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Announcement (0926)

@) Grade HW2: Finetuning X
text classifier using

1 Continue lectures on neural LM and RNN LMs Hosgingace

10 points « Sep 24 at SYpm
J HW3 out
1 Project description

 Project brainstorming due (Oct 1)
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Ngram LM

Uni-gram
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Sparsity in Ngram LM o

o 81 02 03 G4 OF O

I S —
i want to eat chinese food Ilunch spend ( )

i 5 827 0 9 0 0 0 2 C\W;_1,W; cl . W ¥

wat 2 0 608 1 6 6 5 1 ("’ 1 )" (wi—1,wi) +

to 2 0 4 686 2 0 6 211 C W'_l clw: V&

eat 0 0 2 0 16 2 42 0 y ( -1 ) +

chinese 1 0 0 0 0 82 1 0

food 15 0 15 0 1 4 0 0

lunch 2 0 0 0 0 1 0 0

spend 1 0 1 0 0 0 0 0
Bigram counts for eight of the words (out of V = 1446) in the Berkeley Restau- P(w; | wi—2,wi—1) = MP(w; | wi—2,wi—1)
rant Project corpus of 9332 sentences. Zero counts are in gray.

+ }kgp(ﬂii | tﬂ,;_l)
Ap+(1—XN)g + AP (w;)
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Ngram LM vs Neural LM

To avoid the data sparsity
problem from the ngram LM
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Neural LM

Simple feed-forward multilayer perceptron

x = [v(wy); ... v(wy)] (e.g., one hidden layer)
Concatenation (k x V) 1]
1 .
v(iwy) o] .
0 |
w; = tried o] ||
v(w 1] ;
o] N
w3 = prepare 0] 1
_ viwz) [0 |
w, = midterms — .0
— h =g(xW; + b4) f—
V(wy) ﬁ -8.2 :
0 26
1)
One-hot encoding Distributed representation Multi-class (Vocab)

classification

Bengio etal. 2003, A Neural Probabilistic Language Model
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Neural LM P(W) = P(Wi|Wi—g..W;_1) = softmax (W - h)

W‘I c RkVXH W2 c RHXV

| by € R” b € RY
One-hot encoding Output space: |y| =V
(Ix|=V)
Distributed representation
(H)
h =gxWs +by)
X = [v(wq);...;v(wg)] y = softmax(hWa + b»)

Bengio etal. 2003, A Neural Probabilistic Language Model
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Neural LM

Represent high-dimensional words (and
contexts) as low-dimensional vectors

One-hot encoding
(Ix|=V)

Distributed representation
(ly[=H)

Bengio etal. 2003, A Neural Probabilistic Language Model

CSCI 5541 NLP 8 M.



Conditioning context (X [k x V/])

tried to prepare midterm{put | was too tired of...

Next word to predict (Y)

Context window size: k=4
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Conditioning context (X [k x V/])

tried to prepare midterm but|l{was too tired of...

Next word to predict (Y)

Context window size: k=4
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Conditioning context (X [k x VV])

tried t

Context window size: k=4

D prepare midterm but |

was oo tired of...

Next word to predict (Y)



Neural LM against Ngram LM

Pros
3 No sparsity problem
A Don't need to store all observed n-gram counts

Cons

a Fixed context window is too small (larger window, larger W)
o Windows can never be large enough

a Different words are multiplied by completely different weights (W); no
symmetry in how the inputs are processed.
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Recap o

A Ngram LM — Neural LM : sparsity
d Neural LM — RNN LM : input size is not scalable
a RNN LM — LSTM LM:

A LSTM LM — Transformer LM:
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Outline

1 Recurrent Neural Network (RNN)
d Long Short-term Memory (LSTM)
A Implementation of RNN and LSTM using PyTorch
 Sequence-to-Sequence modeling

] Teaser: Transformer-based LMs
A Why language models are useful?

