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Count-based vs Prediction-based Methods

LSA, HAL (Lund & Burgess) 
Hellinger-PCA (Rohde et al, Lebret & 
Collobert)

Skip-gram/CBOW (Mikolovet al)
NLM, HLBL, RNN (Bengioet al; Collobert & Weston; 
Huang et al; Mnih & Hinton)

Hamlet Macbeth

knife 1 1

dog

sword 2 2

love 64

like 75 38

the cat sat on the mat

classifierwt

wt−1

wt+1
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Evaluations
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Limitations of Embeddings

❑ Sensitive to superficial differences (dog / dogs) 
o E.g. misspellings: “minuscule” → “miniscule”
o E.g. compounded/prefixed/suffixed words split into “wrong” subwords

“descheduled” ⇒ [ “des”, “##ched”, “##uled” ]

❑ Not necessarily coordinated with knowledge or across languages

❑ Can encode bias (encode stereotypical gender roles, racial biases)
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Limitations and Solutions

Morpheme-based (Luong 
et al. 2013) [Bolukbasi et al. 2016]

Debiased 

“doctor” 

embedding
Orthogonal to 

gender subspace
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Multilingual Coordination of Embeddings using dictionaries

Improving Vector Space Word Representations Using 
Multilingual Correlation (Faruqui & Dyer, 2014) Monolingual (top) and multilingual (bottom) word projections of 

the antonyms (shown in red) and synonyms of “beautiful”
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Retrofitting of Embeddings to Existing Lexicons

❑ Make word vectors to match with existing lexicon like WordNet (Faruqui et al. 2015)

WordNet

Word

Embeddings
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semantic to model temporal word analogy or relatedness (Szymanski, 2017; Rosin et 
al., 2017) or to capture the dynamics of semantic relations (Kutuzov et al., 2017)
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Different kinds of encoding “context”
❑ Count-based

o PMI, TF-IDF
❑ Distributed prediction-based (type) embeddings

o Word2vec, GloVe, Fasttext
❑ Distributed contextual (token) embeddings from language models

o ELMo, BERT, GPT
❑ Many more variants

o Multilingual / multi-sense / syntactic embeddings, etc
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Outline
❑ Language modeling
❑ Applications of language models
❑ How to estimate 𝑃(𝑤) from data? Ngram Language Model (LM)
❑ Advanced techniques for ngram LM
❑ Ngram LM  vs  Neural LM
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Which sentence is more natural?

“Call me DK”

“DK me Call”

“me Call DK”
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Language modeling
❑ Provide a way to quantity the likelihood of a sequence

o i.e., plausible sentences 
❑ Vocabulary (𝑉) is a finite set of discrete symbols (e.g., words, characters);

o ~170K words for English, ~150K words for Russian, ~1.1M words for Korean, ~85K 
words for Chinese

❑ 𝑉+ is the infinite set of sequences of symbols from 𝑉; each sequence ends 
with STOP
o A sentence of k words: 𝑉 ∗ 𝑉 . .∗ 𝑉 = 𝑉𝑘 e.g., 170,000100 for English 100-length 

sentence
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sequence

over all the possible sequences of words
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Which sentence is more natural?

“Call me DK” “DK me Call”
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Use Cases of Language Model

❑ Provide a way to quantity the likelihood of a sequence i.e., 
plausible sentences 
o Probability distributions over sentences (i.e., word sequences)

✔ 𝑃 𝑤 = 𝑃 (𝑤1, …𝑤𝑛)

❑ Can use them to generate strings
o 𝑃 𝑤𝑘 | 𝑤2𝑤3𝑤4…𝑤𝑘−1

❑ Rank possible sentences
o 𝑃 "Today is Thursday" > 𝑃 "Thursday Today is "
o 𝑃 "Today is Thursday" > 𝑃 "Today is Minneapolis"



CSCI 5541 NLP 16

Applications of 
language models
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What is natural language generation?
❑ NLP = Natural Language Understanding (NLU) + 

Natural Language Generation (NLG) 
❑ NLG focuses on systems that produce coherent

and useful language output for human 
consumption 

❑ Deep Learning is powering (some) next-gen NLG 
systems
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Machine Translation

Fluency of the translation
P( Y | X ) +  a * P( Y )
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Optical Character Recognition (OCR)

to fee great Pompey paffe the Areets of Rome:

to see great Pompey passe the streets of Rome:
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Speech Recognition

