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Outline

1 What is semantics? How do you define meaning?

A Three ways of looking at word meaning
o Decompositional
o Ontological
o Distributional

1 Different kinds of encoding “context”
o Count-based
Distributed prediction-based (type) embeddings

O
o Distributed contextual (token) embeddings from language models
o Many more variants
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What is semantics?
How do you define meaning?




Define “cup”

2
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@. You

What is "cup"?

@ ChatGPT
The term "cup” can have multiple meanings depending on the context. Here are a few

possible interpretations:

1. Physical Object: A cup is a small container typically used for drinking liquids. It usually
has a handle and may be made of materials such as glass, ceramic, metal, or plastic.

2. Unit of Measurement: In cooking and baking, "cup” is often used as a unit of
measurement for both dry and liquid ingredients. It is a standardized volume
measurement, and one cup is equivalent to 8 fluid ounces in the United States or
approximately 240 milliliters.

5. Sports: In sports, a "cup” can refer to a trophy or championship awarded in a

competition, such as the FIFA World Cup in soccer or the Stanley Cup in ice hockey.

4. Anatomical Reference: Informally, people might use the term "cup” to refer to the
concave shape formed by the hands when placed together, often used to catch or

hold something.
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Decompositional semantics

Color: blue, black, etc

Shape: %

Texture: ceramic, wood,
glass, clay, etc
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Three ways of looking at word meaning

2 Decompositional
o \What characteristics/components of what the word represents

A Ontological

o How the meaning of the word relates to the meanings of other
words

2 Distributional
o What contexts the word is found in, relative to other words
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https://lexical-graph.herokuapp.com/

Semantic relations

Hyponymy — subset; is-a relation
O <dog, mammal>

. Synonymy — equivalence

O <small, little> hot
J Antonymy — opposition

O <small, large> temperature attribute I antonym
J Meronymy — part-of relation cold

O <liver, body> hypernym \similar
J Holonymy — has-a relation SR Goldness, cold, low e

: ; temperature, frigidity, QICUC, GG, goud,

. O <body, liver> blood heat pfrigidnessg i/ glacial, icy, polar

Hypernymy — superset
O <mammal, dog>
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WordNet

J Each sense is associated with a synset;

O asetof words that are roughly synonymous
for a particular sense

S/ (== -—
[Befena] ol I leernpidy]
4 \ / -

| (L N e I~
D\

Synset -
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A h X English Waord Definitions, Terminology, and Jargon &= QI_I{)I.EI.
—ﬁ _—".i.?; i "? —L:"i A0 What is a male dog term, like 'bitch’ is a female dog?
ynsets for dog (n FERAA | T
A AT S
P ST
A= fun

] S:(n) dog, domestic dog, Canis familiaris (a member of the genus Canis (probably
descended from the common wolf) that has been domesticated by man since
prehistoric times; occurs in many breeds) "the dog barked all night"

J S:(n) dog (informal term for a man) "you lucky dog"

] S:(n) cad, bounder, blackguard, dog, hound, heel (someone who is morally
reprehensible) "you dirty dog"

] S:(n) frank, frankfurter, hotdog, hot dog, dog, wiener, wienerwurst, weenie (a smooth-
textured sausage of minced beef or pork usually smoked; often served on a bread roll)

] S:(n) pawl, detent, click, dog (a hinged catch that fits into a notch of a ratchet to move
a wheel forward or prevent it from moving backward)

J S:(n) andiron, firedog, dog, dog-iron (metal supports for logs in a fireplace) “the
andirons were too hot to touch”

..
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Tools for WordNet

1 Original English WordNet
project:
O https://wordnet.princeton.edu/rela
ted-projects

J WordNets in the World (many
languages available):

O http://globalwordnet.org/resource
s/wordnets-in-the-world/

CSCI 5541 NLP

WordNet Search - 3.1

Word to search for: |jump | Search WordNet |

Display Options: |(Select option to change) v  Change

Key: "S:" = Show Synset (semantic) relations, "W:" = Show Word (lexical) relations
Display options for sense: (gloss) "an example sentence”

Noun

« S: (n) jump, leap (a sudden and decisive increase) “a jump in attendance"

« S: (n) leap, jump, saltation (an abrupt transition) “a successful leap from
college to the major leagues”

« S:(n) jump ((film) an abrupt transition from one scene to another)

« S: (n) startle, jump, start (a sudden involuntary movement) “he awoke with a

start”

« S: (n) jump, parachuting (descent with a parachute) “he had done a lot of
parachuting in the army"

« S: (n) jump, jumping (the act of jumping; propelling yourself off the ground)
"he advanced in a series of jumps"; “the jumping was unexpected”

Synsets Lemmas New words

Taxonomy

Nouns  Verbs Nouns Verbs  Nouns  Verbs
WordNet 1.6 66025 12127 94474 10319 - -
WordNet 1.7 75804 13214 109195 11088 11551 401
WordNet 2.0 79689 13508 114648 11 306 4 036 182
WordNet 2.1 81426 13650 117097 11488 2023 158
WordNer 3.0 82115 13767 117798 11529 678 33

Taxonomy Enrichment with Text and Graph Vector Representations
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http://globalwordnet.org/resources/wordnets-in-the-world/
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ImageNet based on WordNet

ImageNet Trees
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* synset name (8 of syraets in the sub tree, average § of Images per syraet)

L. Fei-Feiand J. Deng. ImageNet: Where have we been? Where are we going? CVPR Beyond ImageNet Large
Scale Visual Recognition Challenge workshop, 2017, pdf
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https://www.image-net.org/static_files/files/imagenet_ilsvrc2017_v1.0.pdf

Dictionary: A Database for Lexical Semantics

[///Lmnma

CUP noun
an

W /knap/

) /knp/

| Idioms |}

1w A_lxl [countable] a small container that is like a bowl in

shape, usually with a handle, used for drinking tea, coffee, etc.

« He filled the cup with water.

a coffee cup
« o cup and saucer
« o plastic/paper cup

SEEALSD Dixie Cup™, loving cup, sippy cup
= Extra Examples

« Customers don't like drinking out of plastic cups.
« She raised her cup fo her lips.

