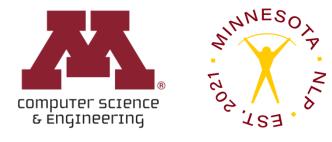
CSCI 5541: Natural Language Processing

Lecture 7: Language Models: RNN, LSTM, and Seq2Seq

Dongyeop Kang (DK), University of Minnesota

dongyeop@umn.edu | twitter.com/dongyeopkang | dykang.github.io



Announcement (0926)

- Continue lectures on neural LM and RNN LMs
- HW3 out
- Project description
- Project brainstorming due (Oct 1)

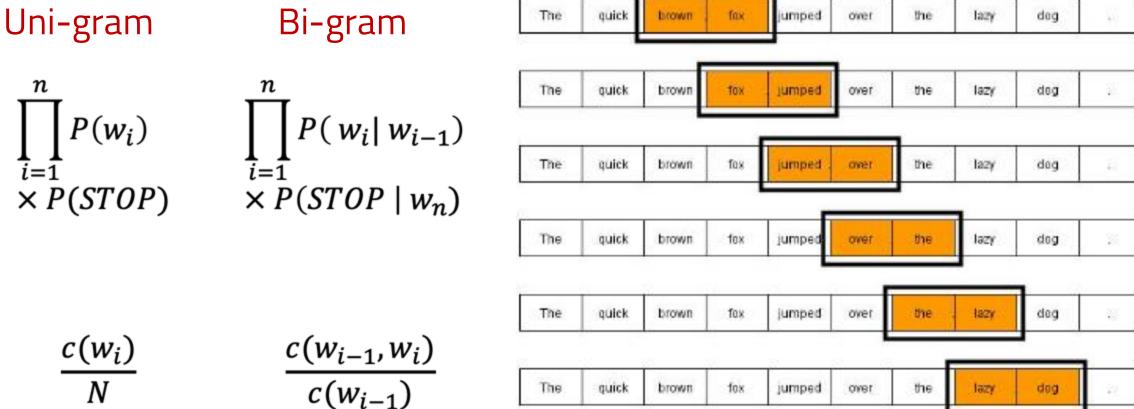
Grade HW2: Finetuning text classifier using HuggingFace

10 points • Sep 24 at 11:59pm

×

CSCI 5541 NLP

The	quick	brown	fox	jumped	over	the	lazy	deg	
					Ľ			9	
The	quick	brown	fox	jumped	over	the	lazy	dog	1



Sparsity in Ngram LM

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

Figure 4.1 Bigram counts for eight of the words (out of V = 1446) in the Berkeley Restaurant Project corpus of 9332 sentences. Zero counts are in gray.

$$\frac{c(w_{i-1}, w_i)}{c(w_{i-1})} \longrightarrow \frac{c(w_{i-1}, w_i) + \alpha}{c(w_{i-1}) + V\alpha}$$

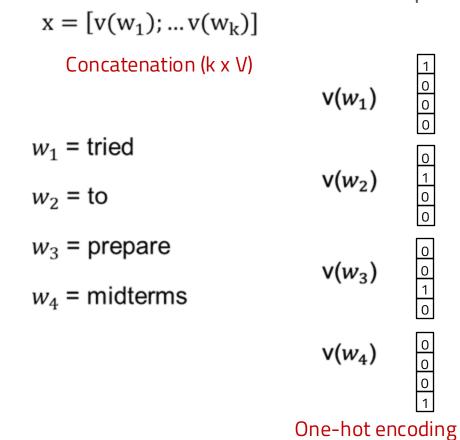
2

$$P(w_{i} | w_{i-2}, w_{i-1}) = \lambda_{1} P(w_{i} | w_{i-2}, w_{i-1}) \\ + \lambda_{2} P(w_{i} | w_{i-1}) \\ + \lambda_{3} P(w_{i})$$

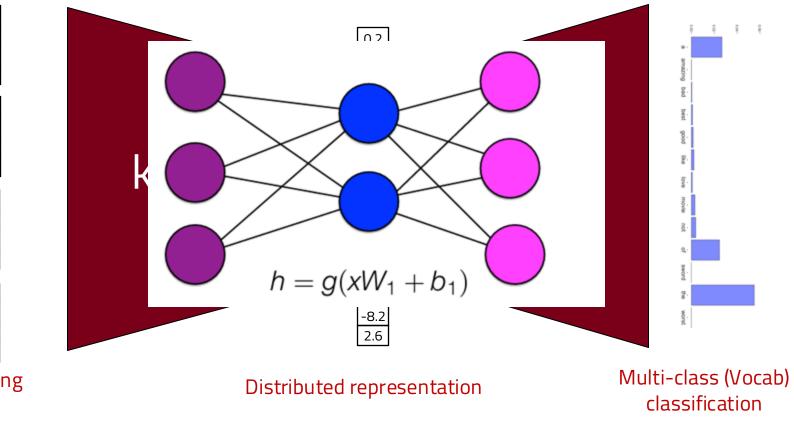
Ngram LM vs Neural LM

To avoid the data sparsity problem from the ngram LM

Neural LM



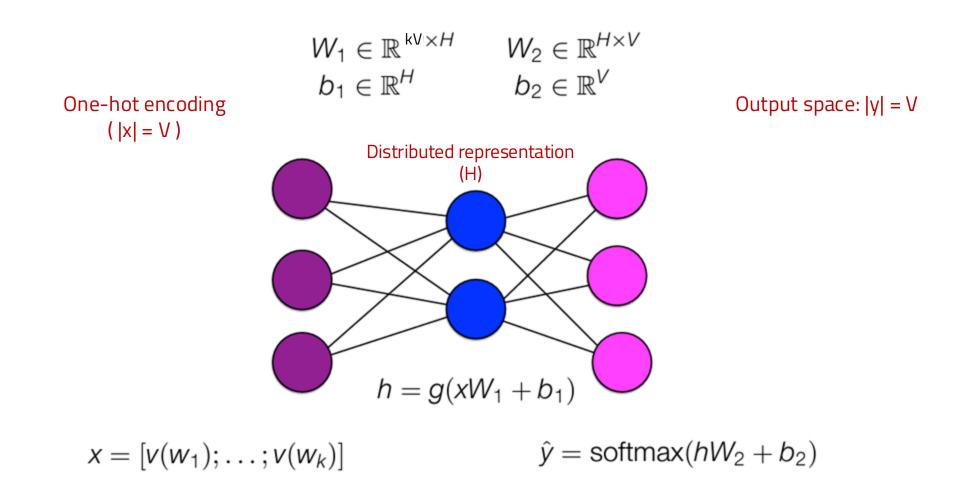
Simple feed-forward multilayer perceptron (e.g., one hidden layer)



Bengio et al. 2003, A Neural Probabilistic Language Model

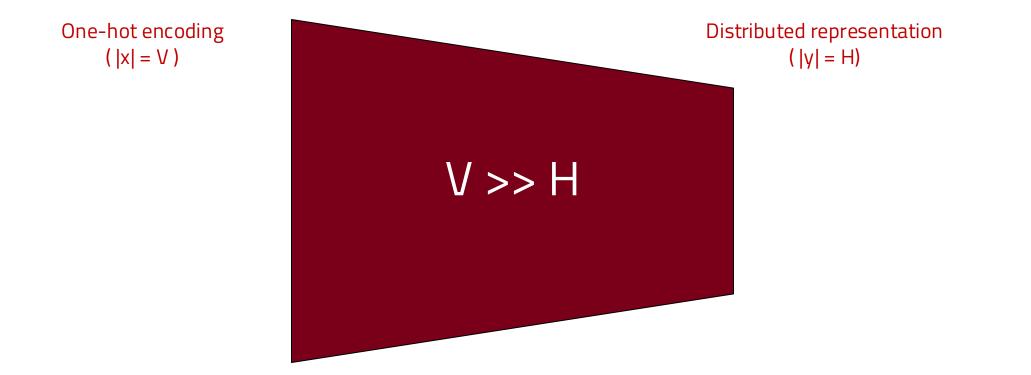
Neural LM

$$P(w) = P(w_i | w_{i-k} \dots w_{i-1}) = softmax (W \cdot h)$$



Neural LM

Represent high-dimensional words (and contexts) as low-dimensional vectors



Bengio et al. 2003, A Neural Probabilistic Language Model

Conditioning context (X [k x V])

tried to prepare midterm but I was too tired of...

