, even Crabbe didn't deserve to die then. There were more, many more, but none of them close to him.

| 2.520 | That was why he found himself, during his latest bout with insomnia, browsing a lesser known hero forum.                                                                                                                                                         |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.890 | He'd found it several years earlier and quickly figured out that a lot of underground heroes used it to communicate with each other, since it offered encrypted chats and accounts were only known by random numbers, rather than usernames.                     |
| 3.950 | He'd spent about two weeks back then figuring out which accounts corresponded to which heroes, but he had never posted himself.                                                                                                                                  |
| 4.58  | As Izuku drowsily scrolled through old posts, a crazy idea occurred to him.                                                                                                                                                                                      |
| 5.580 | If he couldn't be a hero himself, why couldn't he help the real heroes be better?                                                                                                                                                                                |
| 7.070 | In the morning, he'd blame it on sleep deprivation and then promptly die of mortification, but that didn't change the fact that, at two o'clock in the morning, Izuku Midoria sent ten underground heroes in depth analyses of their quirks and fighting styles. |

Published in Workshop on Narrative Understanding (WNU) @ACL 2023 https://arxiv.org/abs/2306.04043

M

# Transidiomation: Optimizing translation of idioms

CSCI 5541 Spring 2024 Dhondup Dolma, Jaeeun Lee, Yongtian Ou, Jiyoon Pyo Team NLPitch

| English sentences with PIE                 | GPT 3.5                                                      | <b>Google Translate</b>                                | SeamlessM4T                   |
|--------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------|-------------------------------|
| It was raining cats and dogs last weekend. | 지난 주말에는 개구리가<br>비 내리는 것 같았어요.                                | 지난 주말에는 고양이와<br>개에게 비가 내렸습니다.                          | 지난 주말에는 고양이와<br>개가 비를 내고 있었다. |
|                                            | It was like frogs were raining last weekend. (hallucination) | Cats and dogs were rained on last weekend. (incorrect) | Not translatable              |
| Getting that done was a piece of cake.     | 그것을 해내는 것은 쉬운<br>일이었다.                                       | 그 일을 끝내는 건 아주<br>쉬운 일이었어                               | 그 일을 처리하는 것은<br>쉬운 일이었습니다.    |
|                                            | It was easy to get that done.                                | It was easy to get that done.                          | It was easy to get that done. |
| Teaching is my bread and butter.           | 가르치는 것이 내<br>소득원이다.                                          | 가르치는 것이 나의 빵과<br>버터이다.                                 | 가르치는 게 내 과 버터야.               |
|                                            | Teaching is my source of income.                             | Teaching is my bread and butter. (literal translation) | Not translatable              |

embedded in text

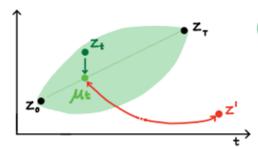
Table 1: Examples of various NMT models translating English sentences with PIE to Korean. Text that have red Xs are incorrect translations.

"Translate the sentence into target language by following these steps:

Step1. Identify the idiom.

Step2. Find an idiom with the same meaning in the target language. If there is no equivalent idiom, give the figurative meaning of it.

Step3. Include response from Step2 to translate the sentence."


CSCI 5541 NLP

# Generating Controllable Long-dialogue with

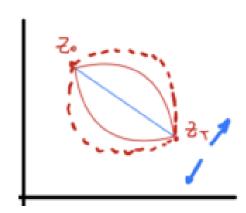
CSCI 5980 Fall 2022 Zhecheng Sheng, Chen Jiang and Tianhao Zhang

Time control in language model using Brownian bridge (Wang et al., ICLR 2022)

Coherence



x\_0: [USER] Hello, I'd like to buy tickets for tomorrow.


x\_t: [ASSISTANT] What movie theater do you prefer?

x\_T: [USER] Could you confirm my tickets just in case?

x': [USER] Hi, I'm looking to purchase tickets for my family.

$$\mathcal{L} = -\log rac{\exp(\mathtt{d}(z_t, \mu_t))}{\exp(\mathtt{d}(z_t, \mu_t)) + \exp(\mathtt{d}(z', \mu_t))}$$

[ USER ] I am thinking about seeing a movie tonight, please.
[ ASSISTANT ] What movie do you have in mind?
[ USER ] The Elizabeth Theatres.
[ ASSISTANT ] They have 2 tickets available.
[ USER ] Thank you.
[ ASSISTANT ] They have been waiting in the line for you.



