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Outline

❑ Applications of text classification
❑ Why is sentiment analysis difficult?
❑ How can we build a sentiment classifier? 
❑ Tutorial on building text classifier using Scikit-Learn and PyTorch

(Shirley)
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Movie review
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Spam detection
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Language Identification Authorship Identification

Topic/Genre Assignment
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Why is sentiment analysis 
difficult?
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Examples from Chris Potts

There was an earthquake in California
The team failed to complete physical challenge. (We win/lose!)
They said it would be great.
They said it would be great, and they were great.
They said it would be great, and they were wrong.
Oh, you’re terrible!
Long-suffering fans, bittersweet memories, hilariously 
embarrassing moments
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Scherer Typology of Affective States
❑ Emotion: brief organically synchronized … evaluation of a major event

o angry, sad, joyful, fearful, ashamed, proud, elated 
❑ Mood: diffuse non-caused low-intensity long-duration change in subjective feeling 

o cheerful, gloomy, irritable, listless, depressed, buoyant
❑ Attitudes: enduring, affectively colored beliefs, dispositions towards objects or persons 

o liking, loving, hating, valuing, desiring 
❑ Interpersonal stances: affective stance toward another person in a specific interaction

o friendly, flirtatious, distant, cold, warm, supportive, contemptuous 
❑ Personality traits: stable personality dispositions and typical behavior tendencies

o nervous, anxious, reckless, morose, hostile, jealous
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Difficulty of task

❑ Simplest task:
o Is the attitude of this text positive or negative (or neutral)?

❑ More complex:
o Rank the attitude of this text from 1 to 5

❑ Advanced:
o Detect the target (stance detection)
o Detect source
o ..
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What makes reviews hard to classify?
Subtlety

“If you are reading this because it is your 
darling fragrance, please wear it at home 
exclusively, and tape the windows shut.”

Perfume review in Perfumes: the Guide
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What makes reviews hard to classify?
Thwarted expectations and ordering effects

“This film should be brilliant. It sounds like a great plot,  
the actors are first grade, and the supporting cast is 
good as well, and Stallone is attempting to deliver a good 
performance. However, it can’t hold up..”

“Well as usual Keanu Reeves is nothing 
special, but surprisingly, the very talented 
Laurence Fishbourne is not so good either, I 
was surprised.”
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What makes reviews hard to classify?
Subjectivity and degree of sentiment

A: I got 3 veggies and a 
side of fries for over a 
11 dollars if you like 
homecooked food

Subjective B is preferably more positive than A. (A < B)

Negative

Neutral

B: She listened to my ideas, 
asked questions to get a better 

idea about my style, and was 
excellent at offering advice as if 

I were a total pleb.

Extractive A is preferably more positive than B. (A > B)

Positive

Crowd 
Workers

Annotation 
Records

“Prefer to Classify: Improving Text Classifiers via Auxiliary Preference Learning”, ICML 2023
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Why is sentiment analysis hard ?

❑ Sentiment is a measure of a speaker’s private state, which is 
unobservable.

❑ Sentiment is contextual; 
o Words are a good indicator of sentiment (love, hate, terrible); but many 

times it requires deep world + contextual knowledge

❑ Deep understanding of language behaviors (e.g., politeness)



CSCI 5541 NLP 14

Related Tasks

❑ Subjectivity (Pang & Lee 2008)
❑ Stance (Anand et al., 2011)
❑ Hate-speech (Nobata et al., 2016)
❑ Sarcasm (Khodak et al., 2017)
❑ Deception and betrayal (Niculae et al., 2015)
❑ Online trolls (Cheng et al., 2017)
❑ Politeness (Danescu-Niculescu-Mizil et al., 2013)
❑ …
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How can we build a 
sentiment classifier?
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Supervised Learning

❑ Given training data in the form of <x, y> pairs, learn f(x)

X Y
I loved it! Positive

Terrible movie. Negative
Not too shabby Positive

Such a lovely movie! Positive
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Learning f(x)

Two components:
❑ The formal structure of the learning method:

o f: how x and y are mapped
o Logistic regression, Naïve Bayes, RNN, CNN, etc

❑ The representation of the data (x)
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Representation of data (x)

❑ Only positive/negative words in sentiment dictionaries
❑ Only words in isolation
❑ Conjunctions of words
❑ Linguistic structures
❑ ..
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Sentiment Dictionaries
❑ General Inquirer (1996)
❑ MPQA subjectivity lexicon (Wilson et 

al., 2005)
o http://mpqa.cs.pitt.edu/lexicons/subj_lex

icon/
❑ LIWC (Pennebaker 2015)
❑ AFINN (Nielsen 2011)
❑ NRC Word-Emotion Association 

Lexicon (EmoLex) (Mohmmad and 
Turney, 2013)

