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Positive / Negative ®

y

T
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Weighted sum
a; =0 as = 0.32
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like natural language processing
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At the end, we have one representation % U‘DR
for each layer for each token q};

Input Length (T)
\

3.2 1.0 38 46 87 4.0 -1 5.2 9.2 4.0 33 78
Token 1, Layer 3 Token 2, Layer 3 Token 3, Layer 3
——
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L _<
GJ Token 1, Layer 2 Token 2, Layer 2 Token 3, Layer 2
1.5 05 0.2 0.6 53 -1 0.5 2.1 54 -2 15 8.1
Token 1, Layer 1 Token 2, Layer 1 Token 3, Layer 1
I like natural
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Summary of Transformers

Probabilities
| Softmax )
Attention I; All You Need  Unear )
1 A sequence-to-sequence model Weswanietal 2017 )
based entirely on attention [,w A
J Strong results on translation and a ~C ) | s
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Strong results/findings and
applications of Transformers
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Strong results with Transformers on machine translation

BLEU Training Cost (FLOPs)

Model
EN-DE EN-FR EN-DE EN-FR

ByteNet [18] 23.75
Deep-Att + PosUnk [39] 39.2 1.0 -10%°
GNMT + RL [38] 24.6 39.92 2.3-1019 1.4-10%
ConvS2S [9] 25.16  40.46 9.6-10% 1.5.10%
MoE [32] 26.03 40.56 2.0-10% 1.2-10%
Deep-Att + PosUnk Ensemble [39] 40.4 8.0 - 10%°
GNMT + RL Ensemble [38] 26.30 41.16 .
ConvS2S Ensemble [9] 41,29
Transformer (base model) 27.3 38.1
Transformer (big) 284 41.8

[Test sets: WMT 2014 English-German and English-French]

(Vaswani et al. 2017)
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Strong results with Transformers on document summarization

Model Test perplexity ROUGE-L
seq2seq-attention, L = 500 5.04952 12.7
Transformer-ED, L = 500 2.46645

Transformer-D, L = 4000
Transformer-DMCA, no MoE-layer, L = 11000 |2.05159
Transformer-DMCA, MoE-128, L = 11000 1.92871
Transformer-DMCA, MoE-256, L = 7500 1.90325

WikiSum dataset (Liu et al., 2018)
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Strong results with (pre-trained) Transformers on classification
tasks

SMART-RoBERTa Large 975 Natura Juage Models through Principled Regularized () : 2019

2 1538 974 _r o9 e RS TSETAMIAWIATIES @ @ 2019 J[ wmwerme
MUPPET Roberta Large 7 R e e ) 0 5 2021

4 ALBERT o Wl e et O @ 201
Sentiment classification e
on SST-2 dataset : 12ER L oo Tt Tastant 0

6§  StructBERTROBERTa ensemble 974 bR A R e 5 2019

XUNet

{single model)

gr (ST U ‘ ok i 2 0 5 2019
ELECTRA: Pre-trai Text | der ator g
ELECTRA 969: reret s R O 7 2020

EFL 969  Entailment as Few-Shot Learner O 5] 2021 | Tesstormer |

.~ XLNet-Large

{ensembie)

T s S O @ 2019

11 RoBERTa v el s e ot e Rl 9 ) 2019 [ eanstormer

https://paperswithcode.com/
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Transformers used outside of NLP

Protein folding Image Classification

Vision Transformer (ViT) outperforms ResNet-based baselines
with substantially less compute (Dosovitskiy et al. 2020)

AlphaFold2 (Jumper et al., 2021)
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Scaling laws

] With Transformers, language modeling performance improves smoothly as we increase
model size, training data, and computing resources.

] This power-law relationship has been observed over multiple orders of magnitude with
no sign of slowing down!
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Kaplan et al., 2020, Scaling Laws for Neural Language Models
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Scaling laws

] If we keep scaling up these models (with no change to the architecture), could they
eventually match or exceed human-level performance?

7 .
4.2
6 — L=(D/5.4-1013)0.095 | 56 —— L=(N/8.B 10130076
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Kaplan et al., 2020, Scaling Laws for Neural Language Models
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Why self-attention?
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Recurrence in RNINs @cﬂ

i

Encoding: Encode input Decoding: Define your outputs (parse,
sentences with bi-directional sentence, summary) as a sequence/label, and
LSTM use LSTM to decode it.

CSCI 5541 NLP




Sequence-to-sequence with attention o

~ T

HEH

Use attention to allow flexible
access to input memory

CSCI 5541 NLP




. . . . . P®
|lssues with recurrent models: Linear interaction distance q,,@“

IForward RNNs are unrolled “left-to-right".