[ USER ] I would love to get to the movies tonight.

[ASSISTANT ] OK. And where will you be seeing the movie?

[USER ] Creek's End, Oregon.

[ASSISTANT ] Creek's End, Oregon. Got it. Is there a particular movie you have in mind?

[USER ] No wait, the visuals are so darned.

[ASSISTANT ] No problem.

[USER ] No problem.

[ ASSISTANT ] No problem.
[ USER ] No problem.
[ ASSISTANT ] No problem.
[ ASSISTANT ] No problem.
[ ASSISTANT ] No problem.

Published in AAAI 2024, <a href="https://arxiv.org/abs/2312.16893">https://arxiv.org/abs/2312.16893</a>

### **Topics**

#### Schedule

We will cover basic NLP representations g(x), to build text classifiers P\_theta(y|g(x)), language models P\_theta(g(x)), and large language models P\_{theta is large}(g(x)). Based on knowledge you gain during the class, your team will develop your own NLP systems during the semester-long project. Pay attention to due dates and homework release. Lecture slides and homework/project description will be available in  $\mathbb{R}_{tot}$ .

| Date     | Lectures and Dues               | Readings |
|----------|---------------------------------|----------|
| Sep<br>3 | Class Overview 📭                |          |
| Sep<br>5 | Intro to NLP PDF.  HW1 out PDF. |          |

# **Topics**

- Text classification
  - Programming Tutorials
  - Finetuning Tutorial
- Basic representations
  - Distributional semantics
  - Contextualized word embeddings
  - Self-Attentions and Transformers

| Sep 10 | Text Classification  Top   Tutorial on building a classifier with Scikit-Learn   and PyTorch  (Shirley)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <ul> <li>Determining the sentiment of opinions</li> <li>From Tweets to Polls: Linking Text Sentiment to Public Opinion Time         Series</li> <li>Recursive Deep Models for Semantic Compositionality Over a Sentiment         Treebank</li> <li>Text classifier with NLTK and Scikit-Learn</li> </ul>                                                                                                                                    |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sep 12 | Text Classification with Finetuning Confection Finetuning Confection Finetuning Confection (James)  HW1 due  HW2 out Confection Finetuning Fine | <ul> <li>Does BERT Learn as Humans Perceive? Understanding Linguistic Styles through Lexica</li> <li>Style is NOT a single variable: Case Studies for Cross-Style Language Understanding</li> <li>Beyond Accuracy: Behavioral Testing of NLP Models with CheckList</li> <li>Blog post on Pre-training vs Fine-tuning in LLM: Examples</li> <li>Tutorial on Text classification using HuggingFace's Transformers</li> </ul>                  |
| Sep 17 | Distributional Semantics and Word Vectors Project description out Ref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <ul> <li>From Frequency to Meaning: Vector Space Models of Semantics</li> <li>Efficient Estimation of Word Representations in Vector Space</li> <li>Linguistic Regularities in Continuous Space Word Representations</li> <li>GloVe: Global Vectors for Word Representation</li> <li>Retrofitting Word Vectors to Semantic Lexicons</li> <li>Gensim's word2vec tutorial</li> </ul>                                                          |
| Oct 15 | Contextualized Word Embeddings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Deep contextualized word representations     BERT: Pre-training of Deep Bidirectional Transformers for Language     Understanding     A Primer in BERTology: What we know about how BERT works                                                                                                                                                                                                                                              |
| Oct 17 | Transformers<br>HW4 due                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <ul> <li>Attention is All you Need</li> <li>Tutorial on Illustrated Transformer</li> <li>Language Models are Unsupervised Multitask Learners</li> <li>Language Models are Few-Shot Learners</li> <li>Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer</li> <li>Language Models are Few-Shot Learners</li> <li>Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer</li> </ul> |