Positive Negative
unlimited lag
prudent contortions
superb fright

closeness lonely
impeccably tenuously
fast-paced plebeian

treat mortification
destined outrage
blessing allegations

http://mpqa.cs.pitt.edu/lexicons/subj_lexicon/
http://mpqa.cs.pitt.edu/lexicons/subj_lexicon/
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Dictionary Counting

Positive Negative
unlimited lag
prudent contortions
superb fright

closeness lonely
impeccably tenuously
fast-paced plebeian

treat mortification
destined outrage
blessing allegations

happy 1

love 2

recommend 2

lonely 0

outrage 0

not 2
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f (       ) = y
happy 1

love 2

recommend 2

lonely 0

outrage 0

not 2

Limitation?
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Representation of data (x)

❑ Only positive/negative words in sentiment dictionaries
❑ Only words in isolation (bag-of-words)

o E.g., good, bad
❑ Conjunctions of words (sequential, high-order n-grams, 

skip n-grams, etc)
o E.g., “not good”, “not bad”

❑ Linguistic structures (Part-of-speech, etc)
❑ ..
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Bag of words
Representation of text only as the counts of words that it contains
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f (       ) = y
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Representation of data (x)

❑ Only positive/negative words in sentiment dictionaries
❑ Only words in isolation (bag-of-words)
❑ Conjunctions of words (sequential, high-order n-grams, 

skip n-grams, etc) 
❑ Linguistic structures (Part-of-speech, etc)
❑ ..
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Linguistic Structures
Count the number of part-of-Speech, depth of constituency parses, etc

NP 5

VP 2

.. ..https://parser.kitaev.io

Parse depth 5

https://parser.kitaev.io/
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f (       ) = yNP 5

VP 2

Parse depth 5
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How to implement f(x)=y using Python?

Two components:
❑ The formal structure of the learning method:

o f: how x and y are mapped
o Logistic regression, Naïve Bayes, RNN, CNN, etc

❑ The representation of the data (x)
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Tutorial on building text classifier 
using Scikit-Learn and PyTorch
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Classification vs Regression
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Probability 101: Logit(P) and Logistic Regression
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Logistic regression
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Binary logistic regression
Model parameters to learn
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Binary logistic regression

f ( x ) = y



CSCI 5541 NLP 37



CSCI 5541 NLP 38

Logistic regression

❑ We want to find the value of  β that leads to the  highest value of 
the conditional log likelihood:



CSCI 5541 NLP 39

Logistic regression

❑ We want to find the value of  β that leads to the  highest value of 
the conditional log likelihood:

❑ Train it with stochastic gradient descent
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Loss curve

Accuracy curve
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Representation of data (x)
❑ As a discriminative classifier, logistic regression 

doesn’t assume features are independent like 
Naive Bayes does.

❑ Its power partly comes in the ability to create 
richly expressive features without the burden of 
independence. 

❑ We can represent text through features that are 
not just the identities of individual words, but any 
feature that is scoped over the entirety of the 
input.

Features
Unigrams (“like”)

Bigrams (“not like”), trigrams, 
etc

Prefixes (word that start with 
“un-”

Words that appear in the 
positive/negative dictionary
Reviews begin with “I love”

At least 3 mentions of positive 
verbs (like, love, etc)
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Representation of data (x)
Features

Unigrams (“like”)
Bigrams (“not like”), trigrams, 

etc

Prefixes (word that start with 
“un-”

Words that appear in the 
positive/negative dictionary
Reviews begin with “I love”

At least 3 mentions of positive 
verbs (like, love, etc)

f (            )=y
NP 5

VP 2

Parse depth 5

I want 1
have you 2
how many 2
isn’t it 1
…

happy 1

love 2

recommend 2

lonely 0

outrage 0

not 2
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What if your input representation is complex and 
cannot be modeled by simple linear projection?
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Neural Networks
❑ Discrete, high-dimensional representation of inputs 

(one-hot vectors)  => low-dimensional “distributed” 
representations. 
o Distributional semantics and word vectors (To be covered)

❑ Static representations -> contextual representations, 
where representations of words are sensitive to local 
context. 
o Contextualized Word Embeddings (To be covered)

❑ Multiple layers to capture hierarchical structure
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Recap: Logistic regression
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Feedforward neural network
❑ Input and output are mediated by at least one hidden layer.
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*For simplicity, we’re leaving out the bias term, but 
assume most layers have them as well.
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Relations with logistic regression
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the hidden nodes are completely 
determined by the input and weights
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Activation functions
Squeezing outputs between 0 and 1
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Activation functions

We can think about logistic regression as a neural 
network with no hidden layers

Squeezing outputs between 0 and 1
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Activation functions
❑ Sigmoid is useful for final 

layer to scale output 
between 0 and 1, but is not 
often used in intermediate 
layers.