Next word to predict (Y)

Context window size: k=4

Conditioning context (X [k x V])

trie<mark>d to prepare midterm but I</mark> was too tired of...

Next word to predict (Y)

Context window size: k=4

Conditioning context (X [k x V])

tried t<mark>o prepare midterm but I was</mark> too tired of...

Next word to predict (Y)

Context window size: k=4

Neural LM against Ngram LM

Pros

- No sparsity problem
- Don't need to store all observed n-gram counts

Cons

- □ Fixed context window is too small (larger window, larger W)
 - o Windows can never be large enough
- Different words are multiplied by completely different weights (W); no symmetry in how the inputs are processed.

 $\Box \text{ Ngram LM} \rightarrow \text{Neural LM} : \text{sparsity}$

 \Box Neural LM \rightarrow RNN LM : input size is not scalable

 $\square RNN LM \rightarrow LSTM LM:$

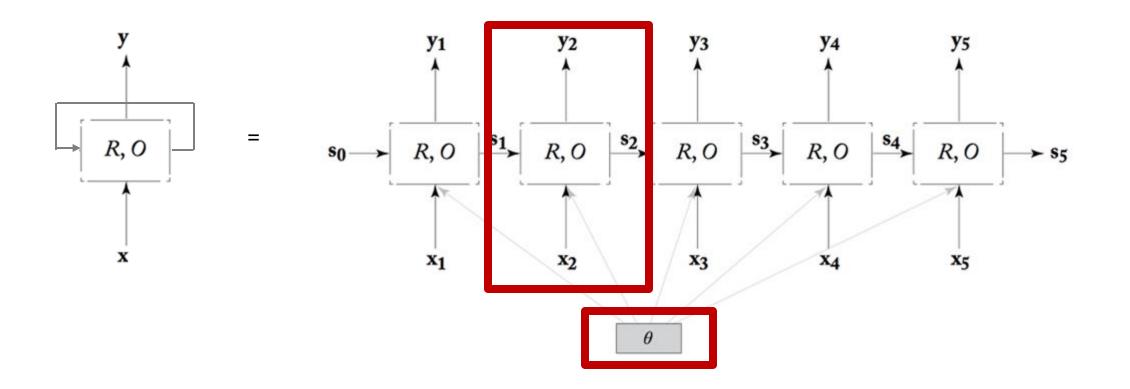
 \Box LSTM LM \rightarrow Transformer LM:

Outline

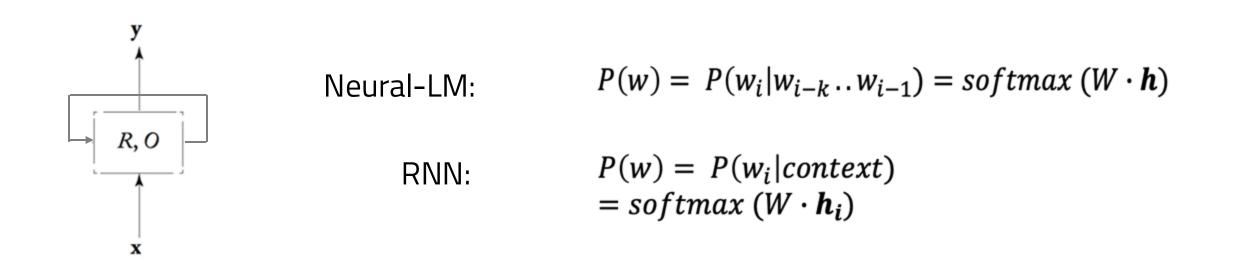
- Recurrent Neural Network (RNN)
- □ Long Short-term Memory (LSTM)
- □ Implementation of RNN and LSTM using PyTorch
- Sequence-to-Sequence modeling
- Teaser: Transformer-based LMs
- □ Why language models are useful?

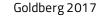
Recurrent Neural Network (RNN)

RNN allow arbitarily-sized conditioning contexts; condition on the entire sequence history.



Goldberg 2017

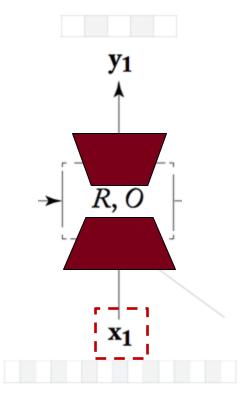




□ Each time set has two inputs:

 $\Box X_i$ (the observation at time step *i*):

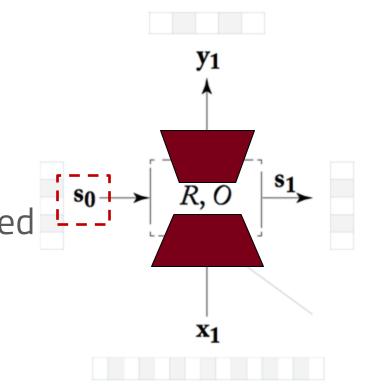
One-hot vector, feature vector, or distributed
 representation of input token at *i* step



□ Each time set has two inputs:

 $\Box X_i$ (the observation at time step *i*):

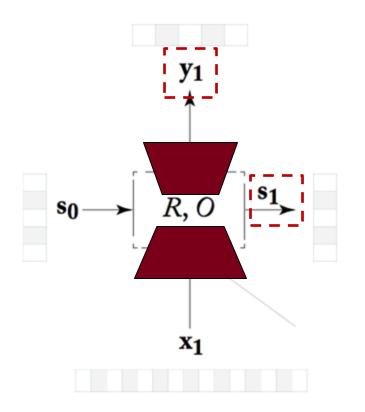
- One-hot vector, feature vector, or distributed representation of input token at *i* step
- □ S_{i-1} (the output of the previous state): • Base case: $S_0 = 0$ vector



□ Each time set has two outputs:

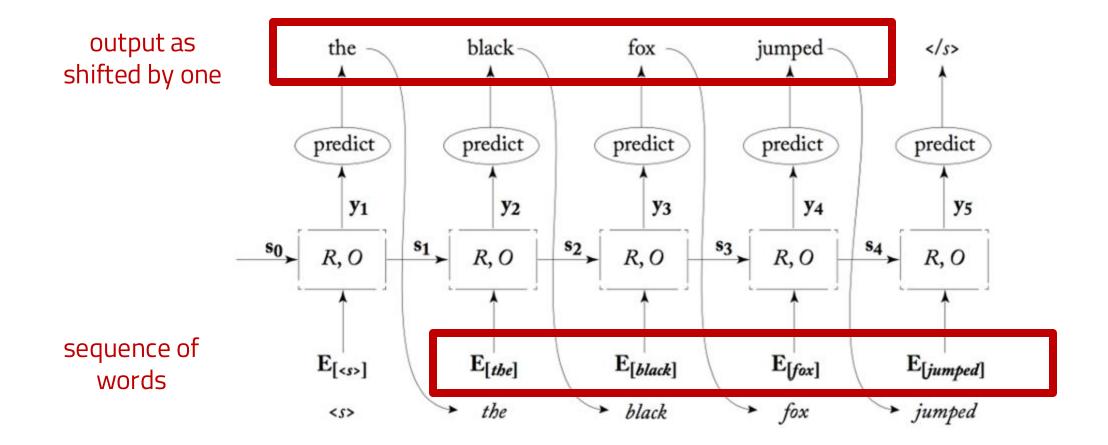
S_i = R (X_i, S_{i-1})
 R computes the output state as a function of the *current input* and *previous state*