Transformer

Transformer

Language Models are Few-Shot Learners

Exploring the Limits of Transfer Learning with a Unified Text-to-Text

Transformer

CSCI 5541 NLP

39

# Topics (cont'd)

#### ☐ Language Models

- Ngram LM, Neural LM,
   RNN, LSTM, and seq2seq
- Search and decoding
- Search in Training
- Evaluation
- Applications

| Sep 19 | Language Models (1): Ngram LM, Neural LM Project Team Formation due  HW2 due  HW3 out Prof. | Chapter 3 of Jurafsky and Martin     A Neural Probabilistic Language Model                                                                                                                                                                                                                                                                                                |
|--------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sep 24 | Project Guideline 📭 🖻                                                                       |                                                                                                                                                                                                                                                                                                                                                                           |
| Sep 26 | Language Models (2): RNNs, LSTMs and Sequence-to-Sequence 🕞                                 | <ul> <li>Recurrent neural network based language model</li> <li>Long Short-Term Memory</li> <li>Multivariable chain rule, simple version</li> <li>Long Short-Term Memory</li> <li>Sequence to Sequence Learning with Neural Networks</li> </ul>                                                                                                                           |
| Oct 1  | Language Models (3): Search and Decoding Reproject brainstorming due                        | <ul> <li>The Curious Case of Neural Text Degeneration</li> <li>Mutual Information and Diverse Decoding Improve Neural Machine         Translation     </li> <li>Sequence Level Training with Recurrent Neural Networks</li> <li>An Actor-Critic Algorithm for Sequence Prediction</li> <li>Training language models to follow instructions with human feedback</li> </ul> |
| Oct 3  | Language Models (4): Evaluation and Applications Lag<br>HW3 due<br>HW4 out Lag              | <ul> <li>Perplexity of fixed-length models</li> <li>BLEU: a Method for Automatic Evaluation of Machine Translation</li> <li>ROUGE: A Package for Automatic Evaluation of Summaries</li> </ul>                                                                                                                                                                             |

**M** 

## Topics (cont'd)

- ☐ Large language models:
  - Pretraining and scaling laws
  - Prompting
  - Instructing and augmenting LLMs
  - o Multi-agents, agentic workflow
  - Alignment and RLHF
- ☐ Efficient NLP
- Ethics and safety
- ☐ Societal alignment or Multimodal LM
- Data, annotation, and evaluation
- Concluding remarks

| Oct 22 | Pretraining and Scaling Laws Post HW5 out Post                               | Scaling Laws for Neural Language Models     On the Opportunities and Risks of Foundation Models     On the Dangers of Stochastic Parrots: Can Language Models Be Too Big?                                                                                                                                                                                                                                                                                            |
|--------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Oct 24 | Prompting (%)                                                                | Chain-of-Thought Prompting Elicits Reasoning in Large Language Models     Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing     Prefix-Tuning: Optimizing Continuous Prompts for Generation                                                                                                                                                                                                                    |
| Oct 29 | Instructing and augmenting LLMs 🕞                                            | Training language models to follow instructions with human feedback  Augmented Language Models: a Survey  Toolformer: Language Models Can Teach Themselves to Use Tools  Internet-augmented language models through few-shot prompting for open-domain question answering                                                                                                                                                                                            |
| Oct 31 | Multi-agents, Agentic Workflow (Robert) 🕞<br>Project midterm office-hour due | TBD                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Nov 5  | Ethics and Safety (Shirley)                                                  | <ul> <li>The Ethics of Artificial Intelligence</li> <li>On Calibration of Modern Neural Networks</li> <li>Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings</li> <li>Calibrate Before Use: Improving Few-Shot Performance of Language Models</li> <li>"Why Should I Trust You?": Explaining the Predictions of Any Classifier</li> <li>Differential Privacy</li> <li>Case Studies in Princeton Dialogues on Al and Ethics</li> </ul> |
| Nov 7  | Alignment and RLHF (n)s  HW5 due  HW6 out (n)s                               | TBD                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Nov 14 | Efficiency NLP (James)                                                       | Deep Compression: Compressing Deep Neural Networks with Pruning,<br>Trained Quantization and Huffman Coding     LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale     Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer     The Power of Scale for Parameter-Efficient Prompt Tuning                                                                                                                                   |
| Nov 19 | Societal Alignment of LLMs [ ]                                               | TBD                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Nov 21 | All about Data and Annotation (№ HW6 due                                     | Annotation Artifacts in Natural Language Inference Data     Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics     Everyone's Voice Matters: Quantifying Annotation Disagreement Using Demographic Information     ChatGPT Outperforms Crowd-Workers for Text-Annotation Tasks                                                                                                                                                              |

A

## Topics (cont'd)

- ☐ Project:
  - o Project guideline
  - Project Proposal Pitch (Group A and B)
  - Final Project Poster (Group B and A)