= She was so thirsty that she drained her cup.
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Definition

Sense

Usage

2 % M;‘ [countable] the contents of a cup
« She drank the whole cup.

« cup of something Would you like a ¢

+ Extra Examples

4+ Oxford Collocations Dictionary

e
3

i % A:e; [countable] a gold or silver cup on a stem, often with ‘l‘f’/lm a

two handles, that is given as a prize in a competition &
i\

F.A
¥y

« She's won severol cups for skating.

« He lifted the cup (= won) for the fifth time this year.

+ Extra Examples

TOPICS Sports: ball and racket spnrtsm

+ Oxford Collocations Dictionary



https://www.oxfordlearnersdictionaries.com/

Limitations of WordNet and ontological semantics

1 WordNet is a useful resource, but there are intrinsic limits

o Itrequires many years of manual effort by experts like skilled lexicographers

o Some lexicographers are not skilled, and this has led to inconsistencies
(https://en.wikipedia.org/wiki/\WordNet)

o Ontology is only as good as ontologists; not driven by data

1 Sparse

o wicked, sick, badass, ninja..

1 Hard to compute word relationships o;j
Let’s look into lexical semantics driven by data

and not rely on lexicographers
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https://en.wikipedia.org/wiki/WordNet

Three ways of looking at word meaning

2 Decompositional
o \What characteristics/components of what the word represents

A Ontological

o How the meaning of the word relates to the meanings of other
words

2 Distributional
o What contexts the word is found in, relative to other words
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Assumptions in distributional semantics

“The meaning of word is its use in the language”

Wittgenstein Pl 43

“You shall know a word by the company it keeps”

Firth, ). R. 1957:11

“If A and B have almost identical environments
we say that they are synonyms.” Haris 1954
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\What does “beef” mean?
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Beef
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po1.0d
oo2.0
003.0
004.0
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t but of different schools. Cook had discovered a BEEF in his possession a few days earlier and, whe
ity to available canned pork products. Tests with BEEF have been largely unsuccessful because of the
ermaster Corps program is to find the reasons for BEEF's low palatability and means of overcoming it
rads can extend the shelf life (at 35 F) of fresh BEEF from 5 days to 5 or & weeks. However, the pro
radiation blanching process discolors the treated BEEF and liguid accumulates in prepackaged cuts. C
nd liquid accumulates in prepackaged cuts. Cooked BEEF irradiated in the absence of oxygen assumes a
the improvised counter of boards laid across twoe BEEF barrels. There was, of course, no real need t¢
ey of the hut across from him was surmounted by a BEEF barrel with ends kneocked ocut. In this heavy a
secret employers their money's worth. A good many BEEF-hungry settlers were accepting the death of W
ogrammes and cost-cutting measures are planned to BEEF up performance. Analysts at Paribas are looki
rsion into animal feed, produce 600,000 tonnes of BEEF, which alone is worth £1,000 million at wheol
pay on the French wards. We served them up corned BEEF, cheese, pickles and hot coceca, and they thre
they threw it back at us. "Good gracious, corned BEEF, cheese and bread and butter, they were lucky
Greece) Ingredients 1 small packet feta cheese 2 BEEF tomatoes M cucumber 1 small jar stoned

for the past twenty minutes!"™ Waiter! Waiter! The BEEF surprise was lovely, but what's the surprise?
as hands who rode for a Mr. Wolgast who supplied BEEF to the reservation up at San Carleos. I would
"Every week or so I1'd see them come in for their BEEF ration. And they're allowed to hunt. They can
11 specialize in steaks, chops, chicken and prime BEEF as well as Tom's favorite dish, stuffed shrim
close, she said. She had raised a calf, grown it BEEF-fat. She had, with her own work-weary hands,
and get ready to bear. She was ready to kill the BEEF, dress it cut, and with vegetables from her g
't know what to say. He did say she could get her BEEF and vegetables in cans this summer. He did sa
12. _HAMBURGER PATTIES WITH NUTS_ 1 pound ground BEEF 2 teaspoons grated onion Dash of pepper 1/2 t
a highly competitive business more profitable for BEEF, dairy, and sheep men. The target chart guick
cle assumes that the rations you are feeding your BEEF, dairy cattle, and sheep are adequately balan

-infective properties of this drug. _HOW TO FEED: BEEF CATTLE (FINISHING RATION) - Te increase rate
in the prevention of liver abscesses in feed-lot BEEF cattle. Prevention of bacterial pneumconia, sh
founder, and in controlling scours. HOW TO FEED: BEEF AND DAIRY CALVES - 0.2 gram Dynafac per head

gain and improves feed efficiency. _HOW TO FEED: BEEF CATTLE_ - 10 milligrams of diethylstilbestrol
oves growth rate and feed efficiency of fattening BEEF animals. _HOW TO FEED:_ At the rate of 2-1/2

Sentences from the brown corpus. Extracted from the concordancer in The Compleat Lexical Tutor, http://www.lextutor.ca


http://www.lextutor.ca/

Beef

1 Suppose you see these sentences:

o "there was the smell of roast beef”

o "l smell seared beef, and my stomach
twists from hunger.”

] Suppose you've also seen these:
o ..apiece of roasted or for roasting..

o .50 long as the was seared, they

gulped down several times their own
Weight every da\/ Beef is a roasted or seared with smell.

Beef is the culinary name for meat from cattle.