CSCI 5541 NLP m



Recurrent Neural Network (RNN)

RNN allow arbitarily-sized conditioning contexts;
condition on the entire sequence history.

y Y4 ys
A A A
—- R} O J - so > S3> R) O S4> R’ O = SS
A ' - A
X X4 X5

Goldberg 2017

15 AR
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Recurrent Neural Network

Neural-LM: P(w) = P(w;|wij_g..w;j—1) = softmax (W - h)

1 | RNN: P(w) = P(w;|context)
= softmax (W - h;)

Goldberg 2017

CSCI 5541 NLP 16 M



Recurrent Neural Network

A Each time set has two inputs: y1
A

A X; (the observation at time step i): % - ‘

o One-hot vector, feature vector, or distributed
representation of input token at i step *

CSCI 5541 NLP




Recurrent Neural Network

A Each time set has two inputs: y1
A
1 X; (the observation at time step i): S% y‘ 51
I 80 y R
o One-hot vector, feature vector, or distributed -~--' | J
representation of input token at i step *

X1

1 S;_, (the output of the previous state):
o Base case: S, = 0 vector

CSCI 5541 NLP




Recurrent Neural Network

d Each time set has two outputs:

4S5 =R (Xi’Si_l)
o R computes the output state as a function
oiXhe current input and previous state

dy; =0 (S5;)
o O computes the output as a function of
the current output state
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RNN Training

output as </s>
shifted by one A
predict ( predict predict ( predict "~ predict
A A A A A
y1 y2 y3 Y4 ys
_ %, RO Hi» Ro H2. Ro H3B+ RO H*] RO
% | T F A T N
sequence of
E <s> E e E | E E s
words [<s>] [2be] ‘ [black] [fox] iumped|
<s5> > the > black > fox > jumped
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RNN Training

SUM (total loss)

output as the - black fox - jumped </s>
shifted by one A A A A A
pf;&iét ( p»r;c]iét: ‘ p}EJiét ,, , p};&iét | pf;c_iict
A A A A A
N Y2 Y3 Y4 Y5
— 80,1 RO H2» RO H2- RO H 3> RO H % RO
| TE A B A
sequence of
E<5> \ E e E E E —
words [<s>] [2he] ‘ [black] [fox] liumped|
<s5> > the > black > fox > jumped
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RNN Training

Parameters are shared!
Derivatives are accumulated.

output as
shifted by one

sequence of
words
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What can RNNs do?

1 Represent a sentence
o Read whole sentence, make a prediction

1 Represent a context within a sentence
o Read context up until that point

CSCI 5541 NLP m



Representing Sentences

J Sentence classification
] Conditioned generation

hate this movie

\/
prediction
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Representing Context within Sentence

] Tagging
] Language modeling

this movie

[preductj (predlct] Cpredlct] [predlct)

/abel Iabel /abe/ /abe/
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e.g., Language Modeling
J Language modeling is like a tagging task, where each tag is the next word!

<S> | hate this movie

l l

RNN RNN

[predmt] [predlct) [preduct) [predlct) [predlct)

hate thls mowe </s>
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e.g., POS Tagging with Bi-RNNs

I hate this movie

o~ o~ o~ o~
L | Lo | L2 | L |
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\/anishing Gradient

Q Gradients decrease as they get pushed back

dl dl
—= —=small —=med. —
d, d sma d me d,

LN £\ £\ L)

h, —{RNN = h, = RNN | h, > RNN | h, | square_err —>/

3 3 3 4
1 X, X, y*

tiny =large

A Why? “Squashed” by non-linearities or small weights in matrices
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A Solution: Long Short-term Memory (LSTM)

(Hochreiter and Schmidhuber 1997)

1 Make additive connections between time steps
A Addition does not modify the gradient, no vanishing

1 Gates to control the information flow

CSCI 5541 NLP m



RNN Structure

@ si = R (Xj,Si-1 ) .

yi = 0 (sj) A

]
So—:-‘ R, O Al

P X1

)

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

VN
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http://colah.github.io/posts/2015-08-Understanding-LSTMs/

RNN vs LSTM Structure

http://colah.github.io/posts/2015-08-Understanding-LSTMs/



http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LST M S t r u C t u r e Neural Network Pujrgsa E >-’ _<

Layer Operation  Transfer Concatenate Copy

] Forget gate: what value do we try to @
add/forget to the memory cell?

J Input gate: how much of the update
do we allow to go through?

] Output gate: how much of the cell do
we reflect in the next state?