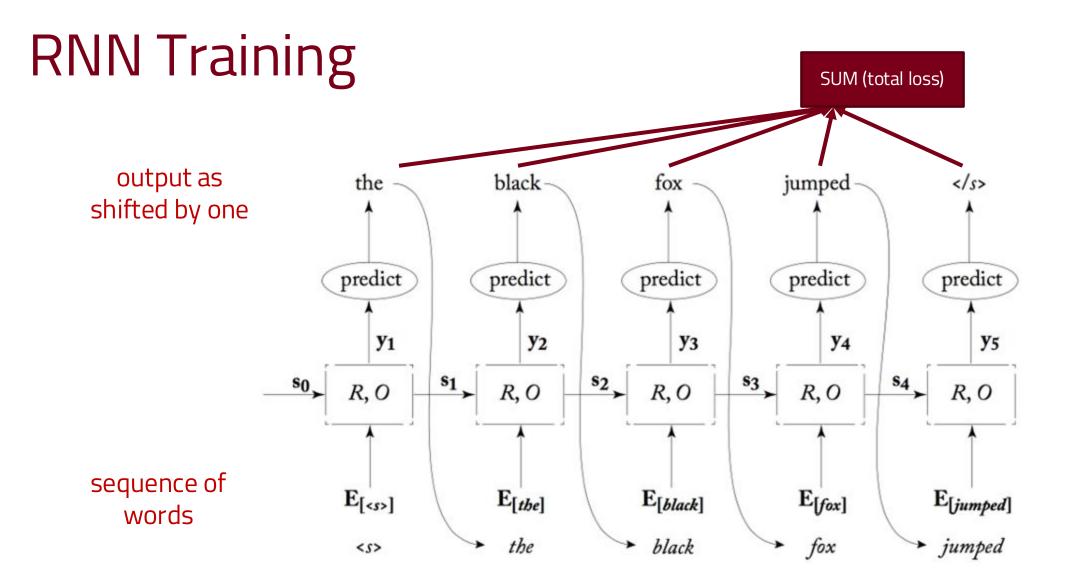
• O computes the **output** as a function of the *current output state*



 $\Box y_i = O(S_i)$

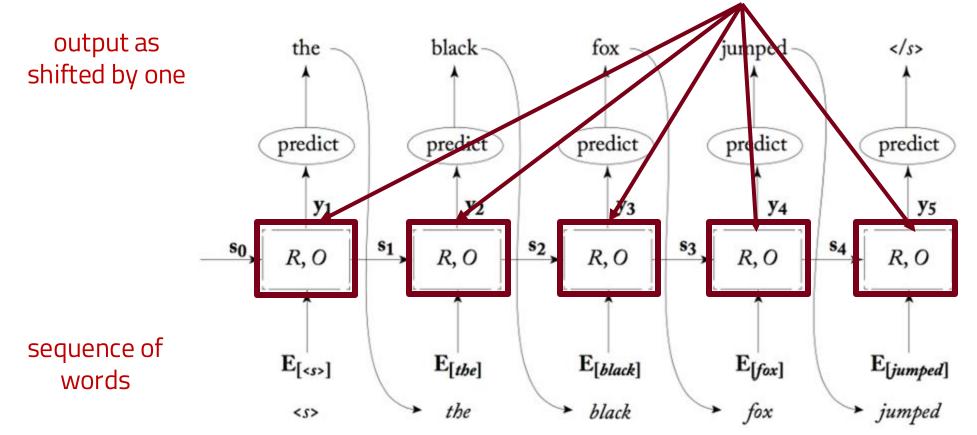
RNN Training





RNN Training

Parameters are shared! Derivatives are accumulated.



What can RNNs do?

Represent a sentence

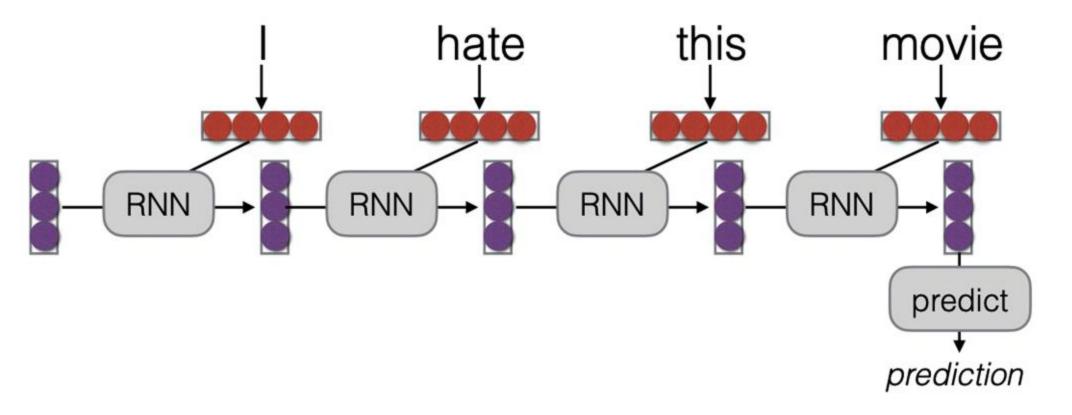
o Read whole sentence, make a prediction

Represent a context within a sentence

o Read context up until that point

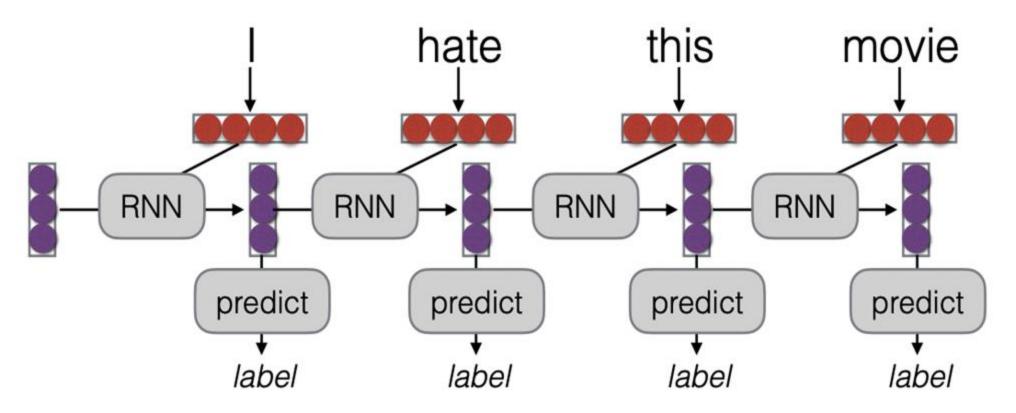
Representing Sentences

- Sentence classification
- Conditioned generation



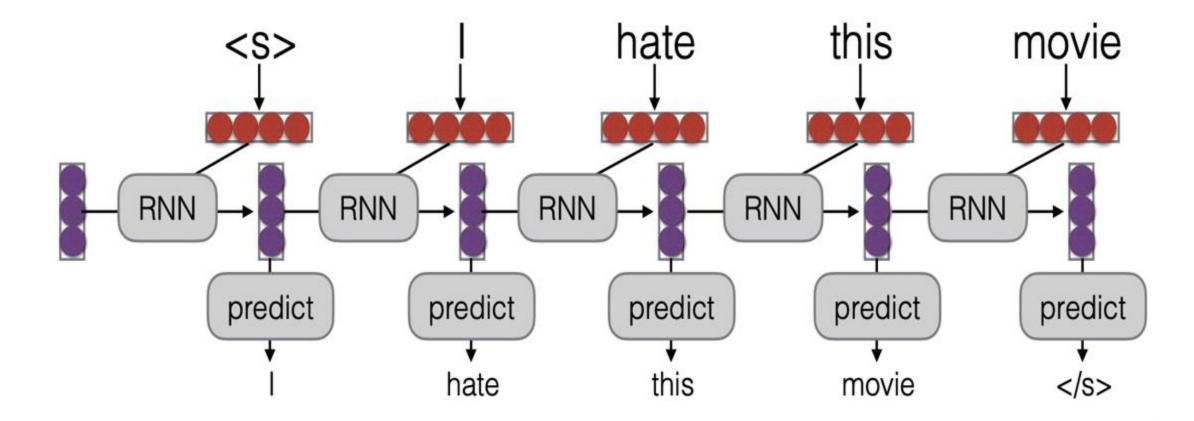
Representing Context within Sentence

- Tagging
- Language modeling

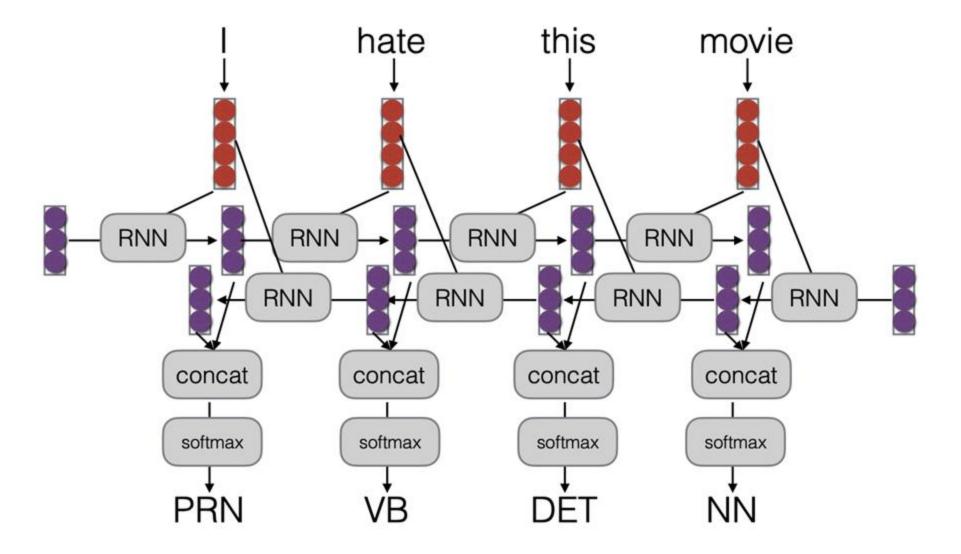


e.g., Language Modeling

Language modeling is like a tagging task, where each tag is the next word!