Wikipedia, "beef”

20 AR
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Beef
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the improvised counter of boards laid across twoe BEEF barrels. There was, of course, no real need t¢
ey of the hut across from him was surmounted by a BEEF barrel with ends kneocked ocut. In this heavy a
secret employers their money's worth. A good many BEEF-hungry settlers were accepting the death of W
ogrammes and cost-cutting measures are planned to BEEF up performance. Analysts at Paribas are looki
rsion into animal feed, produce 600,000 tonnes of BEEF, which alone is worth £1,000 million at wheol
pay on the French wards. We served them up corned BEEF, cheese, pickles and hot coceca, and they thre
they threw it back at us. "Good gracious, corned BEEF, cheese and bread and butter, they were lucky
Greece) Ingredients 1 small packet feta cheese 2 BEEF tomatoes M cucumber 1 small jar stoned

for the past twenty minutes!"™ Waiter! Waiter! The BEEF surprise was lovely, but what's the surprise?
as hands who rode for a Mr. Wolgast who supplied BEEF to the reservation up at San Carleos. I would
"Every week or so I1'd see them come in for their BEEF ration. And they're allowed to hunt. They can
11 specialize in steaks, chops, chicken and prime BEEF as well as Tom's favorite dish, stuffed shrim
close, she said. She had raised a calf, grown it BEEF-fat. She had, with her own work-weary hands,
and get ready to bear. She was ready to kill the BEEF, dress it cut, and with vegetables from her g
't know what to say. He did say she could get her BEEF and vegetables in cans this summer. He did sa
12. _HAMBURGER PATTIES WITH NUTS_ 1 pound ground BEEF 2 teaspoons grated onion Dash of pepper 1/2 t
a highly competitive business more profitable for BEEF, dairy, and sheep men. The target chart guick
cle assumes that the rations you are feeding your BEEF, dairy cattle, and sheep are adequately balan

-infective properties of this drug. _HOW TO FEED: BEEF CATTLE (FINISHING RATION) - Te increase rate
in the prevention of liver abscesses in feed-lot BEEF cattle. Prevention of bacterial pneumconia, sh
founder, and in controlling scours. HOW TO FEED: BEEF AND DAIRY CALVES - 0.2 gram Dynafac per head

gain and improves feed efficiency. _HOW TO FEED: BEEF CATTLE_ - 10 milligrams of diethylstilbestrol
oves growth rate and feed efficiency of fattening BEEF animals. _HOW TO FEED:_ At the rate of 2-1/2

Sentences from the brown corpus. Extracted from the concordancer in The Compleat Lexical Tutor,


http://www.lextutor.ca/

Beef

0.7 e.g., shape
14 13 e.g., color
f} -45 e.g., smell

Learned latent feature/component:

Learning a vector representation of
“Beef” from context
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Model of meaning focusing on similarity

0.7

. Each word = a vector 12
e not good
| o bad
to by : dislike worst
J Not just “word”; Similar , : incredibly bad
. that now are WOorse
words are nearby in space a i you
than  wih .
J The standard way to
represent meaning in "NLP very good _ incredibly good
these da\/s -amazing fantastic e
terrific Sisa wondacriu
good
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Distributed representation

1 Vector representation that encodes information W—
about the distribution of contexts a word appears W . °.
in b i

1 Words that appear in similar contexts have similar L R
representations (and similar meanings, by the e

distributional hypothesis).

 We have several different ways we can encode the
notion of “context.”
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Another example of polysemy

have a beet with (someone or something)

To have an outstanding or unsettled dispute or disagreement with someone or something
Why does she have a beef with me? I'm always nice to her!

Dad has a real beef with the phone company because they keep raising their rates.

Beef
07 Polysemy should be learned to some extent,
13 assuming that the word vector is trained
using diverse textual contexts and the
o dimensions of the vectoris large enough
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Different kinds of encoding “context”

] Count-based
o PMI, TF-IDF

 Distributed prediction-based (type) embeddings
o Word2vec, GloVe, Fasttext

] Distributed contextual (token) embeddings from language models
o ELMo, BERT, GPT

1 Many more variants
O Multilingual / multi-sense / syntactic embeddings, etc
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Term-document matrix

CSCI 5541 NLP

Hamlet Macbeth Romeo & Richard IlI Julius Caesar Tempest
Juliet
knife 1 1 4 2 2
dog ) 12 p)
sword 2 2 7 5 5
Tove 510 I35 B3 2
like 75 38 34 36 34 41

Context = appearing in the same document.




\Word vectors

knife 1 1 4 2 2

sword 2 2 7 5 5

VVector representation of the term;
vector size = number of documents
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Cosine Similarity

J Calculate the cosine similarity between the two word vectors, to judge the degree of
their similarity [Salton 1971]

F
XV
cos (x,y) = S

J iF=1xi2J f=1ys
Note:

1 Euclidean distance measures the magnitude of distance between two points

1 Cosine similarity measures their orientation

0 Alx1,y1)

-~ d

0 B(x2.y2)
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https://cmry.github.io/notes/euclidean-v-cosine
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Hamlet Macbeth Romeo & Richard lll Julius Caesar Tempest
Juliet
knife 1 1 4 2 2
dog 6 T2 p)
sword 2 2 7 5 5
love 64 135 63 12
like 75 38 34 36 34 41
cos (knife, knife) 1.0
cos (knife, dog) 0.11
cos (knife, sword) 0.99 Not all dlmepsmn.s are gqually informative.
Let's weight dimensions!
cos (knife, love) 0.65
cos (knife, like) 0.61




TF-IDF

1 Term frequency (TF; 4) = the number of times terms ¢t occurs in document
d

o Several variants: e.g., passing through log function

A Inverse document frequency (IDFj) = inverse function of number of
documents containing (D;) among total number of documents N.

_ N
tfidf (t,d) =tf; 4 xlogD—
t
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IDF

0.07

0.30

0.07

Hamlet Macbeth Romeo & Richard lll Julius Caesar Tempest
Juliet
knife 1 1 4 2 2
dog 6 12 2
sword 2 2 7 5 5
love 64 135 63 12
like 75 38 34 36 34 41

0.20

0.00

tfidf (t,d) = tfiq

CSCI 5541 NLP

Xlog

D

IDF indicates the informativeness of the
terms when comparing documents.