It encodes linear locality:
o Nearby words often affect each other’'s meanings

-

| tasty pizza
JProblem: RNNs take O(sequence length) steps for distant word

pairs to interact

O(sequence length)

)
[ |
---I -—-I--u—-
o-oi Hi-o-q—-

The chef who .. ate

Info of chef has gone through
O(sequence length) many layers!

CSCI 5541 NLP




Issues with recurrent models: Lack of parallelizability

 Forward and backward passes have O(seq length) un-parallelizable

operations
o GPUs (and TPUs) can perform many independent computations at once! But future RNN hidden
states can't be computed fully before past RNN hidden states have been computed

o Particularly problematic as sequence length increases, as we can no longer batch many examples
together due to memory limitations

1*2‘5 . see
= Y A\
0-“14‘24\ @ > * 000 —
h:! hz hT

Numbers indicate min # of steps before a state can be computed
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If not recurrence, then what? How about (self) attention?

] Attention treats each word's representation as a query to access and
incorporate information from a set of values.

o We saw attention from the decoder to the encoder;

o Self-attention is encoder-encoder (or decoder-decoder) attention where each wor
attends to each other word within the input (or output).

attention .....l.

attention

All words attend to all words in
previous layer; most arrows are
omitted

O{seqglength)O(Layers)

embedding
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I

“ went to the store. At the store, | bought fresh strawberries.’
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https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb
https://github.com/jessevig/bertviz

Layers
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https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb
https://github.com/jessevig/bertviz

Encoder: Self-Attention

Recap: Attention as a query to access and
iIncorporate information from a set of values.

_et's think of attention as a "fuzzy" or approximate = _ & “Ey &7
s e | |
nashtable:
] To look up a value, we compare a query against keys in a . c
table. kl Vi 1
I{z Vv, 2 v,
J In a hashtable e q ;

o Each query (hash) maps to exactly one key-value pair.

J In (self-)attention:

o Each query (token in current layer) matches each key to varying
degrees.

o We return a sum of values (token in previous layer) weighted by

the iueri—kei match ‘attention scorel.

Ea
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Encoder: Self-Attention

 In (self-)attention: Each query (token in current layer) matches
each key to varying degrees. We return a sum of values (token in =
previous layer) weighted by the query-key match (attention score).

query (token in current layer)

Xqa4 + Xalla + X303y

£t

-5 3.2 9.2 9.6

Token 1, Layer 2

query-key match (attention score)

15 0,5 0.2 0.6 53

=il 0.5 2.1 54 -2

1.5 8.1

Token 1, Layer 1 Token 2, Layer 1

I like

Token 3, Layer 1

natural

values (token in previous layer)

CSCI 5541 NLP

NIV

ST E TR i

L) k- A | ucaEy I 6




Recipe for Self-Attention in the Transformer Encoder

Model parameters to learn (randomly initialized)

I'(0
kl
K, v,
. q K
] Step 2: Calculate attention score between query and keys. K, N
ke Vs
eii =4q;-k; ke
x :x + k7
J Step 3: Take the softmax to normalize attention scores. N o
exp(e;;) R
a;; = softmax(e;;) =
E Exp(elk) ike natural
_ k
] Step 4: Take a weighted sum of values. Output; = Z a;v;
Jj
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Recipe for (Vectorized) Self-Attention in the Transformer Encoder

Il Step 1: For each word, calculate its query, key, and value.
Q=XWR K=XWK VvV=XWV

D Step 2: Calculate attention score between query and keys.
E = QKT

J Step 3: Take the softmax to normalize attention scores.
A = softmax(E)

J Step 4: Take a weighted sum of values.

Output = AV

CSCI 5541 NLP

Output = softmax(QKT)V




Model parameters to learn (randomly initialized)

Input Thinking Machines
Embedding X1 X2

Queries q1 qz

Keys

Values V1 V2

https://jalammar.github.io/illustrated-transformer/

27 AN
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https://jalammar.github.io/illustrated-transformer/

] Step 1: For each word, calculate X wo Q
its query, key, and value. Thinking

Machines

Q=XW2 K=XWK V=XWVY

https://jalammar.github.io/illustrated-transformer/

28 AR
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https://jalammar.github.io/illustrated-transformer/

] Step 2: Calculate attention score
between query and keys.