e.g., POS Tagging with Bi-RNNs



Vanishing Gradient

Gradients decrease as they get pushed back



□ Why? "Squashed" by non-linearities or small weights in matrices

A Solution: Long Short-term Memory (LSTM)

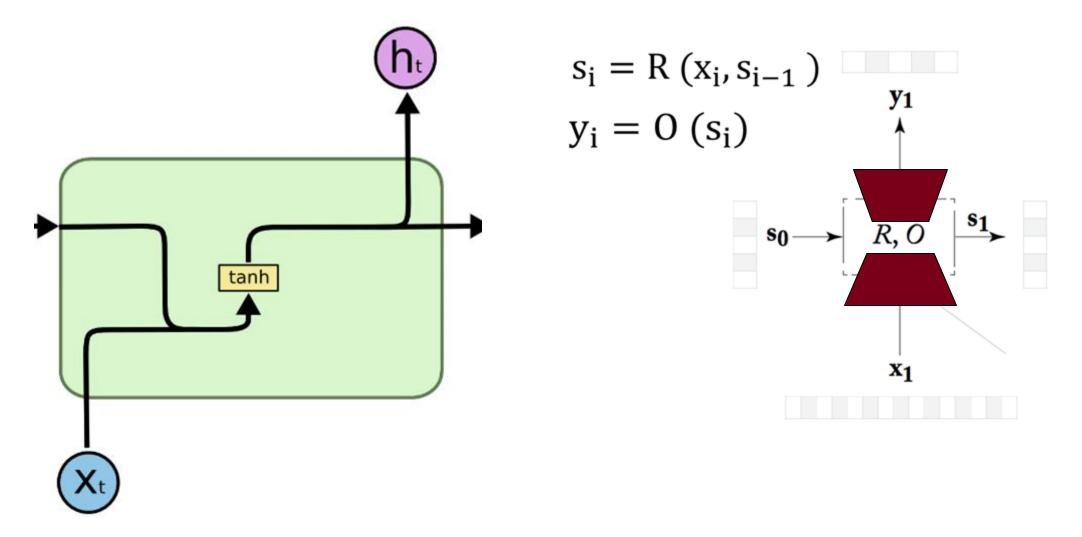
(Hochreiter and Schmidhuber 1997)

Make additive connections between time steps

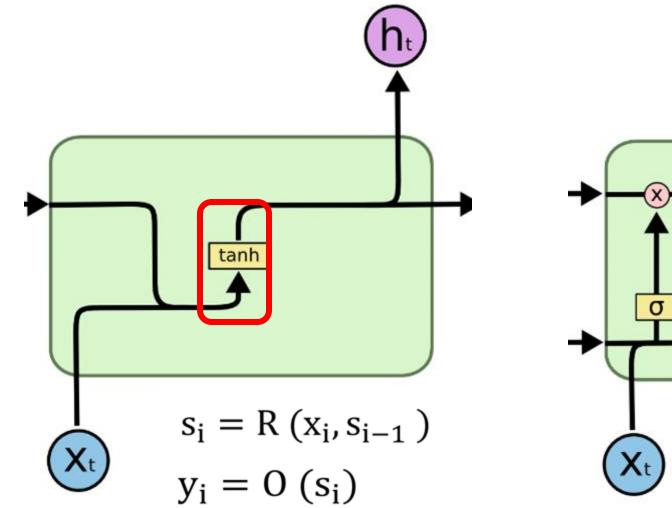
Addition does not modify the gradient, no vanishing

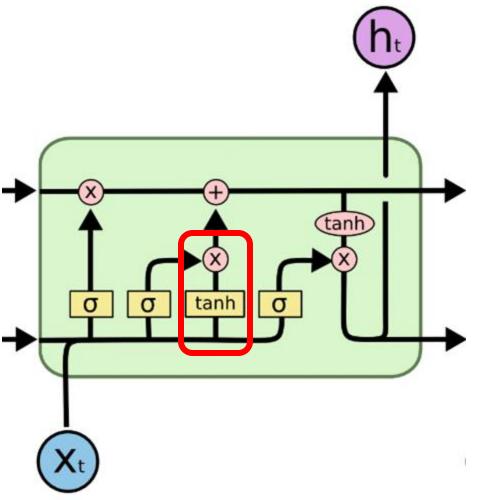
Gates to control the information flow

RNN Structure



RNN vs LSTM Structure

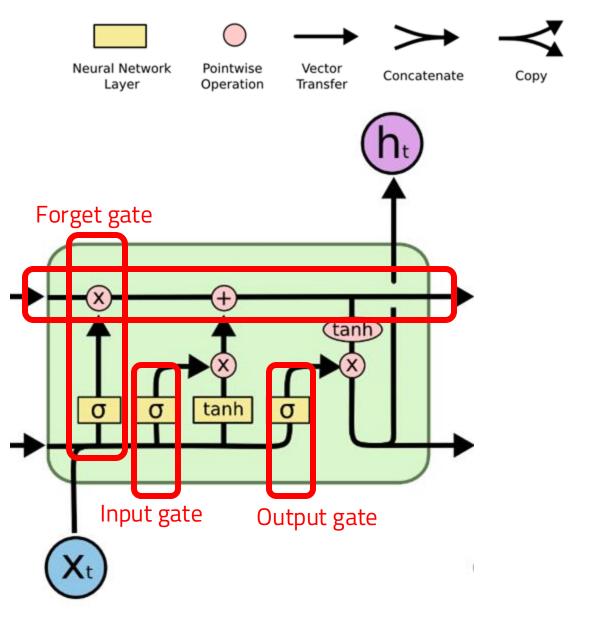




LSTM Structure

- □ Forget gate: what value do we try to add/forget to the memory cell?
- □ Input gate: how much of the update do we allow to go through? Cell state
- Output gate: how much of the cell do we reflect in the next state?

$$egin{aligned} f_t &= \sigma_q(W_f x_t + U_f h_{t-1} + b_f) \ i_t &= \sigma_q(W_i x_t + U_i h_{t-1} + b_i) \ o_t &= \sigma_q(W_o x_t + U_o h_{t-1} + b_o) \ c_t &= f_t \circ c_{t-1} + i_t \circ \sigma_c(W_c x_t + U_c h_{t-1} + h_t) \ h_t &= o_t \circ \sigma_h(c_t) \end{aligned}$$

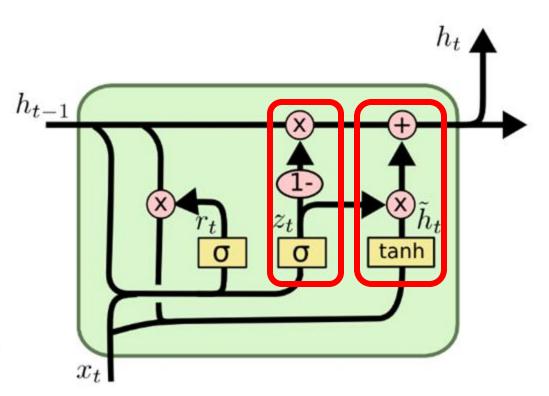


LSTM variant: Gated Recurrent Unit (GRU)

(Cho et al., 2014)

- Combines the forget and input gates into a single "update gate."
- Merges the cell state and hidden state
- And, other small changes

$$\begin{aligned} z_t &= \sigma_g(W_z x_t + U_z h_{t-1} + b_z) \\ r_t &= \sigma_g(W_r x_t + U_r h_{t-1} + b_r) \\ h_t &= \underbrace{(1 - z_t)}_{h_{t-1}} \circ h_{t-1} + \underbrace{z_t}_{h} \circ \sigma_h(W_h x_t + U_h(r_t \circ h_{t-1}) + b_h) \\ & \text{Additive or Non-linear} \end{aligned}$$