33 AR



knife 0.07 0.07 0.28 0.14 0 0.14

dog 0 0 0 1.8 3.6 0.6
Hamlet Macbeth Romeo & Richard lll Julius Caesar Tempest IDF

7 Juliet

| knife | 1 1 4 2 2 0.07
. dog i : 6 12 2 0.30
sword 2 2 7 5 5 0.07
love 64 135 63 12 0.20
like 75 38 34 36 34 41 0.00

IDF indicates the informativeness of the
Dt terms when comparing documents.

tfidf (t,d) = tf;q

CSCI 5541 NLP
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Hamlet, Prince of Denmark Macbeth
ham+ I | macheth IS
hor-4 N macduff -
hamlet1 NN banquo- [N
pol 4 N malcoim - |
laer4 B ross4 B
oph+ N lennox+ N
ros4 B duncan-
horatio4 B siward4 T
clown4 S thane4
laertes 4 cawdor4 B
0.00 0.01 0.02 0.03 0.04 0.00 0.02 0.04

https://datavizs21.classes.andrewheiss.com/example/13-example/

35 AN
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https://datavizs21.classes.andrewheiss.com/example/13-example/
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3. Undgram subtuples log G4 = A2y bkt d 7 int f o fdf wector spaoe I N Ly T'I'._.u el [ = iy e
mibnlA s
4L U cost lag) 1+ s DHice aombest sim i larity: Lidkeefe, ooy )+ dicefieg, e
41. 5 cost lengf 1 o EEEE o =[2% dice(0,, 60 ==
42 Rcost legl 1+ —2 3 - kag(1+ =2} L in boolean vedor space z = AL L B '
4% T combined cost W .-,".: Ird o AL dnt f vedor space 2= il 023
44 Phi Py )= P P B2 h!flfdfmﬂ!lﬂ .,—_rlll',lf 2 II_,'I'.II.r]_f[ll',:l—ll:.l.I|',-'f_]|
=K ] o ] . Pecina, P. (2008).
- BAPPA Table 1: Inventory of kxical association measures for collocation extraction
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(Optional) Topic Modeling

CSCI 5541 NLP 37 M

A probabilistic model for
discovering hidden “topics” (groups
of terms that tend to occur
together) in documents.

1 Unsupervised (find interesting
structurein the data)

J Clustering tokens into topics




Topic Modeling

-

~

CSCI 5541 NLP

P Topic proportions and
+" Topics ™ Documents .
K i N\ assignments
II gene 9.04 l‘ R =~ T
oaattc ooty Seeklog’(lfe s Bare (Genetlc) ﬂeeessltles
sen \ x D y‘x\ llur-vq NIW Yonx- ‘ \
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topic

1 topic -+ K
edk
1 +++ nth word *-N

Z N {1;"'IK}:

y R0

word idx -+ V

Bi

= p(w|2)

Parameters of Dirichlet distribution --.
(K -vector)

Image Credit: ChangUK, Park




Different kinds of encoding “context”

- Count-based
o PMI, TF-IDF

] Distributed prediction-based (type) embeddings
o Word2vec, GloVe, Fasttext

] Distributed contextual (token) embeddings from language models
o ELMo, BERT, GPT

1 Many more variants
O Multilingual / multi-sense / syntactic embeddings, etc
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Sparse vectors

CSCI 5541 NLP

"aardvark”

\/-dimensional vector, single 1 for
the identity of the element

d

d

dd

aal

aalii

ddam

Aani

aardvark

aardwolf

oO|l—-|]O|lO|]O|O|]O|O]|O

zythem

Zythia

zythum

Zyzomys

Zyzzogeton

oO|lo|j|o|O0O | O




Sparse vectors -> Dense vectors

=)
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Hamlet Macbeth Romeo & Richard lll Julius Tempest
Juliet Caesar

6 12 2
2 2 7 5 5 =
64 135 63 12
75 38 34 36 34 41

nXxd
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Singular value decomposition (SVD)

J Any n x d matrix X can be decomposed into the product of three matrices
O where mis the number of linearly independent rows

nxd nxm mxXm
(diagonal)
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Singular value decomposition (SVD)

] We can approximate the full matrix by only considering the leftmost k terms in the
diagonal matrix

nxd nxm mxXm
(diagonal)
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Singular value decomposition (SVD)

1 We can approximate the full matrix by only considering the leftmost k
terms in the diagonal matrix

2

mXd

nxd nxm mxXm
(diagonal)
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Singular value decomposition (SVD)

1 We can approximate the full matrix by only considering the leftmost k
terms in the diagonal matrix

{ 1z - UTAkV@

~ X

mXd

nXxd nxm mXm
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1 1 4 2 2

knife

dog 6 12 2
Hamlet | Macbet | Romeo | Richard | Julius Tempe
- Lz e 0.22 0.5 h & Juliet 1l Caesar st
0.5 12 8.6 X o5 X 02 07 22 02 07  -22
| sword [P 0.7 -2.2 . 0.2 0.7 2.2 9.3 0.5 0.5
- 9.3 -0.5 0.5 ' 9.3 -0.5 0.5 -0.5 0.5 9.3
0.2 4.3 0.9
nxm mXxXm mXd
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Low-dimensional representation
for terms (here 3 dimensions)

Low-dimensional representation
for documents (here 3 dimensions)

0.5

0.3

2.5

knife 0.2 0.42 0.22
dog 0.5 1.2 8.6
sword -0.2 0.7 -2.2
love 9.3 -0.5 0.5
like 0.2 4.3 0.9

Romeo | Richar | Julius Tempe

& Juliet dli Caesar st
-2.2 -0.2 0.7 -2.2
-2.2 9.3 -0.5 0.5
0.5 -0.5 0.5 9.3




Latent semantic analysis v owm

knife 0.2 0.42 0.22
dog 0.5 1.2 8.6
] Latent Semantic Analysis/Indexing is this process of Slv(:j;d :32 ‘;75 0252
applying SVD to the term-document co-occurrence T o2 T 23 T o5
matrix
o Terms typically weighted by tf-idf
J This is a form of dimensionality reduction
o forterms, from a D-dimensional sparse vector to a K- ul ik A
dimensional dense one where K << D. music | how | program | 10
. Similar kinds: film | what | project | 30
O Probabilistic Latent Semantic Indexing (pLSI) (Hofmann, 1999) theater | about | russian | 11
o Nonnegative Matrix Factorization (NMF) (Lee & Seung, 1999) mr their | space | 12
O Latent Dirichlet Allocation (LDA) (Blei et al., 2003) this or — 1