E = QK a .
Vv
] Step 3: Take the softmax to normalize "
attention scores. softmax ( )
A = softmax(E) Vdy
] Step 4: Take a weighted sum of values. = e
Output = AV X103 + x5 + X305
Output = softmax (QK )V
https://jalammar.github.io/illustrated-transformer/
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https://jalammar.github.io/illustrated-transformer/
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https://jalammar.github.io/illustrated-transformer/

Multi-headed self-attention

It gives the attention layer multiple “representation subspaces'’

1 Multiple sets of Query/Key/Value weight matrices (Transformer uses eight
attention heads, so we end up with eight sets for each encoder/decoder).
Each of these sets is randomly initialized.

ATTENTION HEAD #0

CSCI 5541 NLP




Multi-headed self-attention

It gives the attention layer multiple “representation subspaces'’

1 Multiple sets of Query/Key/Value weight matrices (Transformer uses eight
attention heads, so we end up with eight sets for each encoder/decoder).
Each of these sets is randomly initialized.

X

_“Jf_ X

ATTENTION HEAD #0 ATTENTION HEAD #1

Qo Q1

W.o [ W.o Calculating attention separately in
1) | 1

eight different attention heads

v

ATTENTION ATTENTION ATTENTION
HEAD #0 HEAD #1 HEAD #7
2 : ;_ur, EEE HL
w w =] El |
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Model parameters to learn (randomly initialized)

Condensing multi-head attentions into a single matrix

2) Multiply with a weight
matrix that was trained
jointly with the model

1) Concatenate all the attention heads

"HEE @ EEN @ EEE | EE X
] | |

3) The result would be the = matrix that captures information
from all the attention heads. We can send this forward to the FFNN

- ¥

https://jalammar.github.io/illustrated-transformer/

33 AR
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https://jalammar.github.io/illustrated-transformer/
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https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb
https://github.com/jessevig/bertviz

Layer: EIRY Heac: EIRG Attenton:

[CLS]
the
cat
sat

on
the
mat

[SEP]
the
cat

lay
on
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https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb
https://github.com/jessevig/bertviz

Layer: [N Head: [ Attention: [ EEEEG—E

Query q q x k (elementwise)

[CLS]
the

@% cat

https //qithub.com/iessevig/bertviz

hitps.//colab. research le. com/github/tensorflowtensor2tensor/blob/master/tensor2tensor/notebooks/hello t2t.ipynb
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Other tricks than attention?
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But attention isn’t quite all you need!

1 Problem: Since there are no element-wise non-linearities, self-attention
Is simply performing a re-averaging of the value vectors.

A Easy fix: Apply a feedforward layer to the output of attention, providing
non-linear activation (and additional expressive power).

wn \S J)
t t
Equation for Feed-Forward layer
. — m; = MLP(output;)
t t = W, * ReLU(W; X output; + b;) + b,
[ )/
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Stacking deep neural nets

‘raining tric
‘raining tric

HyEy .

‘raining tric
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K #1: Residual Connections
K #2: LayerNorm

K #3: Scaled Dot Product Attention

STACK
MORE
LAYERS

Repeat N
times
(number of
layers)

Alention




Trick #1: Residual Connections [He et al., 2016]

J Residual connections are a simple but powerful technique
from computer vision.

] Similar to additive connection in LSTM

 Directly passing "raw" embeddings to the next layer T T
prevents the network from "forgetting" or distorting
important information as it is processed by many layers.

=5 F Residual connections are WL
xf i (xf —1) + xf -1 also thought to smooth the & &7
loss landscape and make ol sk
training easier! [Loss landscape visualzation,

Lietal, 2018, on a ResNet)

s AR
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Trick #2: Layer Normalization [Ba et al., 2016]

J Problem: Difficult to train the parameters of a given
layer because its input from the layer beneath keeps
shifting.

] Solution: Reduce uninformative variation by

normalizing to zero mean and standard deviation of one
within each layer.

H

Qutput
Probabilities

Add & Norm

Feed
Forward
m

IAdd&NO( IT:

Multi-Head
Attention

Masked
Muiti-Head
Attention

1
.