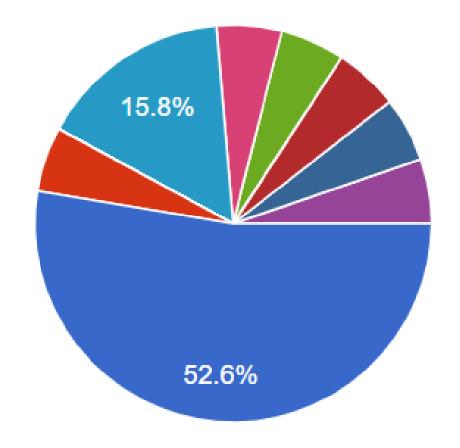
| Sep 24 | Project Guideline 📭 🖻                                                            |                     |
|--------|----------------------------------------------------------------------------------|---------------------|
| Oct 8  | Project Proposal Pitch (1) Slides Deck for Group A                               | Group A:            |
| Oct 10 | Project Proposal Pitch (2) Slides Deck for Group B Project proposal due (Oct 13) | Group B:            |
| Nov 28 | No Class (Thanksgiving)                                                          |                     |
| Dec 3  | Final Project Poster (1) Project poster due                                      | Posters for Group B |
| Dec 5  | Final Project Poster (2) Project final report due (Dec 12)                       | Posters for Group A |

#### Textbook

- ☐ The lecture slides and reading list will be posted on the class site at least one day before the class.
- ☐ Textbook is not required but the following books are primarily referred
  - o Jurafsky and Martin, Speech and Language Processing, 3rd edition [online]
  - These course materials are inspired by the slides from <u>Stanford</u>, <u>UC Berkeley</u>, and <u>CMU</u>.

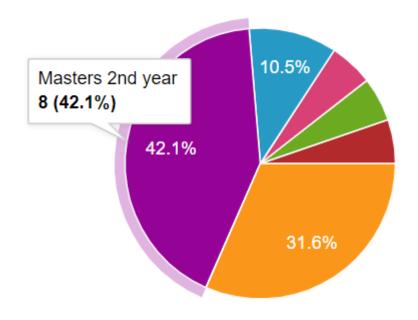
## Academic Integrity

□ Everything you turn in must be your own work, and you must note the names of **anyone** you collaborated with on each problem and cite **any resources** (e.g., chatGPT prompts you used) that you used to learn about the problem.


☐ If you have any doubts about whether a particular action may be construed as cheating, ask the instructors for clarification before you do it. Cheating in this course will result in a grade of F for course and the <u>University policies</u> will be followed.

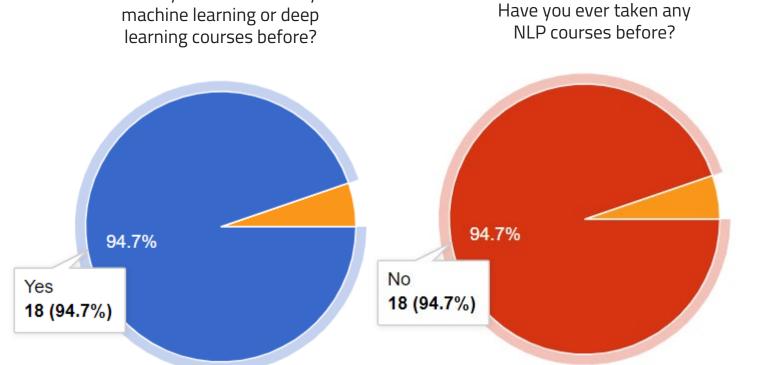
#### Computing Resources

- ☐ Reimbursement for Google Colab Pro by CS&E department
  - https://docs.google.com/document/d/1Kdo6BN1h2yISYHTTSC6DVLWh NEaEcRxk/edit?usp=sharing&ouid=102305309222832534233&rtpof= true&sd=true

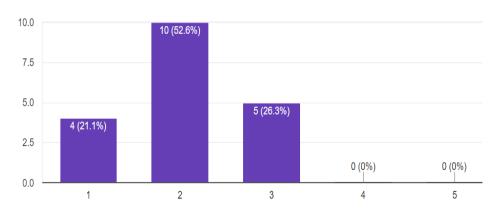

- MSI Class Accounts:
  - https://www.msi.umn.edu/content/applying-class-accounts
  - Will be created soon