Forget gate

Cell state

Input gate Output gate

hi = o o o (ct) :
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM variant: Gated Recurrent Unit (GRU)

(Cho etal, 2014)

] Combines the forget and input gates into a
single "update gate.”
1 Merges the cell state and hidden state

1 And, other small changes

2t = O’Q(szt + Uzht_l + bz)
ry = Og(Wr.’IIt + Urht_l + br)
he = (1 — 2t){o ht—1 +@0 on(Whay + Un(re 0 hy-1) + br)

Additive or Non-linear

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

VN
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http://colah.github.io/posts/2015-08-Understanding-LSTMs/

A Solution: Long Short-term Memory (LSTM)

(Hochreiter and Schmidhuber 1997)

1 Make additive connections between time steps
A Addition does not modify the gradient, no vanishing

1 Gates to control the information flow

CSCI 5541 NLP m



O PyTorch
class RNN(nn.Module):

def __init__(self, input_size: int, hidden_size: int, output_size: int) -> None:
super()._ _init__{()

self.i2h = nn.Linear(input _size, hidden_size, bias=False) @
self.h2h = nn.Linear(hidden _size, hidden _size) T
self.h20 = nn.Linear(hidden_size, output_size) I J

» B

def forward(self, x, hidden _state) : l

X = self.i2h(x)
hidden _state = self.h2h(hidden_state)
hidden_state = torch.tanh(x + hidden_state)

out = self.h2o(hidden_state) @
return out, hidden _state

J

&
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class RNN(nn.Module): O PyTorch
def __init__(self, input_size, output_size, hidden_dim, n_layers):
super(RNN, self)._ _init_ ()

self.rnn = nn.RNN(input_size, hidden _dim, n_layers, batch_first=True) @
self.fc = nn.Linear(hidden _dim, output_size) JT
»

&
o
def forward(self, x, hidden): l
|

4

r _out, hidden = self.rnn(x, hidden)
r_out=r_out.view(-1, self.hidden _dim)

\

©

# x (batch_size, seq_length, input_size)
# hidden (n_layers, batch_size, hidden_dim)
#r_out (batch_size, time_ step, hidden_size)

return self.fc(r_out), hidden

CSCI 5541 NLP




class LSTM (nn.Module): O PyTorch
def __init_ _(self, num_classes, input_size, hidden_size, num_layers,

seq_length): B,
super(LSTM1, self)._ _init_ _{() L
heor X ¥ R
self.Istm = nn.LSTM(input _size=input _size, hidden_size=hidden_size, B

num_layers=num_layers, batch _first=True) ) L h
self.fc = nn.Linear(hidden _size, num_classes) ¢l gl LB
self.relu = nn.ReLU() P

def forward(self,x):
h_0 = Variable(torch.zeros(self.num _layers, x.size(0), self.hidden_size))
c_0 = Variable(torch.zeros(self.num _layers, x.size(0), self.hidden_size))
output, (hn, cn) = self.Istm(x, (h_0, c_0))
hn = hn.view(-1, self.hidden _size)
return self.fc (self.relu(hn))

CSCI 5541 NLP




Connecting RNN to RNN
for sequence-to-sequence (seq2seq)
modeling




RNN (decoder) for language modeling

Randomly initialized hidden
state h; attimestept =0

<S> | hate this movie
| l |
RNN RNN RNN &

[predlct] [preduct] [predlct] [predlct) [predlct]

hate thIS mowe </s>
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RNN (decoder) for language modeling

What if we encode some
specific context, instead
of random state?
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RNN (encoder) - RNN (decoder)
for machine translation

‘LHE 0] @317t of e

“"Odio esta pelicula” \
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RNN (encoder) - RNN (decoder)
for dialogue generation

"Lt= O] 7t &0 K"
“Odio esta pelicula” <S> I hate this movie

B, (T £ ¢ B T 55, YN
RA T D AVAN A W A A A
) ~

“what do you think about
Avengers: Endgame?

l hate this movie <[s>

CSCI 5541 NLP




RNN (encoder) - RNN (decoder)
for question answering

"LH= 0] G387t 4lof e
“Odio esta pelicula”

<S> This film is made in 1997

“what do you think about
Avengers: Endgame?