A Solution: Long Short-term Memory (LSTM)

(Hochreiter and Schmidhuber 1997)

Make additive connections between time steps

Addition does not modify the gradient, no vanishing

Gates to control the information flow

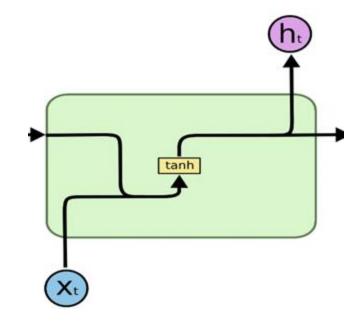
class RNN(nn.Module):

...

def __init__(self, input_size: int, hidden_size: int, output_size: int) -> None: super().__init__()

```
self.i2h = nn.Linear(input_size, hidden_size, bias=False)
self.h2h = nn.Linear(hidden_size, hidden_size)
self.h2o = nn.Linear(hidden_size, output_size)
```

```
def forward(self, x, hidden_state) :
    x = self.i2h(x)
    hidden_state = self.h2h(hidden_state)
    hidden_state = torch.tanh(x + hidden_state)
    out = self.h2o(hidden_state)
    return out, hidden_state
```

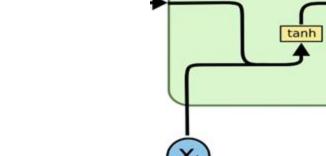


36 🕂

return **self.fc(r_out) , hidden**

r out = r out.view(-1, self.hidden dim)

r out, hidden = **self.rnn(x, hidden)**



x (batch_size, seq_length, input_size)

hidden (n_layers, batch_size, hidden_dim)
r out (batch size, time step, hidden size)

... self.rnn = **nn.RNN**(input_size, hidden_dim, n_layers, batch_first=**True**) self.fc = **nn.Linear**(hidden_dim, output_size)

def __init__(self, input_size, output_size, hidden_dim, n_layers):
 super(RNN, self).__init__()

class RNN(nn.Module):

def forward(self, x, hidden):

🗘 PyTorch

class LSTM (nn.Module):

def __init__(self, num_classes, input_size, hidden_size, num_layers, seq_length):

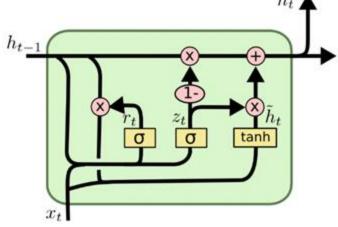
```
super(LSTM1, self).__init__()
```

```
self.lstm = nn.LSTM(input_size=input_size, hidden_size=hidden_size,
num_layers=num_layers, batch_first=True)
self.fc = nn.Linear(hidden_size, num_classes)
self.relu = nn.ReLU()
```

def forward(self,x):

. . .

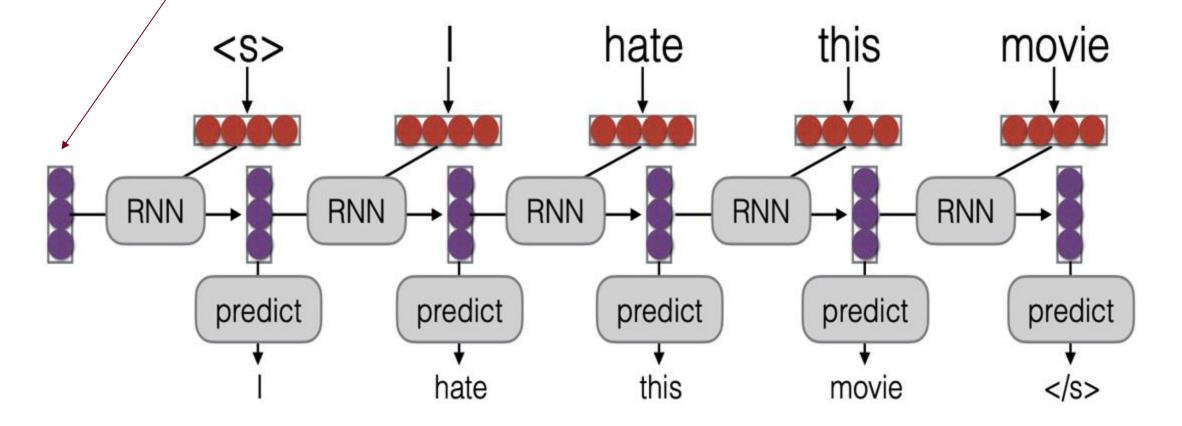
h_0 = Variable(torch.zeros(self.num_layers, x.size(0), self.hidden_size))
c_0 = Variable(torch.zeros(self.num_layers, x.size(0), self.hidden_size))
output, (hn, cn) = self.lstm(x, (h_0, c_0))
hn = hn.view(-1, self.hidden_size)
return self.fc (self.relu(hn))



Connecting RNN to RNN for sequence-to-sequence (seq2seq) modeling

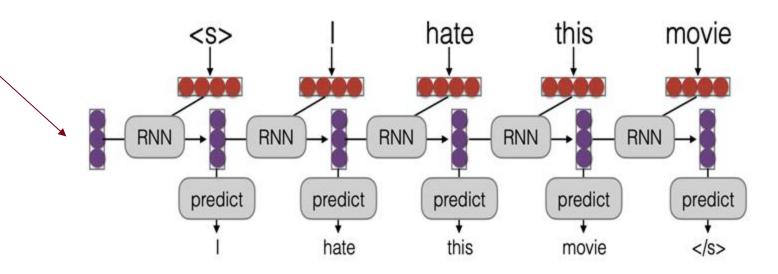
RNN (decoder) for language modeling

Randomly initialized hidden state h_t at time step t = 0

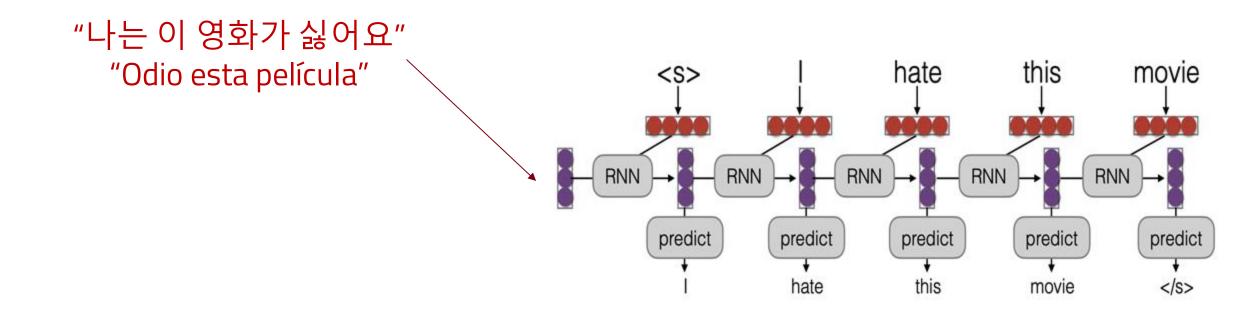


RNN (decoder) for language modeling

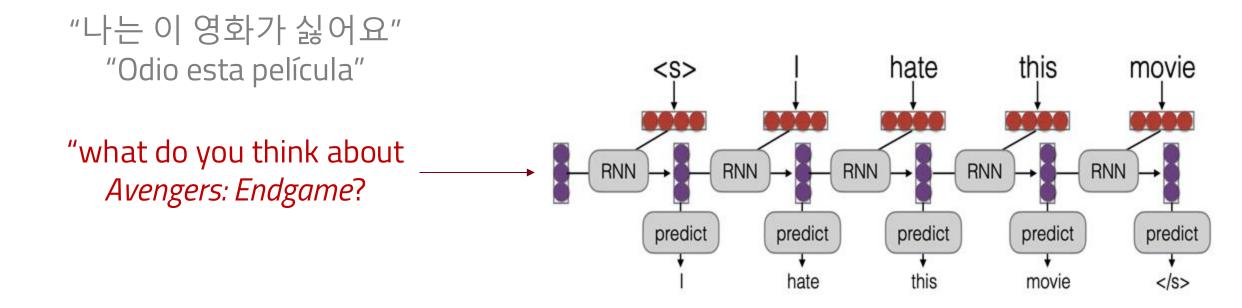
What if we encode some specific context, instead of random state?