'Scuse me while I kiss the sky

'Scuse me while I kiss this guy

'Scuse me while I kiss this fly

'Scuse me while my biscuits fry
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Automatic Completion
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Language Generation

https://pdos.csail.mit.edu/archive/scigen/

https://pdos.csail.mit.edu/archive/scigen/
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Dialogue Generation

Giving GPT-3 a Turing Test, Kevin Lacker's blog, https://lacker.io/ai/2020/07/06/giving-gpt-3-a-turing-test.html

Q: How many rainbows does it take to jump from 
Hawaii to seventeen? 
A: It takes two rainbows to jump from Hawaii to 
seventeen. 

Q: Which colorless green ideas sleep furiously? 
A: Ideas that are colorless, green, and sleep furiously 
are the ideas of a sleep furiously. 

Q: Do you understand these questions? 
A: I understand these questions. 

https://lacker.io/ai/2020/07/06/giving-gpt-3-a-turing-test.html
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More interesting NLG uses

Creative story generation Data/Table to text Visual description

Craig finished his eleven NFL 
seasons with 8,189 rushing 
yards and 566 receptions for 
4,911 receiving yards.
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Language modeling is the 
task of estimating 𝑃(𝑤)

How to estimate 𝑃(𝑤)
from data?
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Chain rule (of probability)
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“The mouse that the cat that the 
dog that the man frightened and 

chased ran away.”
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Easy

Hard

“The mouse that the cat that the dog that the man frightened and chased ran away.”
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Markov assumption

first-order

second-order



CSCI 5541 NLP 31

Markov assumption

Bi-gram model
(first-order markov)

Tri-gram model
(second-order markov)
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“The mouse that the cat 
that the dog that the man 
frightened and chased ran 

away.”

Bi-gram model
(first-order markov)

…
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Estimation from data

Uni-gram Bi-gram Tri-gram
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Estimation from data
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Estimation from data



CSCI 5541 NLP

Generating from language model
❑ What we learn in estimating language models is P (word | context), where 

context is the previous n-1 words (for ngram of order n)
❑ We have one multinomial over the vocabulary including STOP for each 

context
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Part of A Unigram Distribution trained on academic papers

[rank 1] 
p(the) = 0.038 
p(of) = 0.023 
p(and) = 0.021 
p(to) = 0.017 
p(is) = 0.013 
p(a) = 0.012 
p(in) = 0.012 
p(for) = 0.009 
...

…
[rank 1001] 
p(joint) = 0.00014 
p(relatively) = 0.00014 
p(plot) = 0.00014 
p(DEL1SUBSEQ) = 0.00014 
p(rule) = 0.00014 
p(62.0) = 0.00014 
p(9.1) = 0.00014 
p(evaluated) = 0.00014 
...
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Generated text from a uni-gram model

first, from less the This different 2004), out which goal 19.2 
Model their It ~(i?1), given 0.62 these (x0; match 1 schedule. x 60 
1998. under by Notice we of stated CFG 120 be 100 a location 
accuracy If models note 21.8 each 0 WP that the that Nov?ak. to 
function; to [0, to different values, model 65 cases. said - 24.94 
sentences not that 2 In to clustering each K&M 100 Boldface X))] 
applied; In 104 S. grammar was (Section contrastive thesis, the 
machines table -5.66 trials: An the textual (family 
applications.Wehave for models 40.1 no 156 expected are 
neighborhood
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Generated text from a bi-gram model

e. (A.33) (A.34) A.5 ModelS are also been completely surpassed in 
performance on drafts of online algorithms can achieve far more so 
while substantially improved using CE. 4.4.1 MLEasaCaseofCE 71 26.34 
23.1 57.8 K&M 42.4 62.7 40.9 44 43 90.7 100.0 100.0 100.0 15.1 30.9 
18.0 21.2 60.1 undirected evaluations directed DEL1 TRANS1 
neighborhood. This continues, with supervised init., semisupervised MLE 
with the METU- SabanciTreebank 195 ADJA ADJD ADV APPR APPRART 
APPO APZR ART CARD FM ITJ KOUI KOUS KON KOKOM NN NN NN IN JJ 
NNTheir problem is y x. The evaluation offers the hypothesized link 
grammar with a Gaussian 
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Generated text from a tri-gram model