(Deerwester etal. 1998)
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Count-based vs Prediction-based Methods

LSA, HAL (Lund & Burgess) Skip-gram/CBOW (Mikolovet al)
Hellinger-PCA (Rohde et al, Lebret & NLM, HLBL, RNN (Bengioet al; Collobert & Weston;
Collobert) Huang et al; Mnih & Hinton)
1 1
> - the|cat|sat on|the mat
64
75 38
[ [ [ | Wt_l
H - ] W  Classifier <
o x EEE 1 x Wt+1
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Recap: Text Classification

x = "Today’'s weather is great” X = “Today's weather is" x..="Today's[ ]isgreat”

N N\ N

P(\/ ‘ X) P(Xt‘ X<t) P(Xt‘ Xt-2,t—1,t+1,t+2)
e e /

vy = {positive, negative} X, ={a, aa..apple .. banana .. X, ={a, aa.. apple .. banana ..
9 = positive great .. good .. zebra ..} great .. good .. zebra ..}
X = great X = weather
Y] = 2 IX| = V (vocabulary size) |X| = V (vocabulary size)
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Recap: Text Classification

Xi.»> =[].. weather .... Xe.q = .. [ ] weather .. ..

/ /
P (X | X ) P (Xeq | X )

I:)(Xt+1‘xt) I:)(Xt+2‘xt)

\ \

Xeq = ... weather[].. Xiyo = . .. Weather .. []

CSCI 5541 NLP

X.="Today's[ ]isgreat”

N\

P ( Xt ‘ Xt-2,t—1,t+1,t+2 )

v

X, ={a, aa.. apple .. banana ..
great .. good .. zebra ..}

¥ = weather

|X| = V (vocabulary size)



Dense vectors from prediction (not count)

INPUT PROJECTION OUTPUT

the cat sat on the mat { w2
( W(t-1)
Skipgram model: given a single word in w(t) .>I
a sentence, predict the words in a AR
context window around it. \ ] M
1 w(t+2)

(Mikolove et al., 14)

53 SN
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Dense vectors from prediction (not count)

the/cat sat on the mat

Context window size =2

CSCI 5541 NLP

the

— classifier <

Wi =

Wi_1 =

Wipq1 =

Wiy =

START._,

START._,

cat

sat

X, )
X; )
X,
X,



Dense vectors from prediction (not count)

the catljsat on|the mat

Wi_p =|START_;
Wt—l = the

we =|cat| — [dESS]ils Wiy, =|sat
Witz =01

Context window size =2
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Dense vectors from prediction (not count)

the cat|sat/on the mat

Wi_p =|the
wi_q =|cat
Wiio =|the

Context window size =2
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Dense vectors from prediction (not count)

the cat saton|the mat

Wi_o = cat

Wi_1 = sat

w =jon | — classifier Wees ol the
4=

Wt+2 = mat

Context window size =2
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Dense vectors from prediction (not count)

the cat|sat on the|mat

Wi_p =|Sat
Wi-1 =01

w; =the| — Wiiq =imat
We2 =|ENDyq

Context window size =2
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Dense vectors from prediction (not count)

the cat sat|on the mat

Wi_o =|0n
Wi_q =|the
Witz =|[END4

Context window size =2
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Dense vectors from prediction (not count)

the/cat sat on the mat

the cat|sat on the|mat
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Dense vectors from prediction (not count)

wi_p =|START_,
wi_1 =/ START_;
we =the| — IENEESl=l Wiy q = cat
b1 =
Witz =[SAt
Wt_z =/ sat
Wi—1 =01
we =fthe| — IENdEESIIEl Wiy =|mat
41 =
Wigp =|[END 4

Context window size =2
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Dense vectors from prediction (not count)

Wy | — classifier < —
+

CSCI 5541 NLP
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15

0.4

0.6

-3.4

Word embedding (v.) for
center word (c) “the”
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T
Word embedding (u,) f EXP(HQ'U{:)
ord embedding (u,) for T
output word (o) ZWEV exp (uw vc.')
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oJelele]e]e)]
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one-hot vector

look-up table of output word
word embeddings representations
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The objective function J(8) is the average negative log likelihoof:

softmax

Y

el sessssneiess

Eeliaeel wen vee
s

O O O I K )

t=1-ms<jsm,j#0

All word vectors
For a center word ¢ and acontext word o ;

— Dor product compares similarity of

oandc.uTv=u-v= Y w;

Xi= P(lol|c)=

Normalize over entire vocabulary to

"soft” because still assigns some give probability distribution

probability to smaller x; \ 7
exp(x;) /[

-soft max Xi) = = p; >

U Y exp(x) /

“max” because amplifies | |—
probability of largest x; g R Ly
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INPUT
P 0.64
,.
7 \ f o m— - N
yd = | 0.03 Probability of word
e \ '\ ./ “book” appearing
. / AR = nearby “orange”
— p N
n - u+11 \
1
The word for "
“orange” selected
‘ 0.07 | Probability of word
b | T 1] H
\ } _ juice” appearing
0 _ i \ : nearby “orange”
0.77 "
0 / !
One Hot Vector 300 7
100,000 x 1 Hidden Layer 100.000
Neurons Output Layer
Neurons
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Minimize the objective function J(8) using gradient descent

Idea: for current value of 8, calculate gradient of J(8) then take small step
in direction of negative gradient. Repeat this until convergence

Cost
A

Learning step

Minimum

Random
initial value

D>

CSCI 5541 NLP




Two kinds of training data

A The labeled data for specific tasks

o Labeled sentiment for movie reviews (~2K labels/reviews, ~1.5 words)
o Used for supervised models