RNN (encoder) - RNN (decoder) for machine translation



RNN (encoder) - RNN (decoder) for dialogue generation



RNN (encoder) - RNN (decoder) for question answering

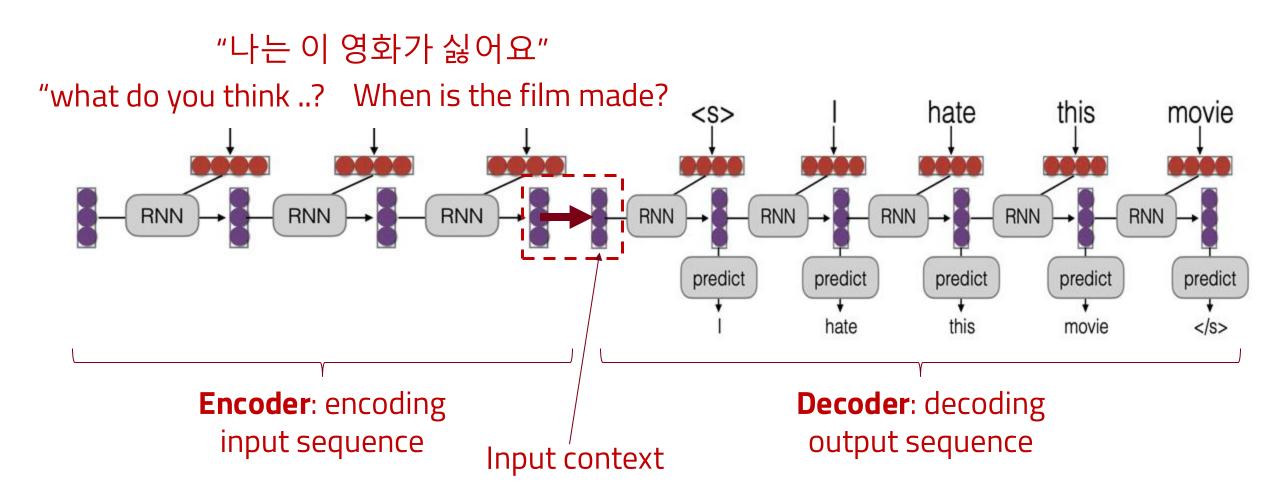
"나는 이 영화가 싫어요" "Odio esta película"

"what do you think about *Avengers: Endgame*? <S> This film is made in 1997
, RNN + RNN +

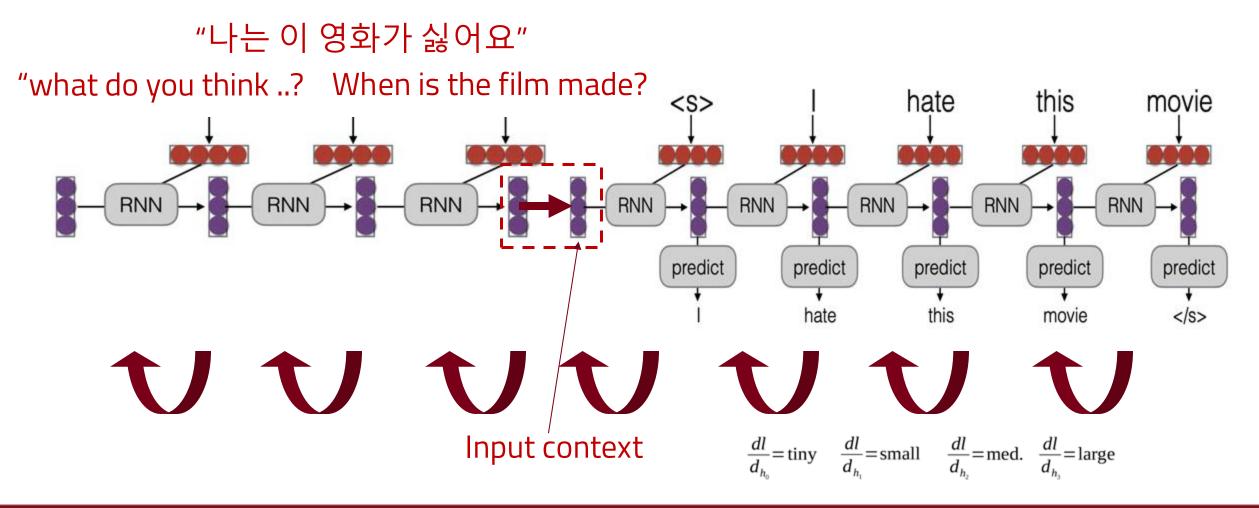
This film is made in 1997

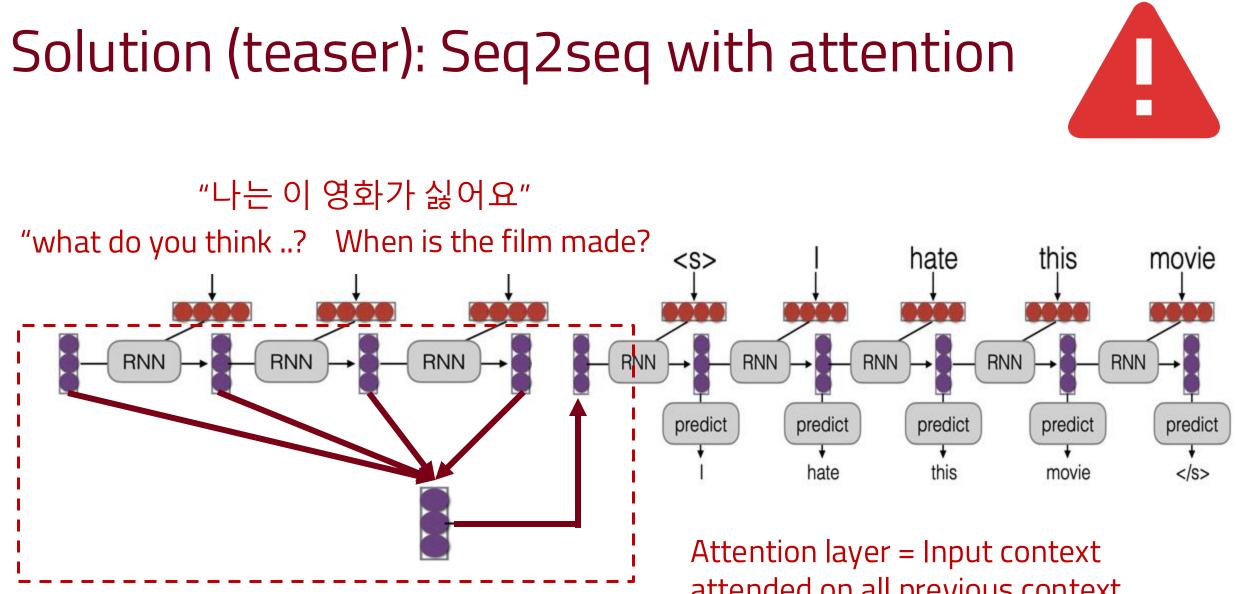
When is the film made?