❑ ReLU and tanh are both 
used extensively in 
modern systems. 
o Check out the derivative

Squeezing outputs between 0 and 1

Goldberg 46
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Non-linearities (i.e., 𝑓): why they’re needed?
❑ Neural nets do function approximation

o E.g., regression or classification
o Without non-linearities, deep neural nets can’t do 

anything more than a linear transform.
o Extra layers could just be complied down into a single 

linear transform: 𝑊1𝑊2𝑥 = 𝑊𝑥

o But, with more layers that include non-linearities, they 
can approximate more complex functions
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Linear models include translation, rigid (translation + rotation), similarity (translation + rotation + scale), affine and projective 
transformations. Nonlinear models, which consider non-linear transformations allow for more complex deformations.

New techniques for motion-artifact-free in vivo cardiac microscopy
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This is differentiable via backpropagation

Backpropagation: Given training samples of <x,y> pairs, we can 
use stochastic gradient descent to find the values of W and V that 
minimize the loss.
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Neural networks are a series of 
functions chained together

The loss is another function 
chained on top
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Chain rule
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Backpropagation

❑ Forward and backward propagation
o Compute value/gradient of each node with respect to previous nodes

❑ Good news is that modern automatic differentiation tools do this 
all for you! 

❑ Deep learning nowadays is like modular programming
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Other tricks in neural network training
❑ Avoid overfitting with dropout
❑ Average/max/min pooling
❑ Smart initialization
❑ Adaptive learning rates than SGD
❑ Gradient clipping
❑ Early stopping with validation set
❑ Hyper-parameter tuning
❑ …
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Feedforward Neural Network
(i.e., Single-layer Perceptron)
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Feedforward Neural Network
(i.e., Two-layer Perceptron)

HW0
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Other neural network models

Convolution NN Recurrent-
NN/LSTM/GRU

Graph Convolutional / 
Neural Network

Recursive NN

Self-attention / Transformers
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Overfitting
❑ A model that perfectly match the 

training data that has a problem
❑ It will also overfit to the data, modeling 

noise
o A random word that perfectly predicts y (it 

happens to only occur in one class) will get a 
very high weight.

o Failing to generalize to a test set without 
this word.

❑ A good model should be able to 
generalize
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Cross validation
❑ Break up “training” data into 5 

folds
❑ For each fold

o Choose the fold as a temporary test set
o Train on 5 folds, compute performance on 

test fold
❑ Report average performance of the 

5 runs
❑ Find the best parameters 

https://scikit-learn.org/stable/modules/cross_validation.html

https://scikit-learn.org/stable/modules/cross_validation.html
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State of the Art
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https://paperswithcode.com/

https://paperswithcode.com/
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Robustness of Neural Classifiers

Ribeiro et al., Beyond Accuracy: Behavioral Testing of NLP Models with CheckList, ACL 2020
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Robustness of Neural Classifiers

Ribeiro et al., Beyond Accuracy: Behavioral Testing of NLP Models with CheckList, ACL 2020
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Robustness of Neural Classifiers

Ribeiro et al., Beyond Accuracy: Behavioral Testing of NLP Models with CheckList, ACL 2020
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Interpretability: why? learning dataset, not task

Hayati et al., Does BERT Learn as Humans Perceive? Understanding Linguistic Styles through Lexica

Human BERT Both

I will understand if you decline, but would very much like 

you to accept. May I nominate you?

Human: Polite BERT: Polite
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Dataset Characterization

Kim et al., infoVerse: A Universal Framework for Dataset Characterization with Multidimensional Meta-information, ACL 2023
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Cross-style Analysis

Kang & Hovy , “Style is NOT a single variable: Case Studies for Cross-Stylistic Language Understanding”, ACL 2021 (Oral)
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Run yourself
https://huggingface.co/datasets/sst2

https://huggingface.co/datasets/sst2
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Summary
❑ Various applications using sentiment analysis in political and social 

sciences, stock market prediction, advertising, etc.
❑ Sentiment of text is reflection of the speaker's private state, which is 

hardly observable.
❑ Lexicon dictionaries have limitations, because sentiment is contextual
❑ Sentiment + X
❑ Modern deep representations perform better but are hard to interpret, and 

easy to be biased to the dataset
❑ 97.5 accuracy on SST2, but poor robustness in practice
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Questions
❑ Is there any way to take advantages from both the classical dictionary 

based method and modern neural model? 
❑ How can we evaluate and improve robustness of the model? How can we 

collect even more challenging samples that the current best model can’t 
predict well? 

❑ How can we make black-box deep learning models to be more 
interpretable?

❑ Is benchmarking/leader-boarding a good practice for evaluation? If not, 
what is the solution?
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