1 Unlabeled text for representation learning

o Trillions of words (Wikipedia, web text, books, etc)
o Used for word distributed representations
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55
03
-6.1
09
y dog
cat ®
® puppy
. 5.2
4.2 05
0.7 62
52 05
0.1
15
0.5
0.7 X
-36 .
wrench
@
screwdriver
25
1.4
26
4.4
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Why dog and cat are in similar positions

CSCI 5541 NLP

the black dog jumped on the table
the black cat jumped on the table
the black puppy | jumped on the table
the black wrench | jumped on the table
the black shoe jumped on the table




Dimensionality reduction

1 n

llthell
llfor"

1 n

llthe n

1 n

on

0.7

1.3

-45

co|jlojlojlojlojlojlo|j]o|lo|]o |-~ ]|©O

\/-dimensional space (1-hot) 3-dimensional space
Representations for all words are completely independent Representations are not structured
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Vector Math

King
King - Man Man
Woman

Mikolov et al. 2013 show that vector representations have some
potential for analogical reasoning through vector arithmetic.

the

5.2

0.5

-6.2

05

Closest vect

v(“King") — v("Man”) + v(“Woman")

4.2

5.2

0.7

0.5

-5.2

-6.2

0.1

05

on

sat

52

05

-6.2

05

Mikolov etal., (2013), “Linguistic Regularities in Continuous Space Word Representations” (NAACL)
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Vector Math « King

/7 Queen

King - Man Man

Woman

Mikolov et al. 2013 show that vector representations have some
potential for analogical reasoning through vector arithmetic.

v(“King"”) — v("Man") - v("Woman")

0.7

13

-45

the

5.2

0.5

-6.2

05

Closest vectg

4.2

5.2

0.7

0.5

-5.2

-6.2

0.1

05

on

sat

52

05

-6.2

05

Mikolov etal., (2013), “Linguistic Regularities in Continuous Space Word Representations” (NAACL)
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Vector Visualization

o man
< . WOman
maother L
father king - queen
G; e . husband .
L] aunt
uncle chair
. computer wife
,_f} m——t—l_l . .
5 {
2,
-0.1
sonboy girl
nepﬁwmmm .
.-D-E ™ - dﬂ%pl’lﬂﬂEEi
| . 06;3 &E@-
. T %,
0? o / 06
- o o o o & . 0.5
[gender] - e
- % &8 & & & &
Figure 3: Words plotted in our 3D semantic space. Male
Figure 2: Embedding vectors for three male words (“uncle”, words appear in the positive (left) half of the x-axis; female
“IJG}F“ “hE'-“:l and ﬂ.'l.l'gf.‘:ﬂ female words {“aunl” “giﬂ"‘: i 'E'-”) words in the negative (right) half. Adult words are in the
’ . L= ' positive (top) half of the y-axis; youth words in the negative
E{;lmpﬂnﬂiilt 123" Shn‘.!f'n I?ﬂgEﬁEfﬂ;lﬂllﬂft,{:idpnmUFe for the (bottom) half. The third dimension is the “semantic resid-
€ wWords an ﬂE-gﬂtl‘.-’E or ine 1c c W 8. ual”, explainﬁd in the main text.

Interactive Visualizations of Word Embeddings for K-12 Students. AAAI-22
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X !‘lf)

man
Y |
Q.2

father
o
0. |
o> uncle chair
) <
King-man+woman
0 queen

- hushand i
[

t% 8, oman

-
-0
son nephew prince
Al
« ° aunt °
0.¢  boy £
L J
03 wife
L
0-2
o)
Q Aird
giri niece

Figure 5: Analogy by vector arithmetic: “man” is to “king”
as “woman” is to “king — man + woman” = “queen”.
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Low-dimensional, distributed representations

d Two similar words (e.g., synonyms or words under the same class) have
similar distributional properties

1 In neural models, replace the initial V-dimensional sparse vector with
much smaller k-dimensional dense vectors

 Low-dimensional, dense word representations are extraordinarily
powerful and are a large part of why neural network models have been so
successful for NLP
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Count-based vs Prediction-based Methods

LSA, HAL (Lund & Burgess)
HeIIinger-PCA (Rohde et al, Lebret & Collobert)

] Fast training

] Efficient usage of statistics

J Primarily used to capture word
similarity

] Disproportionate importance given to
large counts

CSCI 5541 NLP

Sklp-gram/b (Mikolovet al)

NLM, HLBL, RNN (Bengioet al; Collobert & Weston;
Huang et al; Mnih & Hinton)

J Scales with corpus size
 Inefficient usage of statistics

J Generated improved performance on
other tasks

J Can capture complex patterns beyond
word similarity



Count-based and Prediction-based Methods

1 Strong connection between count-based methods and prediction-based
methods (Levy and Goldberg 2014)

A Skip-gram objective is equivalent to matrix factorization with PMI and
discount for number of samples k

My, = PMI(w, ¢) — log(k)

Neural Word Embedding as Implicit Matrix Factorization, (Levy & Goldberg, 2014)

v AN
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Other techniques and embeddings not covered

A Contrastive learning with negative samples

3 Other variants
o—WWord 2o mioiove ctatas)
v https://code.google.com/archive/p/word2vec/
o GloVe (Pennington et al., 14)
v http://nlp.stanford.edu/projects/glove/

O FaStTeXt (Bojanowski et al.” 17)
v http://www.fasttext.cc/
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https://code.google.com/archive/p/word2vec/
http://nlp.stanford.edu/projects/glove/
http://www.fasttext.cc/

Word2VVec Demo

1 Pre-trained word2vec models:

o https://code.google.com/archive/p/word2vec/
J Gensim:

o https://radimrehurek.com/gensim/auto_examples/tutorials/run_word2vec.html
1 Online demos:

o http://nlp.polytechnique.fr/word2vec

o http://vectors.nlpl.eu/explore/embeddings/en/
o https://remykarem.github.io/word2vec-demo/
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https://code.google.com/archive/p/word2vec/
https://radimrehurek.com/gensim/auto_examples/tutorials/run_word2vec.html
http://nlp.polytechnique.fr/word2vec
http://vectors.nlpl.eu/explore/embeddings/en/
https://remykarem.github.io/word2vec-demo/

Types of
Evaluation




Types of Evaluation

d Intrinsic vs Extrinsic
o Intrinsic: How good is it based on its features?
o Extrinsic: How useful is it downstream?