Which department are you in? (19 responses)




- CS
- ECE
- Statistics
- BioMedical
- Math
- Robotics
- Data Science
- BICB
- Bioinformatics and Computational Biology
- I'm in CS, but my major is Data Science
- Psychology

Which program are you? (e.g., undergraduate senior, Master 2nd, Ph.D. 1st)




- Undergraduate sophomore
- Undergraduate junior
- Undergraduate senior
- Masters 1st year
- Masters 2nd year
- PhD 1st year
- PhD 2+ year
- Integrated Masters (graduating in May, so technically year 2?)
- Integrated Master's: Undergraduate S...

Have you ever taken any



Can you rate your current knowledge about NLP from 1 to 5?



What is the most interesting topic you like to learn from this class?

Have you had a chance to look at the current schedule in our class homepage? (https://dykang.github.io/classes/csci5541/F24/) What is the most interesting topic you like to learn from this class? 19 responses Transformers LLMs and the math behind NLP language models and transformers Transformers Yes, I'm excited for the week/lecture on prompting! Machine Translation

What is the most interesting topic you like to learn from this class?



#### You

Here are topics of interests from students. Can you summarize them by count?



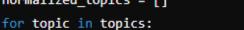
#### ChatGPT

Here is a summary of the topics of interest from the students, along with the count of mentions:

- 1. Lexical Semantics: 3 mentions
- 2. Language Models: 8 mentions
- BERT: 1 mention
- COVID-Twitter-BERT: 1 mention
- Deep Learning topics/Transformer/Attention: 2 mentions
- 6. Hugging Face Transformer: 2 mentions
- PyTorch: 1 mention
- 8. Creating our own dataset: 1 mention
- Mamba: 1 mention
- Transformers in the context of NLP: 2 mentions
- Introduction to LLMs: 2 mentions
- Al-related concepts: 1 mention
- 13. Machine Translation: 1 mention
- Probabilistic Language Model: 1 mention
- Distributional Semantics: 1 mention
- Computation efficiency: 1 mention
- 17. Text encoding: 1 mention
- 18. Encoder-Decoder: 1 mention

Note: Some topics may have variations in their naming, and I have consolidated similar topics under a common term (e.g., Language Models, LLMs).






```
python
                                                           Always sl
from collections import Counter
# List of topics
topics = [
    "Transformers",
    "LLMs and the math behind NLP",
    "language models and transformers",
    "Transformers",
    "Yes, I'm excited for the week/lecture on prompting!",
    "Machine Translation".
    "I want to learn applications, like how can I apply NLP in o
    "Large Language Models",
    "I think prompt engineering will be the most interesting.",
    "I glanced at it but not in depth.",
    "Yes, I'm interested on the basics of language models and ho
    "I'm really interested in learning more about Prompting. Con
    "I don't know much about NLP, but learning about the application
    "Yes and Prompting",
    "Language models",
    "Language Models (2): RNNs, LSTMs and Sequence-to-Sequence"
    "How to use NLP techniques for image captioning"
```

```
# Normalize topics by keywords
normalized topics = []
for topic in topics:
    topic lower = topic.lower()
    if "transformers" in topic lower:
        normalized topics.append("Transformers")
    elif "prompt" in topic lower:
        normalized topics.append("Prompting")
    elif "language models" in topic lower or "llms" in topic lower:
        normalized topics.append("Language Models")
    elif "machine translation" in topic lower:
        normalized_topics.append("Machine Translation")
    elif "applications" in topic lower:
        normalized_topics.append("Applications")
    elif "image captioning" in topic lower:
        normalized topics.append("Image Captioning")
    else:
        normalized topics.append(topic)
# Count occurrences of each topic
topic counts = Counter(normalized topics)
# Display the counts
topic counts
```

# Normalize topics by keywords

normalized\_topics = []





| Oct 24 | Prompting Prompt |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Oct 29 | Instructing and augmenting LLMs 🕞                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Oct 31 | Multi-agents, Agentic Workflow (Robert) Project midterm office-hour due                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

Here is the summary of topics by count:

• Language Models: 6

• Prompting: 4

• Transformers: 3

• Machine Translation: 1

Applications: 1

• Image Captioning: 1

• I glanced at it but not in depth.: 1

Language Models and Prompting are the most popular topics among the students. [>-]