Sequence-to-sequence modeling using RNN (encoder) - RNN (decoder)



Problem: forgetting input context as input gets longer



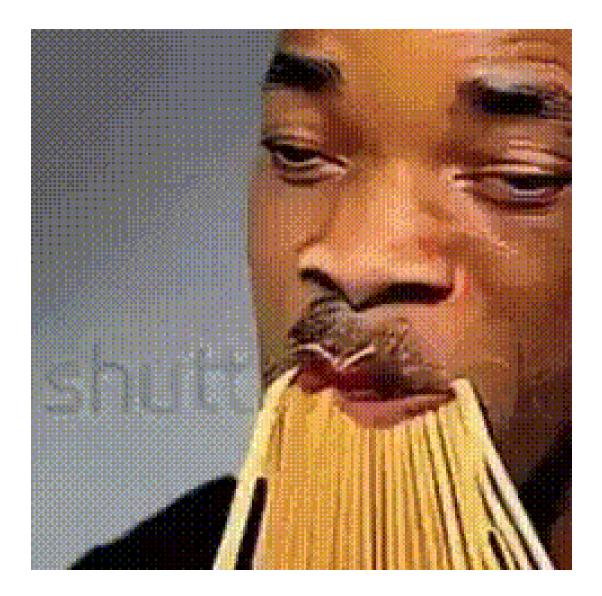


attended on all previous context (will be covered more in Transformer)

Announcement (0215)

- Continue lecture on *Language Models* (2): RNNs, LSTMs, and Seq2seq
 - State-of-the-art Language Models
 - Why better language models are useful?
- Project Guideline
- Dues:
 - o Team formation (Feb 16)
 - Reading assignment #1 (Feb 16)

Feb 13	Language Models (2): RNNs, LSTMs a Sequence-to-Sequence 🕞	nd
Feb 15	Project Guideline 🔝 🖻 Team formation due	
eb 20	No Class (AAAI)	
Feb 22	Language Models (3): Search and Dec HW2 due HW3 out HW3 out	oding
63	<u>Grade HW1: Finetuning</u> <u>text classifier using</u> HuggingFace	×
63	_	×
63	text classifier using HuggingFace	
	text classifier using HuggingFace 15 points • Feb 11 at 11:59pm Grade Team formation	× × ×



03 / 2023 https://www.reddit.com/r/StableDiffusion/comments/1244h2c/will_smith_eating_spaghetti/

y Company 🗸

Search Log in 7

Try ChatGPT 7

Creating video from text

Sora is an AI model that can create realistic and imaginative scenes from text instructions.

All videos on this page were generated directly by Sora without modification.

Capabilities Safety

Research

II Pause

02 / 2024 https://openai.com/sora

CSCI 5541 NLP

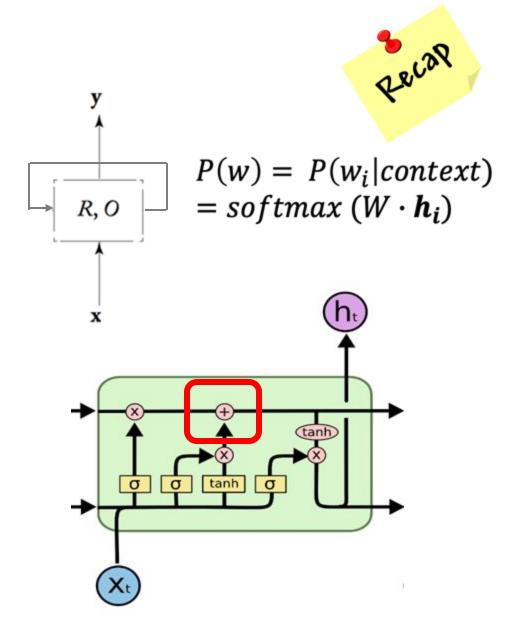
Recap

 $\Box \text{ Ngram LM} \rightarrow \text{Neural LM} : \text{sparsity}$

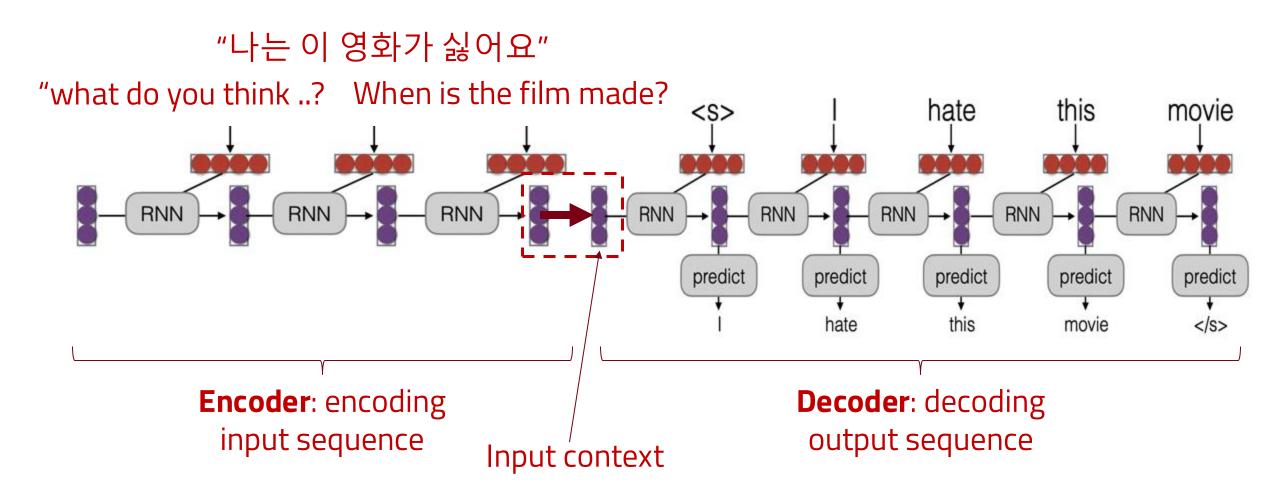
 $\square \text{ RNN LM} \rightarrow \text{LSTM LM: vanishing}$
gradients over time steps

□ LSTM LM → Transformer : still vanishing gradients

□ Transformer → Scaling up Transformer : scaling law!



Sequence-to-sequence modeling using RNN (encoder) – RNN (decoder)



State-of-the-art Language Models

Teaser: Transformer-based LMs

□ SOTA LMs: GPT-2, Radford et al. 2018; GPT-3, Brown et al. 2020

Trigram	LSTM	GPT-2	GPT-3
109	58.3	35.8	20.5

Mar 19	P Transformers (1) Project proposal due	 <u>Attention is All you Need</u> <u>Tutorial on Illustrated Transformer</u> <u>Language Models are Unsupervised Multitask Learners</u>
Mar 24	Transformers (2) Transformers	 Language Models are Few-Shot Learners Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer

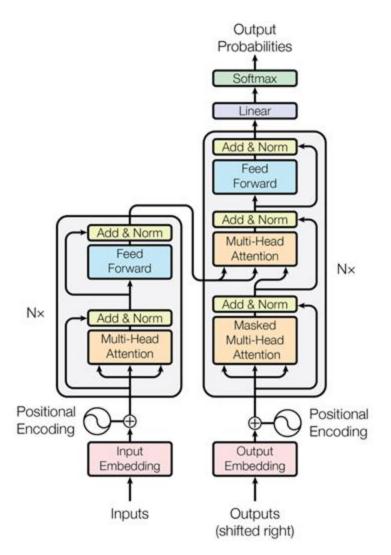
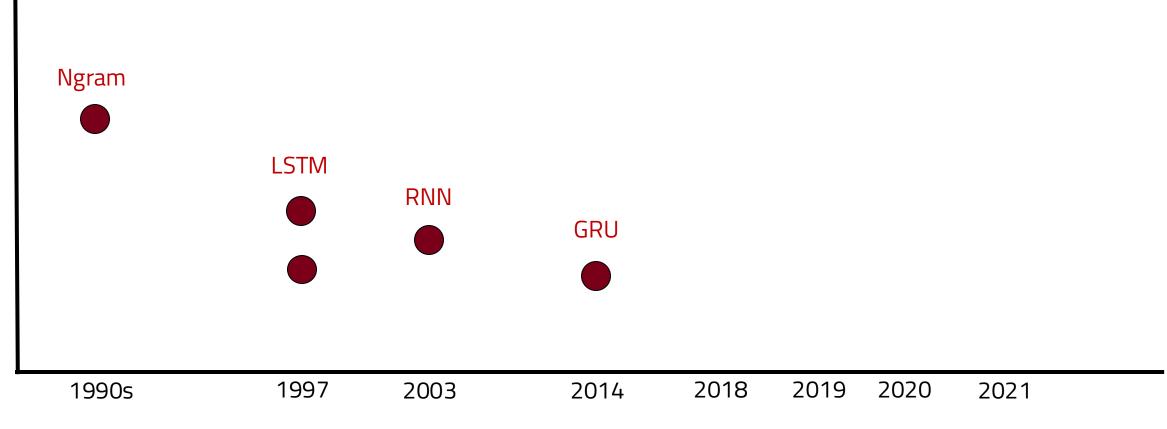


Figure 1: The Transformer - model architecture.