1 Qualitative vs. Quantitative

o Qualitative: Examine the characteristics of examples.
o Quantitative: Calculate statistics
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\/isualization of Embeddings
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\/isualization of Embeddings

Country and Capital Vectors Projected by PCA

2 T T ‘ T T T
China
Beijing
1.5 Russia: 7
Japan
1 b Moscow ]
Turkey Ankara TOkyo
05 .
Poland
0F Germgny- i
France Warsaw
- =Berlin
-05 Italy: Paris .
Athens
Greece
1 | Spain Rome |
. Madrid
-1.5 - Portugal Lisbon
_2 1 1 1 [ 1 [ 1
-2 -1.5 1 0.5 0 0.5 1 1.5 2
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Linear and Non-linear Projection

J Non-linear projections group things that are close in high-dimensional space

o e.g. SNE/t-SNE (van der Maaten and Hinton 2008) group things that give each other a high
probability according to a Gaussian

tSNE dimensions co lored by digit
First and second Principal Components colored by digit ' Yo

.-..'r“ - ,. -
S

: 5;’
:
PCA & 3 : o @ T-SNE
- . . r' ("o !'_ ’
: ‘ , &) -
_ 4L
’
X ?". 1
- - O‘-,
-

Image from Derksen (2016)

86 M\
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t-SNE Visualization can be Misleading! .ccongecs s

Settings matter

. W . '; r
oy . v Y & . ‘.‘:‘:..: .
.t';:“ ol ; i ﬂ LR * - ":I

H % JRANREY
w ) .
"o v

Origimal Perplexity: 2 Perplexity: § Perplexity: 30 Perplexily: 50 Perplexity: 100

Step: 5,000 Step: 5,000 Step: 5,000 Step: 5,000 Step: 5,000

Linear correlations cannot be interpreted

f.":'- B - < S o A %\'. i

o< 5 R . 5 :

£ ’ ~ev’ 3 oy “,
* g g : 1 e %

,l' b/ & \ g x y v\ x

Original Perplexity: 2 Perplexity: 5 Perplexity: 30 Perplexity: 50 Perplexity: 100

Step: 5,000 Step: 5,000 Step: 5,000 Step: 5,000 Step: 5,000
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Intrinsic Evaluation of Embeddings

] Relatedness: The correlation between embedding cosine similarity and
human eval of similarity?

1 Analogy: Find x for "aisto b, asxistoy".

] Categorization: Create clusters based on the embeddings, and measure
purity of clusters.

) Selectional Preference: Determine whether a noun is a typical argument of
a verb.

(categorization from Schnabel et al 2015)

ss M\
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Intrinsic evaluation:

Ask humans how similar two words are Relatedness:

correlation (Spearman/Pearson) between vector
similarity of pair of words and human judgments

Word 1 Word 2 similarity
vanish Disappear 9.8
behave obey 7.3
belief Impression 5.95
muscle Bone 3.65
modest Flexible 0.98
hole agreement 0.3

SimLex-999 dataset (Hill et al., 2015)
WordSim-353 dataset (Finkelstein et al., 2002)
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Intrinsic evaluation:

Analogical reasoning (Mikolov et al.,, 2013).

For analogy Germany : Berlin :: France : ?,
find closest vector to v("Berlin”) — v("Germany”)+v(“France”)

possibly impossibly Certain Uncertain
generating generated Shrinking Shrank
think thinking Look Looking
Baltimore Maryland Minneapolis Minnesota
shrinking shrank Slowing Slowed
Rabat Morocco Astana Kazakhstan

CSCI 5541 NLP




Intrinsic evaluation:

Analogical reasoning (Mikolov et al.,, 2013).

A
man
.' -
Q. “\”‘ woman
king \\ ®
A
gueen
Male-Female

CSCI 5541 NLP

walked
(@)
B »
C)' ’ swam
walking
O i3
swimming
Verb tense

Rome
Berlin
Turkey --_________§__~_-
Ankara
Russia
- Moscow
Canada Ottawa
Japan
P Tokyo
Vietnam Hanoi
China Beijing
Country-Capital



Analogical reasoning test

CSCI 5541 NLP

Type of relationship Word Pair 1 Word Pair 2
Common capital city Athens Greece Oslo Norway
All capital cities Astana Kazakhstan Harare Zimbabwe
Currency Angola kwanza Iran rial
City-in-state Chicago Mlinois Stockton California
Man-Woman brother sister grandson | granddaughter
Adjective to adverb apparent apparently rapid rapidly
Opposite possibly impossibly ethical unethical
Comparative great greater tough tougher
Superlative casy easlest lucky luckiest
Present Participle think thinking read reading
Nationality adjective || Switzerland Swiss Cambodia | Cambodian
Past tense walking wilked swimming swam
Plural nouns Mmouse mice dollar dollars
Plural verbs work works speak speaks

Mikolov et al. 2013

2 AR



Analogical reasoning test

Model Vector Training Accuracy [%]

Dimensionality | words

Semantic | Syntactic | Total

CBOW 300 T83M 15.5 53.1 36.1
Skip-gram 300 T83M 30.0 559 333

Mikolov et al. 2013

o3 AR
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Analogy evaluation and hyper-parameters

- Semantic - Syntactic - Overall

2 More data helps

Accuracy [%]

2 Wikipedia is better than

) Gigaword5 +
Wiki2010 Wiki2014 Gigaword5 Wiki2014 Common Crawl
1B tokens 1.6B tokens 4.3B tokens 6B tokens 428 tokens

Mikolov et al. 2013

on R
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Analogy evaluation and hyper-parameters

2 Dimensionality

Accuracy [%]
n
-

a Good dimension is ~300

g Semantic
30! e Syitactic
e Jverall
20 ' ' '
0 100 200 300 400 500 600

Vector Dimension

Mikolov et al. 2013
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Extrinsic Evaluation

Be aware and use the best one for the task

Restaurant

Was

This

Time

1N

CLECETY GOy Ly (et

Input words’ embeddings

CSCI 5541 NLP

_— - Awesome

Concatenation/
Average

QOutput word embedding

Method Fine-grained  Binary
DAN
- Word2vec 46.2 84.5
- GloVe 46.9 85.7

Sentiment classification

Dev

Test ACE MUC7

908 857 77.3 73.7

91.0 855 776

90.5

84.8 73.6

92.6 88.7 B8l1.7

90.5

|| CBOW | 93.1
ove )3,

85.7 T78.7

8§8.2 822

74.3
71.5
80.7
74.7

(]
81.1 | |

Named Entity Recognition: identifying references

to a person, organization or location:

96 N



When are Pre-trained Embeddings Useful?