top(xI ,right,B). (A.39) vine0(X, I) rconstit0(I 1, I). (A.40) vine(n). (A.41) These 
equations were presented in both cases; these scores u<AC>into a 
probability distribution is even smaller(r =0.05). This is exactly fEM. During 
DA, is gradually relaxed. This approach could be efficiently used in previous 
chapters) before training (test) K&MZeroLocalrandom models Figure4.12: 
Directed accuracy on all six languages. Importantly, these papers achieved 
state- of-the-art results on their tasks and unlabeled data and the verbs 
are allowed (for instance) to select the cardinality of discrete structures, like 
matchings on weighted graphs (McDonald et al., 1993) (35 tag types, 3.39 
bits). The Bulgarian, 
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Evaluation for Language Models
❑ The best evaluation metrics are external

o How does a better language model influence the application you care 
about? 

o E.g., 
✔ machine translation (BLEU score)
✔ sentiment classification (F1 score)
✔ speech recognition (word error rate)
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(Intrinsic) Evaluation
❑ A good language model should judge unseen real language to have high 

probability
❑ Perplexity = inverse probability of test data, averaged by word

o Better models have lower perplexity
❑ To be reliable, the test data must be truly unseen (including knowledge of 

its vocabulary)

Perplexity =
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Perplexity



CSCI 5541 NLP 45

Perplexity

Bi-gram

Tri-gram
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Intrinsic Evaluation

Training Development Testing

80% 10% 10%

training models Model selection; hyper-
parameter tuning

evaluation
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Perplexity

Model Unigram Bigram Trigram

Perplexity 962 170 109

On PennTreeBank test set
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Advanced techniques 
for ngram LM
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Data sparsity
❑ Training data is a small (and biased) sample of the creativity of language.

SLP3 4.1
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Additive Smoothing

Bi-gram

Uni-gram

smoothing with α =1 

Kneser-ney smoothing
Stanley F. Chen and Joshua Goodman. An empirical study of smoothing techniques for language modeling. Technical Report TR-10-98,
Center for Research in Computing Technology, Harvard University, 1998.
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Interpolation over different LMs
❑ As ngram order rises, we have the potential for higher precision but also 

higher variability in our estimates. 

❑ A linear interpolation of any two language models p and q (with λ ∈ [0,1]) is 
also a valid language model, to reduce the variability

q = LM of political 
speeches

p = LM of 
web
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Interpolation over higher-order LMs
❑ How do we pick the best values of λ? 

o Grid search over Dev set 
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Stupid backoff

if full sequence observed

Otherwise

back off to lower order ngram if the higher order is not observed. 

Brants et al. (2007), “Large Language Models in Machine Translation”

Cheap to calculate; works well when there is a lot of data
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Ngram LM  vs  Neural LM
To avoid the data sparsity 

problem from the ngram LM
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Neural LM
Simple feed-forward multilayer perceptron 

(e.g., one hidden layer)

Bengio et al. 2003, A Neural Probabilistic Language Model

Concatenation (k x V)

H x V 

One-hot encoding

1
0
0
0

0
1
0
0

0
0
1
0

0
0
0
1

Distributed representation

0.2

1.6
-4.2

0.2

1.6
-4.2

0.3

5.6
-2.2

2.3

2.6
-8.2

kV x H 

Multi-class (Vocab) 
classification

H x V
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Neural LM

Bengio et al. 2003, A Neural Probabilistic Language Model

One-hot encoding
( |x| = V )

Output space: |y| = V

kV

Distributed representation 
(H)
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Neural LM

Bengio et al. 2003, A Neural Probabilistic Language Model

One-hot encoding
( |x| = V )

Distributed representation
( |y| = H)

V >> H

Represent high-dimensional words (and 
contexts) as low-dimensional vectors
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tried to prepare midterm but I was too tired of…

Conditioning context (X [k x V])

Next word to predict (Y)

Context window size: k=4
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tried to prepare midterm but I was too tired of…

Conditioning context (X [k x V])

Next word to predict (Y)

Context window size: k=4
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tried to prepare midterm but I was too tired of…

Conditioning context (X [k x V])

Next word to predict (Y)

Context window size: k=4
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Neural LM against Ngram LM
Pros 
❑ No sparsity problem
❑ Don’t need to store all observed n-gram counts

Cons
❑ Fixed context window is too small (larger window, larger W)

o Windows can never be large enough
❑ Different words are multiplied by completely different weights (W); no 

symmetry in how the inputs are processed.
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