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Announcement (0926)
❑ Continue lectures on neural LM and RNN LMs
❑ HW3 out
❑ Project description
❑ Project brainstorming due (Oct 1)
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Ngram LM

Uni-gram Bi-gram
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Sparsity in Ngram LM
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Ngram LM  vs  Neural LM
To avoid the data sparsity 

problem from the ngram LM
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Neural LM
Simple feed-forward multilayer perceptron 

(e.g., one hidden layer)

Bengio et al. 2003, A Neural Probabilistic Language Model
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Neural LM

Bengio et al. 2003, A Neural Probabilistic Language Model

One-hot encoding
( |x| = V )

Output space: |y| = V

kV

Distributed representation 
(H)
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Neural LM

Bengio et al. 2003, A Neural Probabilistic Language Model

One-hot encoding
( |x| = V )

Distributed representation
( |y| = H)

V >> H

Represent high-dimensional words (and 
contexts) as low-dimensional vectors
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tried to prepare midterm but I was too tired of…

Conditioning context (X [k x V])

Next word to predict (Y)

Context window size: k=4
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tried to prepare midterm but I was too tired of…
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Next word to predict (Y)

Context window size: k=4
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tried to prepare midterm but I was too tired of…

Conditioning context (X [k x V])

Next word to predict (Y)

Context window size: k=4
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Neural LM against Ngram LM
Pros 
❑ No sparsity problem
❑ Don’t need to store all observed n-gram counts

Cons
❑ Fixed context window is too small (larger window, larger W)

o Windows can never be large enough
❑ Different words are multiplied by completely different weights (W); no 

symmetry in how the inputs are processed.
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Recap

❑ Ngram LM → Neural LM : sparsity

❑ Neural LM → RNN LM : input size is not scalable

❑ RNN LM → LSTM LM:

❑ LSTM LM → Transformer LM:
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Outline
❑ Recurrent Neural Network (RNN)
❑ Long Short-term Memory (LSTM)
❑ Implementation of RNN and LSTM using PyTorch
❑ Sequence-to-Sequence modeling
❑ Teaser: Transformer-based LMs 
❑ Why language models are useful?
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Recurrent Neural Network (RNN)

RNN allow arbitarily-sized conditioning contexts; 
condition on the entire sequence history.

Goldberg 2017

=
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Recurrent Neural Network

Goldberg 2017

Neural-LM: 

RNN:
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Recurrent Neural Network

❑ Each time set has two inputs:

❑ 𝑋𝑖 (the observation at time step 𝑖):
o One-hot vector, feature vector, or distributed 

representation of input token at 𝑖 step
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Recurrent Neural Network

❑ Each time set has two inputs:

❑ 𝑋𝑖 (the observation at time step 𝑖):
o One-hot vector, feature vector, or distributed 

representation of input token at 𝑖 step

❑ 𝑆𝑖−1 (the output of the previous state):
o Base case: 𝑆0 = 0 vector
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Recurrent Neural Network

❑ Each time set has two outputs:

❑ 𝑆𝑖 = 𝑅 (𝑋𝑖 , 𝑆𝑖−1)
o R computes the output state as a function 

of the current input and previous state

❑ 𝑦𝑖 = 𝑂 (𝑆𝑖)
o O computes the output as a function of 

the current output state
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RNN Training

sequence of 
words

output as 
shifted by one
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RNN Training SUM (total loss)

sequence of 
words

output as 
shifted by one
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RNN Training Parameters are shared! 
Derivatives are accumulated.

sequence of 
words

output as 
shifted by one
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What can RNNs do?
❑ Represent a sentence

o Read whole sentence, make a prediction

❑ Represent a context within a sentence
o Read context up until that point
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Representing Sentences
❑ Sentence classification
❑ Conditioned generation



CSCI 5541 NLP

Representing Context within Sentence
❑ Tagging
❑ Language modeling
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e.g., Language Modeling
❑ Language modeling is like a tagging task, where each tag is the next word!
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e.g., POS Tagging with Bi-RNNs
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Vanishing Gradient