1 Basically, when training data is insufficient
o E.g.Low-resource languages

1 Very useful: tagging, parsing, text classification

d Less useful: machine translation

1 Basically not useful: language modeling

CSCI 5541 NLP




Limitations of
Word Embeddings




Limitations of Embeddings

A Sensitive to superficial differences (dog / dogs)

o E.g. misspellings: “minuscule” — “miniscule”
o E.g.compounded/prefixed/suffixed words split into “wrong” subwords

“descheduled” = [ "des”, "##tched”, "

uled” ]

0 Not necessarily coordinated with knowledge or across languages

A Can encode bias (encode stereotypical gender roles, racial biases)

CSCI 5541 NLP
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Sub-word Embeddings

il =
Table /’!‘,
unfortunatelys\, gf
W, by

Bi-LSTM

unfortunatecry, lygyr

unpge fortunateg, m
Morpheme-based (Luong et al. 2013) Character-based (Ling et al. 2015)
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Multilingual Coordination of E

mbeddings using dictionaries

pretty
d, d,
o ‘ cute
o . 0 foul charming
_____________ | e ugly gorgecus  marvelous
n, ) f ) magnificent
elegant splendid  pigeous  beastly
N o grotesque horrid
//d d
| v W
d, d, elegant  charming'  cute’
i i 1 " grntemue.
p N - _ gorgeous pretty ugly beastly'
CCA magnificent’ hideous'
N splendid’ awful'
n v n | p- g
. marvelous foul'
d
d

Improving Vector Space Word Representations Using
Multilingual Correlation (Faruqui & Dyer, 2014)

CSCI 5541 NLP

1 1 L | 1 1 L

Monolingual (top) and multilingual (bottom) word projections of
the antonyms (shown in red) and synonyms of “"beautiful”
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Unsupervised Coordination of Embeddings

1 In some cases, we can do it with no dictionary at all!

o Justuse identical words, e.g. the digits (Artexte et al. 2017)
o Or, just match distributions (Zhang et al. 2017)

Chinese embeddings

gou

= horse
ma
a
~
~
S % dog
ma
mao \
i 4
gou
horse
)
dgg kitten
z cat
kitten
cat @ mao
[+]

>
English embeddings

English and transformed Chinese embeddings
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Retrofitting of Embeddings to Existing Lexicons

1 Make word vectors to match with existing lexicon like WordNet (Faruqui et al. 2015)

Q) =) [aillqz- -G’ + ) Bl - le|2]

(i,7)eEE
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De-biasing Word Embeddings

Word embeddings reflect bias in statistics

Extreme she occupations

1. homemaker 2. nurse 3. receptionist
4. librarian 5. socialite 6. hairdresser
7. nanny 8. bookkeeper 9. stylist

10. housekeeper 11. interior designer 12. guidance counselor

Extreme he occupations

1. maestro 2. skipper 3. protege

4. philosopher 5. captain 6. architect

7. financier 8. warrior 9. broadcaster
10. magician 11. figher pilot 12. boss

(Bolukbasi et al. 2016)
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De-biasing Word Embeddings

Debiased “doctor”
embedding

Orthogonal to
gender subspace

[Bolukbasi et al. 2016]

|dentify pairs to “neutralize”, find the direction of the trait to
neutralize, and ensure that they are neutral in that direction

(Bolukbasi et al. 2016)

105 M
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a i

LN

(iw]‘“l

gay (1990s)
SDI

|,
[

- gay (1900s)

i{‘_'.']

al

cheerful

pleasant

gay (1950s)

}Il"

Spread

broadcast (1850s).., )1

broadcast (1900s)

newspapers

radio

1 broadcast (1990s)

Tl UC

semantic to model temporal word analogy or relatedness (Szymanski, 2017; Rosin et

al., 2017) or to capture the dynamics of semantic relations (Kutuzov et al., 2017)
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solemn
awful (18505)

 pensive
gloomy
orrible
appalliwg terrible
awful (1900s) ot O
awful (1990s)
<weird
(4‘;(.“-‘{]\‘[|.‘." (’



Different kinds of encoding “context”

- Count-based
o PMI, TF-IDF

O Word2vec, GloVe, Fasttext

] Distributed contextual (token) embeddings from language models
o ELMo, BERT, GPT

J—Many-rere-variants

O Multilingual / multi-sense / syntactic embeddings, etc
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_ “ASATFEAE v o1 vE
QUEStIOnS BEMLEAmEEN o7 0. - -
EX- Eagimwm  CscciEl s, o

1 How do you define “beautiful”? Is it more difficult to define
"beautiful” than it is to define “cup”?

1 How does your representation know “elephant” is bigger
than “mouse”?

1 Distributional semantics can be de-compositional or
ontologically represented? How to combine them?

rrrrr

Al
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A We've just learned how to learn the meaning of “bank” from data as a
dense vector. What if meaning of "bank” can be different by context? Can
we learn the vectors dynamically adaptable by context?

d How do you interpret the vector? You only know the “relationship”
between words but not meaning of word itself. Does each dimension of
the vector in distributional semantics correspond to “component” in the
decompositional semantics?

J Some words like "war” include various information. Can we quantify the
abstract nature of words in distributed representations? <t

o7 | Shape

13 | color
s | texture
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