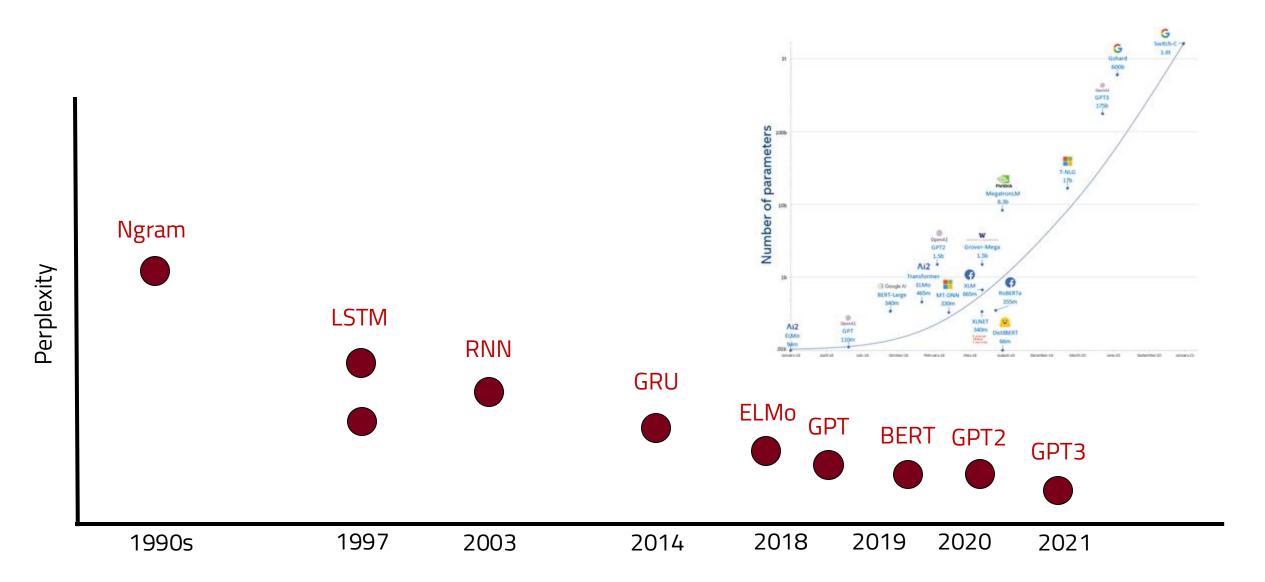


Twitter: @SchmidhuberAl 14 December 2023

NAN

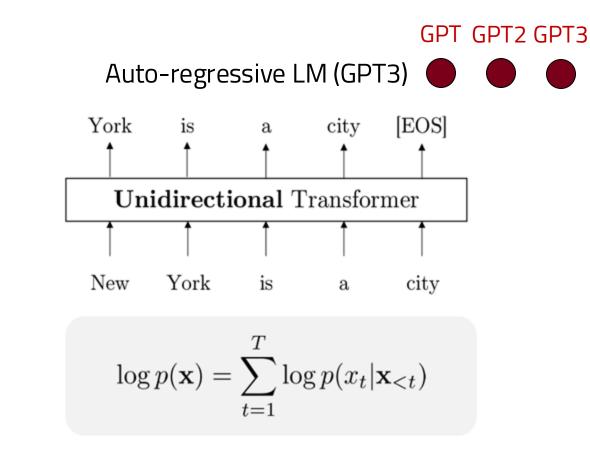
Al Blog

CSCI 5541 NLP



CSCI 5541 NLP

Teaser: Two Objectives for Language Model Pretraining



Next-token prediction

ELMo BERT Denoising autoencoding (BERT) 🔴 🔴



$$\log p(\bar{\mathbf{x}}|\hat{\mathbf{x}}) = \sum_{t=1}^{T} \operatorname{mask}_{t} \log p(x_{t}|\hat{\mathbf{x}})$$

Reconstruct masked tokens

Slides from Zihang Dai

Why better language models are useful?

Language models can directly encode knowledge present in the training corpus.

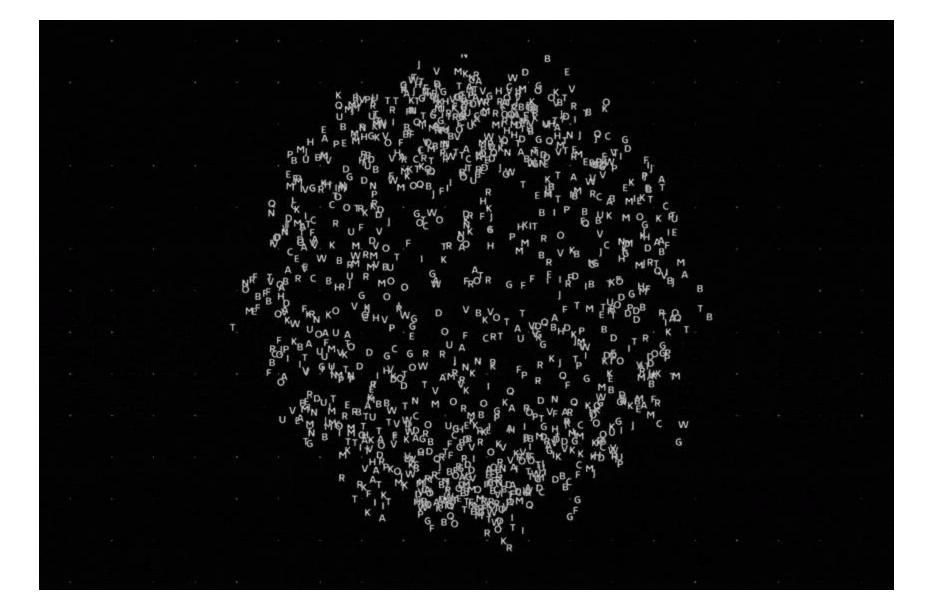
The director of 2001: A Space Odyssey is _____

Language models can directly encode knowledge present in the training corpus.

Query	Answer	Generation
Francesco Bartolomeo Conti was born in	Florence	Rome [-1.8], Florence [-1.8], Naples

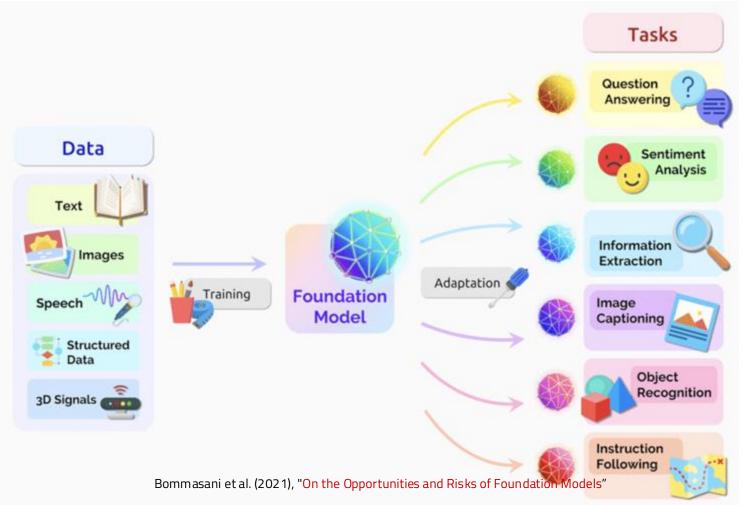
Language models can directly encode knowledge present in the training corpus.

Query	Answer	Generation
Francesco Bartolomeo Conti was born in	Florence	Rome [-1.8], Florence [-1.8], Naples
Adolphe Adam died in	Paris	Paris [-0.5], London [-3.5], Vienna
English bulldog is a subclass of	dog	dogs [-0.3], breeds [-2.2], dog
The official language of Mauritius is	English	English [-0.6], French [-0.9], Arabic
Patrick Oboya plays in position.	midfielder	centre [-2.0], center [-2.2], midfielder
Hamburg Airport is named after	Hamburg	Hess [-7.0], Hermann [-7.1], Schmidt



ChatGPT Is a Blurry JPEG of the Web, By Ted Chiang February 9, 2023

Language models can be a foundation for various tasks across different modalities



Language models are stochastic parrots

Bender et al. (2021), "On the Dangers of Stochastic Parrots: Can Language Models Be Too Big?"

Questions

- GPT3 is 100x bigger than GPT2. If GPT-K is developed, how can we handle such a large-scale model without industry-level computing powers. Can we compress the models while not sacrificing performance?
- □ What if those companies can only replicate the results, monopolize their usages, and make them as a paid service? Is it fair?
- Are there different ways of storing the predictive/knowledge power of LMs?
- Can LMs be called as general intelligence or foundational knowledge? If not, what are missing there?