❑ Gradients decrease as they get pushed back

❑ Why? “Squashed” by non-linearities or small weights in matrices
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A Solution: Long Short-term Memory (LSTM)

❑ Make additive connections between time steps 

❑ Addition does not modify the gradient, no vanishing

❑ Gates to control the information flow

(Hochreiter and Schmidhuber 1997)
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RNN Structure

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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RNN vs LSTM Structure

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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LSTM Structure
❑ Forget gate: what value do we try to 

add/forget to the memory cell?
❑ Input gate: how much of the update 

do we allow to go through?
❑ Output gate: how much of the cell do 

we reflect in the next state?

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Cell state

Forget gate

Input gate Output gate

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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LSTM variant: Gated Recurrent Unit (GRU)
❑ Combines the forget and input gates into a 

single “update gate.”
❑ Merges the cell state and hidden state
❑ And, other small changes

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

(Cho et al., 2014)

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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A Solution: Long Short-term Memory (LSTM)

❑ Make additive connections between time steps 

❑ Addition does not modify the gradient, no vanishing

❑ Gates to control the information flow

(Hochreiter and Schmidhuber 1997)
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class RNN(nn.Module):
def __init__(self, input_size: int, hidden_size: int, output_size: int) -> None:

super().__init__()
…
self.i2h = nn.Linear(input_size, hidden_size, bias=False)
self.h2h = nn.Linear(hidden_size, hidden_size)
self.h2o = nn.Linear(hidden_size, output_size)

def forward(self, x, hidden_state) :
x = self.i2h(x)
hidden_state = self.h2h(hidden_state)
hidden_state = torch.tanh(x + hidden_state)
out = self.h2o(hidden_state)
return out, hidden_state
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class RNN(nn.Module):
def __init__(self, input_size, output_size, hidden_dim, n_layers):

super(RNN, self).__init__()
…
self.rnn = nn.RNN(input_size, hidden_dim, n_layers, batch_first=True)
self.fc = nn.Linear(hidden_dim, output_size)

def forward(self, x, hidden):
r_out, hidden = self.rnn(x, hidden)
r_out = r_out.view(-1, self.hidden_dim)

return self.fc(r_out) , hidden
# x (batch_size, seq_length, input_size)
# hidden (n_layers, batch_size, hidden_dim)
# r_out (batch_size, time_step, hidden_size)
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class LSTM (nn.Module):
def __init__(self, num_classes, input_size, hidden_size, num_layers, 

seq_length):
super(LSTM1, self).__init__()
…
self.lstm = nn.LSTM(input_size=input_size, hidden_size=hidden_size, 

num_layers=num_layers, batch_first=True)
self.fc =  nn.Linear(hidden_size, num_classes)
self.relu = nn.ReLU()

def forward(self,x):
h_0 = Variable(torch.zeros(self.num_layers, x.size(0), self.hidden_size))
c_0 = Variable(torch.zeros(self.num_layers, x.size(0), self.hidden_size))
output, (hn, cn) = self.lstm(x, (h_0, c_0))
hn = hn.view(-1, self.hidden_size)
return self.fc (self.relu(hn))
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Connecting RNN to RNN 
for sequence-to-sequence (seq2seq) 

modeling
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RNN (decoder) for language modeling
Randomly initialized hidden 
state ℎ𝑡 at time step 𝑡 = 0



CSCI 5541 NLP 40

RNN (decoder) for language modeling
What if we encode some 
specific context, instead 
of random state?
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RNN (encoder) - RNN (decoder) 
for machine translation

“나는이영화가싫어요”
“Odio esta película”
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RNN (encoder) - RNN (decoder) 
for dialogue generation

“나는이영화가싫어요”
“Odio esta película”

“what do you think about 
Avengers: Endgame? 
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RNN (encoder) - RNN (decoder) 
for question answering

“나는이영화가싫어요”
“Odio esta película”

“what do you think about 
Avengers: Endgame? 

When is the film made? This film is made in 1997

This film is made in 1997<s>
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Sequence-to-sequence modeling using
RNN (encoder) - RNN (decoder)

“나는이영화가싫어요”
“what do you think ..? 