7 Nix
Add & Norm

@

Standard Deviation: o' = \j %Z (af =)

=1

1
Mean: #' = )«

i=1

] E'"""f""“"
Inputs (srg:ggk::;m)
£
. X" —U
£
O €
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Layer norm vs Batch norm

Layer Norm Batch Norm
A SN A E——
AN NN
ANERNERN \\
Seque(r;c1ezliength Sequence Length N
, (512) N
N
N
N
N
Features Features
(768) > (768) >
Mini-Batch (32) Mini-Batch (32)
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Layer Norm

Batch Norm Group Normalization

A A A .
\ \ D
Merged Spatial Merged Spatial =N —
erged Spatia er atia S
Dimensions (HW) Dimensions (H,W) O"ﬁ:g:g;pﬁ:% S .
Channels C Channels C Channels C
» >
Mini-Batch Samples N Mini-Batch Samples N Mini-Batch Samples N
Instance Norm
The 3D weight of a 60 | val error
conv layer
A A — Batch Norm (BN)
=N 551 ——Layer Norm (LN)
Merged Spatial Kemel size
Dimensions (H.W) Instance Norm (IN)
50 — Group Norm (GN)
45
E’;;
Channels C Output = 40
> channels > £
o
Mini-Batch Samples N 15 -
Input channels -
_}n -
25 F
qﬂ L 1 | Il 1 1 i 1
0 10 20 30 40 50 60 T0 g0 Q0 100
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https://theaisummer.com/normalization

Trick #3: Scaled Dot Product Attention

J After LayerNorm, the mean and var of vector e

elementsis 0 and 1, respectively.
J But, the dot product still tends to take on

extreme values, as its variance scales with

dimensionality dx

t

MatMul

SoftMax
)
Mask (opt.)

MatMul

I

Q K V

Updated Self-Attention Equation

Output = softmax(QKT)V »

Output = softmax (QKT

di |V
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Representing The Order of The Sequence Using Positional Encoding

 Since self-attention doesn’t build in order information, we need
to encode the order of the sentence in our keys, queries, and

values.
1 Consider representing each sequence index as a vector

p; € RY, fori € {1,2, ..., T} are position vectors

J Easy to incorporate this info into our self-attention block: just

" . I _
add the pi to our inputs! v = B, + Py e ST
~ networks, we do this at the
di = q; + Pi first layer! You could
1. concatenate them as well,
ki — ki + Pj but people mostly just add...
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Position representation vectors through sinusoids

 Sinusoidal position representations: concatenate sinusoidal functions of
varying periods:

(sin(i/100002°1/4)

i 2+1/d
sin(wy.t), ifi=2k cos(z/lo.ooo )

cos(wg.t), ifi=2k+1 .
sin(i/looooz‘gfd)
Cos(i/10000%7/%)

 Pros: Periodicity indicates that maybe “absolute position” isn't as important
1 Cons: Not learnable; also the extrapolation doesn't really work
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Probabéities

Decoder: Masked Multi-Head Self-Attention ==

1 Problem: How do we prevent the decoder from
"cheating"? If we have a language modeling objective,
can't the network just look ahead and "see" the
answer?

J Solution: Masked Multi-Head Attention.

1 At a high-level, we hide (mask) information about future
tokens from the model.

CSCI 5541 NLP M



Masking the future in self-attention

. To use self-attention in decoders, we need to
ensure we can't peek at the future.

] At every timestep, we could change the set of We can look at these (not
. : greyed out) words
keys and queries to include only past words.
- o
(Inefficient!) S e @

J To enable parallelization, we mask out attention (START]
to future words by setting attention scores to -
The

T » M
q; kj,j <1i
—00,j > i Forencoding

these words

e; j = chef

who
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Encoder-Decoder Attention

J We saw that self-attention is when keys, queries,
and values come from the same source.

J In the decoder, we have attention that looks more
like seq2seq with attention.
o Let hy.. hy be output vectors from the Transformer encoder; x; € RT
o Let z;..zy be input vectors from the Transformer decoder, z; € RT
 Then and values are drawn from the encoder
(like @ memory):
o ki= Kh;,v; =Vh;
J And the queries are drawn from the decoder,
di = Qz

EMBEDDING
WITH TIME
SIGMAL

EMBEDDINGS

INPUT

O
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Which word in our vocabulary

. : : Gt am
is associated with this index?
Get the index of the cell
with the highest value ’
(argmax)
log_probs 5 5 5 5 5 5 5
@ 12345 * . vocab_size
( Softmax ) ‘ el | s
4 Encodng QO i
logits Im’«;:m Imrul
12345 ’ VOCBb_S ize Inputs m(i.g::::;m:
C Linear )
Decoder stack output 3 6 T
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Drawback of Transformer
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Drawback of Transformer

] Static positional embedding representations:
o Are simple absolute indices the best we can do to represent position?
o Relative linear position attention [Shaw et al., 2018]
o Dependency syntax-based position [Wang et al., 2019]

] Quadratic compute in self-attention:

o Computing all pairs of interactions (T~2) means our computation grows
quadratically with the sequence length! For recurrent models, it only grew linearly!

o Reduce 0(T"2) all-pairs self-attention cost?