When is the film made? o _
This film is made in 1997

CSCI 5541 NLP




Sequence-to-sequence modeling using
RNN (encoder) - RNN (decoder)

"Lt= 0| A7l &l
“what do you think ..?  When is the film made? %

Encoder: encoding Decoder: decoding

Input sequence Input context output sequence

CSCI 5541 NLP




Problem: forgetting input context as
input gets longer

"Lt= Ol et &0 K"
“what do you think ..?  When is the film made? %

|nput ContEXt ——small ——med —=large

CSCI 5541 NLP




Solution (teaser): Seqg2seq with attention

"Lt= 0| A7l &l
“what do you think ..?  When is the film made? %

Attention layer = Input context
attended on all previous context
(will be covered more in Transformer)

T .\

CSCI 5541 NLP




-eb 13 Language Models (2): RNNs, LSTMs and

Announcement (0215) et

-eb 15 Project Guideline [} @
Team formation due

 Continue lecture on Language Models TR
(2),' RNNS, LSTMS, and SquSEq eb22 Language Models (3): Search and Decoding

B
o State-of-the-art Language Models o
o Why better language models are useful?
D prOJeCt GUIdellne @ Grade HW1: Finetuning X
. text classifier using
J Dues: HuggingFace

15 points e Feb 11 at 11:59pm

o Team formation (Feb 16)

o Reading assignment #1 (Feb 16) €@ Grade Team formation X
1 point ¢ Feb 16 at 11:59pm

€) Grade Reading assignment X
#1

5 points e Feb 16 at 11:59pm

CSCI 5541 NLP




1

. i lk

03 /2023 https://www.reddit.com/r/StableDiffusion/comments/1244h2c/will_smith_eating_spaghetti/

T
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https://www.reddit.com/r/StableDiffusion/comments/1244h2c/will_smith_eating_spaghetti/

@ OpenAI Researchv.  APly " ChatGPTv = Safety Company v Search Login A~ Try ChatGPT 2

PR L &‘.»

Creatmg video fromptext

Sora |s an-Al model that can create reallstlc and
' |mag|nat|ve scenes from text instrdetions:

0 ‘L '
4 ' % W) i

R |
——— |
2
i

% Allvideos on this page were generated.directly

by Sora without modification.

Capabilities Safety Research Il Pause

02 /2024 https://openai.com/sora

CSCI 5541 NLP 49 m
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®

N
Recap : 9
, : | 1 P(w) = P(w;|context)
3 Ngram LM — Neural LM : sparsity Iy 1L coftmax (W - b
 Neural LM — RNN LM : input size is not —
scalable | ®
0 RNN LM — LSTM LM: vanishing ' 3
gradients over time steps % R
| + o >
A LSTM LM — Transformer : still Apas
vanishing gradients o 4% o] (&) [o-
| —
A Transformer — Scaling up Transformer : Clr "

scaling law! )
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Sequence-to-sequence modeling using 5

R
RNN (encoder) - RNN (decoder)
‘L= 0] Y3t7L 4o Q-
“what do you think ..?  When is the film made? & this -

movie </[s>
\ J |\ J

Encoder: encoding Decoder: decoding

Input sequence Input context output sequence

CSCI 5541 NLP




State-of-the-art Language Models
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Teaser: Transformer-based LMs

Output
Probabilities

d SOTA LMs: GPT-2, Radford et al. 2018; GPT-3,

-
Add & Norm

Brown et al. 2020 ==

Forward

l

I

4 ) Add & Norm
Trigram LSTM GPT-2 GPT-3

Feed Attention
Forward 7 J) Nx

109 58.3 35.8 20.5 —

Nx f‘" Add & Norm l Maskad
Multi-Head Multi-Head
Attention Attention
- NI , L )
Mar 19 Transformers (1) [ « Attention is All you Need (\——— By e’ )
Project proposal due » Tutorial on lllustrated Transformer - .
» | anguage Models are Unsupervised Multitask Learners Poscthnal + @& Positional
Encoding Encoding
Mar 24  Transformers (2) [ » Language Models are Few-Shot Learners Input Output
» Exploring the Limits of Transfer Learning with a Unified Text-to-Text Embedding Embedding
Transformer I
Inputs Outputs
(shifted right)

Figure 1: The Transformer - model architecture.