Encoder: encoding 
input sequence

Decoder: decoding 
output sequenceInput context

When is the film made?
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Problem: forgetting input context as 
input gets longer

Input context

“나는이영화가싫어요”
“what do you think ..? When is the film made?
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Solution (teaser): Seq2seq with attention

Attention layer = Input context 
attended on all previous context
(will be covered more in Transformer)

“나는이영화가싫어요”
“what do you think ..? When is the film made?
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Announcement (0215)
❑ Continue lecture on Language Models 

(2): RNNs, LSTMs, and Seq2seq
o State-of-the-art Language Models
o Why better language models are useful?

❑ Project Guideline
❑ Dues:

o Team formation (Feb 16)
o Reading assignment #1 (Feb 16)
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https://www.reddit.com/r/StableDiffusion/comments/1244h2c/will_smith_eating_spaghetti/03 / 2023

https://www.reddit.com/r/StableDiffusion/comments/1244h2c/will_smith_eating_spaghetti/
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https://openai.com/sora02 / 2024

https://openai.com/sora
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Recap
❑ Ngram LM → Neural LM : sparsity
❑ Neural LM → RNN LM : input size is not 

scalable
❑ RNN LM → LSTM LM: vanishing 

gradients over time steps
❑ LSTM LM → Transformer : still 

vanishing gradients
❑ Transformer → Scaling up Transformer : 

scaling law!
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Sequence-to-sequence modeling using
RNN (encoder) - RNN (decoder)

“나는이영화가싫어요”
“what do you think ..? 

Decoder: decoding 
output sequence

When is the film made?

Encoder: encoding 
input sequence Input context
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State-of-the-art Language Models



CSCI 5541 NLP 53

Teaser: Transformer-based LMs
❑ SOTA LMs: GPT-2, Radford et al. 2018;  GPT-3, 

Brown et al. 2020

Trigram LSTM
109 58.3

GPT-2 GPT-3
35.8 20.5
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Ngram

1990s 20031997 2014

LSTM
RNN

GRU

2018 2019 2020 2021

Pe
rp

lex
ity
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Ngram

1990s 20031997 2014

LSTM
RNN

GRU

2018 2019 2020 2021

ELMo GPT BERT GPT2 GPT3

Pe
rp

lex
ity



CSCI 5541 NLP 57

Teaser: Two Objectives for Language Model Pretraining

Slides from Zihang Dai

Next-token prediction Reconstruct masked tokens

Auto-regressive LM (GPT3) Denoising autoencoding (BERT)
ELMo BERTGPT GPT2 GPT3
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Why better language models are useful?
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The director of  2001: A Space Odyssey is _____________

Language models can directly encode knowledge
present in the training corpus.
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Language models can directly encode knowledge
present in the training corpus.

Petroni et al. (2019), "Language Models as Knowledge Bases?” (ACL)
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Language models can directly encode knowledge
present in the training corpus.

Petroni et al. (2019), "Language Models as Knowledge Bases?” (ACL)
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ChatGPT Is a Blurry JPEG of the Web, By Ted Chiang February 9, 2023

https://www.newyorker.com/tech/annals-of-technology/chatgpt-is-a-blurry-jpeg-of-the-web
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Language models can be a foundation for various 
tasks across different modalities

Bommasani et al. (2021), "On the Opportunities and Risks of Foundation Models”
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Language models are stochastic parrots

Bender et al. (2021), "On the Dangers of Stochastic Parrots: Can Language Models Be Too Big?”
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Questions
❑ GPT3 is 100x bigger than GPT2. If GPT-K is developed, how can we handle 

such a large-scale model without industry-level computing powers. Can we 
compress the models while not sacrificing performance? 

❑ What if those companies can only replicate the results, monopolize their 
usages, and make them as a paid service? Is it fair?

❑ Are there different ways of storing the predictive/knowledge power of 
LMs?

❑ Can LMs be called as general intelligence or foundational knowledge? If not, 
what are missing there?
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