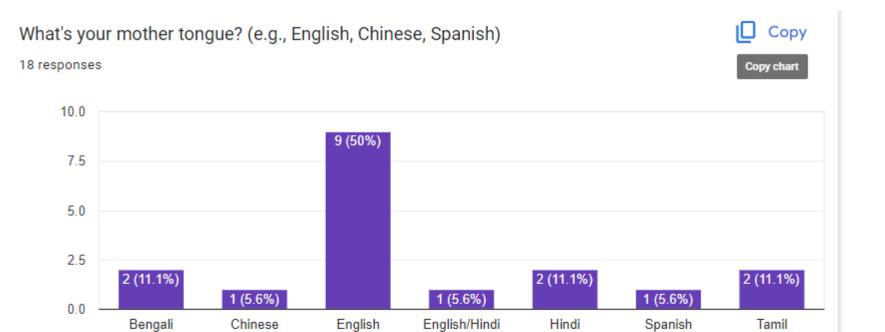
What do you want to get out of this course? What is important thing you hope to learn from this course? you most excited about in this course?



The students' responses can be summarized into the following key themes:

- Interest in AI/ML and NLP Applications: Students express a strong desire to learn about AI,
  machine learning, and NLP to contribute to an evolving technological landscape. They are
  particularly interested in understanding how these technologies can be applied in real-world
  scenarios, such as improving daily tasks and enhancing job prospects in the tech industry.
- Focus on Language Models (LLMs): Many students are keen on gaining a deep understanding
  of large language models, including their architecture, functionality, and potential applications.
   Some are specifically interested in using LLMs for specialized tasks like robotics and high-level
  planning.
- 3. Skill Development for Future Careers: Several students are motivated by the desire to acquire practical skills that will be valuable in their future careers, particularly in tech-related fields. This includes learning foundational concepts, practical applications, and engaging in projects that demonstrate their acquired knowledge.
- 4. Interest in Prompt Engineering: There is a notable interest in learning about how language models respond to prompts, with students wanting to understand the underlying mechanics to create more effective prompts.
- Research and Academic Growth: A few students are interested in building on their existing knowledge, particularly in machine learning, to deepen their understanding of NLP for future research and academic purposes.
- Course Engagement: Some students, including those auditing the course, are eager to learn specific applications and foundational knowledge, indicating a strong commitment to personal and professional development through this course.

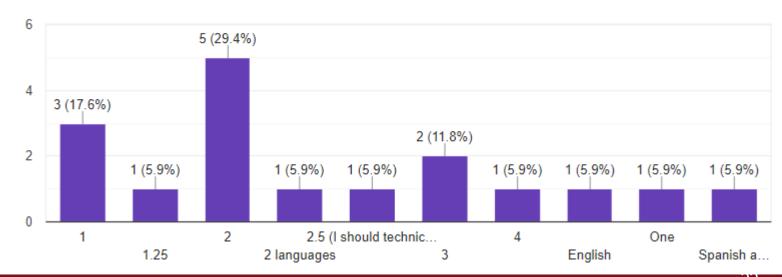
M


(optional) What are you most worried about?



The students' responses can be summarized into the following concerns and challenges:

- Difficulty with Technical Content: Some students are concerned about the complexity of NLP, particularly the theoretical aspects like the arithmetic and math behind language models, including transformers.
- Lack of Background Knowledge: A few students are worried about not having sufficient coding
  experience or background knowledge in the subject matter, although they are optimistic about
  their ability to learn quickly.
- Balancing Commitments: One student expressed concern about managing the demands of life, work, and study simultaneously.
- Group Project Concerns: The large group project is a source of anxiety for at least one student, especially due to not knowing any classmates.
- Uncertainty: A couple of students are unsure about what specific challenges they might face as the course progresses.


M



(optional) How many language can you speak?

Сору

17 responses



# Waitlist & Recitation on computing basics

- ☐ If you plan to drop the course, please do it **by Today** so I can let some students on the waitlist into the class.
  - I will be teaching the same course in next semester, so please consider to take next one if you didn't make it this time
- ☐ Recitation on computing basics (next Monday at 3-4:30p by Robert):
  - o Env Set-up
  - MSI Set-up
  - NN basics
  - Pytorch Basics (basic concepts, custom dataloader, torch.nn, training loop)
  - Recording will be available too