CSCI 5541 NLP




Reduce O(T*2) all-pairs self-attention cost?

J LinFormer (Wang et al., 2020); O(T~2) -> O(T)

o Map the sequence length dimension to a lower-dimensional space for values, keys

5127128 1024764 2048/32 4086116 81928 16384/4 32768/2 65536/
Sequence length £ batch size

K (V)

Linformer

wE oW
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Reduce 0(T~2) all-pairs self-attention cost?

] BigBird (Zaheer et al., 2021)

o Replace all-pairs interactions with a family of other interactions, like local windows,
looking at everything, and random interactions.

)
O O L
O |
- L

“mom"- i

(a) Random attention (b) Window attention (c) Global Attention (d) BIGBIRD
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TRANSFORMER VARIANTS
Lots of focus on reducing the
computational complexity of
transformer models.

Performer
(Choromanski et al., 2020)

Blockwise Transformer

(Qiu et al, 2019)

Image Transformer

(Parmar et al, 2018)
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Transformer-XL
(Dai et al., 2019)

R

Compressive

urrence

Set Transformer

b Transformer
(Rae et al, 2018)
) Memo
LOW Rank / = Memory ry
Linformer A
(Wang et al,, 2020b) Kernels / C?erne?;?fofsd .
A Longformer ~  Routing
/// ETC (Beltagy et al, 2020) \T{‘gqlsnflozl;g;\)er
Linear /’ Synthesizer oo T ‘\\ i
Transformer / e Big Bird \
(Katharopoulos et al. 2020) / (Zaheer et al., 2020) \
/
. - p— I'l
Fixed/Factorized/ = ¢ o |
Random Patterns  Transformer|
(Tay et al, 2020b) ||

| Reformer

/ (Kitaev et al., 2020)

’A
Sparse Transformer /
(Child et al.. 2019) 4

Axial Transformer

(Ho et al, 2019)



Do Transformer Modifications Transfer?

. 'Surprisingly, we find that most modifications do not meaningfully improve performance.”

R A 14T LN RIEPAOEE  LEW Pl (65 T £
[ 55id L
IR

: i Do Transformer Modifications Transfer Across Implementations
i and Applications?
" - Sharan Narang® Hyung Won Chung Yi Tay William Fedus
=B Thibault Fevry!  Michael Matena' Karishma Malkan'!  Noah Fiedel
,,; _ Noam Shazeer Zhenzhong Lan' Yanqgi Zhou Wei Li
Nan Ding Jake Marcus Adam Roberts Colin Raffel
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Scaling up Transformer

Model Layers Width Heads Params Data Training

Transformer-Base 12 512 8 B65M Bx P100 (12 hrs)

Transformer-Large 12 1024 16 213M 8x P100 (3.5 days)

http://hal.cse.msu.edu/teaching/2020-fall-deep-learning/14-nlp-and-transformers/#/2 2/0/¢
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Scaling up Transformer

CSCI 5541 NLP

Model

Transformer-Base

Transformer-Large

BERT-Base

BERT-Large

Width Heads Params Data Training

512 65M 8x P100 (12 hrs)

1024 . 213M 8x P100 (3.5 days)
110M

340M

http://hal.cse.msu.edu/teaching/2020-fall-deep-learning/14-nlp-and-transformers/#/2 2/0/¢
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Scaling up Transformer

Model Width Heads Params Training

Transformer-Base 2 51z 65M Bx P100 (12 hrs)

Transformer-Large : 213M 8x P100 (3.5 days)

BERT-Base : 110M

BERT-Large 2 340M

XLNet-Large P 340M 512x TPU-v3 (2.5 days)
RoBERTa : 355M 0 1024x V100 (1 day)
GPT-2

Megatron-LM 307: : b 512x V100 (9 days)
Turing-NLG B 256 ; ; 256x V100

GPT-3 96 02 96 ?

Brown et al, "Language Models are Few-Shot Learners®, arXiv 2020

http://hal.cse.msu.edu/teaching/2020-fall-deep-learning/14-nlp-and-transformers/#/2 2/0/¢
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Summary

J Transformers are a new neural network model that only uses attention
(and many other training tricks!!)

1 However, the models are extremely expensive

1 Improvements (unfortunately) seem to mostly come from even more
expensive models and more data

 If you can afford large data and large compute, transformers are the go to
architecture, instead of CNNs, RNNs, etc.

o Why? On our way back to fully-connected models, throwing out the inductive bias of
CNNs and RNNs.
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