CSCI 5541 NLP
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Perplexity

Ngram
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O
LSTM
RNN
‘ ‘ GRU
® O
1990s 1997 2003 2014 2018 2019 2020 2021



Ngram

Perplexity
—
wn
_|
<

1990s 1997
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Jurgen Schmidhuber Al Blog
Pronounce: You_again Shmidhoobuh Twitter: @SchmidhuberAl
Technical Report IDSIA-23-23, IDSIA 14 December 2023

How 3 Turing Awardees Republished Key Methods and Ideas
Whose Creators They Failed to Credit

This write-up is meant to correct an inaccurate history of Artificial Intelligence (Al) propagated by recent
uninformed news articles, posts in social media, and a large language model. Most of its statements are
taken from a less streamlined report™ that has been reviewed on relevant Al mailing lists, profiting from
feedback by many experts and well-known Al pioneers. The piece is aimed at people who are not aware
of the numerous Al priority disputes, but are willing to check the facts.
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Ngram g e
Z O " LT
3 LSTM e
g RNN
‘ ‘ GRU
ELMo
O O GPT  BERT GPT2 S
® o0,
1990s 1997 2003 2014 2018 2019 2020 2021
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Teaser: Two Objectives for Language Model Pretraining

GPT GPT2 GPT3 ELMo BERT

Auto-regressive LM(GPT3) @ @ @ Denoising autoencoding (BERT) @ @
York is a city [EOS] York is

1t t 1

Unidirectional Transformer Bidirectional Transformer
New  York is a city New |MASK]||[MASK| a city

log p(x Zlogp ze|X<t) log p(X[%) = Zmaskt log p(x:|X)

t=1
Next-token prediction Reconstruct masked tokens

Slides from Zihang Dai

57 M\

CSCI 5541 NLP




Why better language models are useful?

CSCI 5541 NLP




Language models can directly encode knowledge
present in the training corpus.

The director of 2001: A Space Odyssey is

CSCI 5541 NLP




Language models can directly encode knowledge
present in the training corpus.

Query Answer Generation

Francesco Bartolomeo Conti was born in . Florence Rome [-1.8], Florence [-1.8], Naples

CSCI 5541 NLP




Language models can directly encode knowledge
present in the training corpus.

Query Answer Generation

Francesco Bartolomeo Conti was bornin . Florence Rome [-1.8], Florence [-1.8], Naples
Adolphe Adam diedin . Paris Paris [-0.5], London [-3.5], Vienna
English bulldog is a subclass of dog dogs [-0.3], breeds [-2.2], dog

The official language of Mauritiusis . English English [-0.6], French [-0.9], Arabic
Patrick Oboya playsin __ position. midfielder  centre [-2.0], center [-2.2], midfielder
Hamburg Airport is named after Hamburg Hess [-7.0], Hermann [-7.1], Schmidt

CSCI 5541 NLP
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ChatGPT Is a Blurry JPEG of the Web, By Ted Chiang February 9, 2023
CSCI 5541 NLP 62 MR



https://www.newyorker.com/tech/annals-of-technology/chatgpt-is-a-blurry-jpeg-of-the-web
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Language models can be a foundation for various
tasks across different modalities

Tasks
Question 7
& Answering ° .
Data 4 Sentiment

% .+ Analysis
N /‘

Text I | ! i _
i ) “‘@ % Information C_,/
J s s i’) Extraction \
Adaptation '

Speach =."'\,_l’U\/\ ty Training Foundation ». Image
4 “ Model & Captioning 4‘/
~ Structured
. Data
= INA gbmt
30 Signals quroe % * ecognition

Instruction
Following .. - "‘

\}
Bommasani et al. (2021), "On the Opportunities and Risks of Foun dat%odels” ot Py




Language models are stochastic parrots

Bender et al. (2021), "On the Dangers of Stochastic Parrots: Can Language Models Be Too Big?"

CSCI 5541 NLP




Questions

A GPT3is 100x bigger than GPT2. If GPT-K is developed, how can we handle
such a large-scale model without industry-level computing powers. Can we
compress the models while not sacrificing performance?

A What if those companies can only replicate the results, monopolize their
usages, and make them as a paid service? Is it fair?

A Are there different ways of storing the predictive/knowledge power of
LMs?

1 Can LMs be called as general intelligence or foundational knowledge? If not,
what are missing there?

CSCI 5541 NLP
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