
CSCI 5541: Natural Language Processing
Lecture 10: Deep Dive on Transformers

Dongyeop Kang (DK), University of Minnesota

dongyeop@umn.edu | twitter.com/dongyeopkang | dykang.github.io

Using some slides borrowed from Anna Goldie (Google Brain) and John Hweitt (Stanford)

mailto:dongyeop@umn.edu
https://twitter.com/dongyeopkang
https://dykang.github.io/

CSCI 5541 NLP 2

ELMo BERT
Stacked Bidirectional RNN trained to predict

next word in language modeling task
Transformer-based model to predict masked word using

bidirectional context and next sentence prediction

(Peters et al., 2018) (Devlin et al., 2019)

I like

I

5.3 8.5 -1 2.1 8.7 -
7

5.3 8.5 -1 2.1 8.7 -
7

like

CSCI 5541 NLP 3

I like natural language processing

5.3 8.5 -1 5.1 2.1 8.7 -7 4.2 9.7 6.1 9.5 9.9 -2 5.2 8.5 6.8 7.3 2.6 3.1 8.3

Weighted sum

Positive / Negative

6.5 2.2 -3. 9.6

y

𝑎1 = 0
𝑎2 = 0.64 𝑎3 = 0.02 𝑎4 = 0.02

𝑎5 = 0.32

𝑥1𝑎1 + 𝑥2𝑎2 + 𝑥3𝑎3 + 𝑥4𝑎4 + 𝑥5𝑎5

CSCI 5541 NLP 4

I like natural

1.5 0,5 0.2 0.6 5 3 -1 0.5 2.1 5 4 -2 1.5 8.1

Token 1, Layer 1 Token 2, Layer 1 Token 3, Layer 1

-.5 3.2 9.2 9.6

Token 1, Layer 2

-.4 9.4 -5. 3.1

Token 2, Layer 2

5.2 1.4 -3. 8.2

Token 3, Layer 2

3.2 1.0 3.8 4.6

Token 1, Layer 3

8.7 4.0 -1. 5.2

Token 2, Layer 3

9.2 4.0 3.3 7.8

Token 3, Layer 3

At the end, we have one representation
for each layer for each token

La
ye

rs
 (L

)
Input Length (T)

CSCI 5541 NLP 5

Summary of Transformers

❑ A sequence-to-sequence model
based entirely on attention

❑ Strong results on translation and a
wide variety of other tasks

❑ Fast: only matrix multiplications

Attention Is All You Need
(Vaswani et al. 2017)

CSCI 5541 NLP 6

Strong results/findings and
applications of Transformers

CSCI 5541 NLP 7

Strong results with Transformers on machine translation

[Test sets: WMT 2014 English-German and English-French]

(Vaswani et al. 2017)

CSCI 5541 NLP 8

Strong results with Transformers on document summarization

WikiSum dataset (Liu et al., 2018)

CSCI 5541 NLP 9

Strong results with (pre-trained) Transformers on classification
tasks

https://paperswithcode.com/

Sentiment classification
on SST-2 dataset

https://paperswithcode.com/

CSCI 5541 NLP 10

Transformers used outside of NLP

Image Classification Protein folding

AlphaFold2 (Jumper et al., 2021)

Vision Transformer (ViT) outperforms ResNet-based baselines
with substantially less compute (Dosovitskiy et al. 2020)

CSCI 5541 NLP 11

Scaling laws
❑With Transformers, language modeling performance improves smoothly as we increase

model size, training data, and computing resources.
❑ This power-law relationship has been observed over multiple orders of magnitude with

no sign of slowing down!

Kaplan et al., 2020, Scaling Laws for Neural Language Models

CSCI 5541 NLP 12

Scaling laws
❑ If we keep scaling up these models (with no change to the architecture), could they

eventually match or exceed human-level performance?

Kaplan et al., 2020, Scaling Laws for Neural Language Models

CSCI 5541 NLP 13

Why self-attention?

CSCI 5541 NLP 14

Recurrence in RNNs

Encoding: Encode input
sentences with bi-directional
LSTM

Decoding: Define your outputs (parse,
sentence, summary) as a sequence/label, and
use LSTM to decode it.

CSCI 5541 NLP 15

Sequence-to-sequence with attention

Use attention to allow flexible
access to input memory

CSCI 5541 NLP 16

Issues with recurrent models: Linear interaction distance

❑Forward RNNs are unrolled “left-to-right”.
❑It encodes linear locality:

o Nearby words often affect each other’s meanings

❑Problem: RNNs take O(sequence length) steps for distant word
pairs to interact

CSCI 5541 NLP 17

Issues with recurrent models: Lack of parallelizability

❑ Forward and backward passes have O(seq length) un-parallelizable
operations
o GPUs (and TPUs) can perform many independent computations at once! But future RNN hidden

states can’t be computed fully before past RNN hidden states have been computed
o Particularly problematic as sequence length increases, as we can no longer batch many examples

together due to memory limitations

Numbers indicate min # of steps before a state can be computed

CSCI 5541 NLP 18

If not recurrence, then what? How about (self) attention?

❑ Attention treats each word’s representation as a query to access and
incorporate information from a set of values.
o We saw attention from the decoder to the encoder;
o Self-attention is encoder-encoder (or decoder-decoder) attention where each word

attends to each other word within the input (or output).

All words attend to all words in
previous layer; most arrows are
omitted

O(seq length) O(Layers)

CSCI 5541 NLP 19

CSCI 5541 NLP 20

Encoder Decoder

Repeat N
times

(number of
layers)

Repeat N
times

(number of
layers)

CSCI 5541 NLP 21

”I went to the store. At the store, I bought fresh strawberries.”

https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb
https://github.com/jessevig/bertviz

https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb
https://github.com/jessevig/bertviz

CSCI 5541 NLP 22

https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb
https://github.com/jessevig/bertviz

https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb
https://github.com/jessevig/bertviz

CSCI 5541 NLP 23

Encoder: Self-Attention
Recap: Attention as a query to access and
incorporate information from a set of values.
Let's think of attention as a "fuzzy" or approximate
hashtable:
❑ To look up a value, we compare a query against keys in a

table.
❑ In a hashtable

o Each query (hash) maps to exactly one key-value pair.
❑ In (self-)attention:

o Each query (token in current layer) matches each key to varying
degrees.

o We return a sum of values (token in previous layer) weighted by
the query-key match (attention score).

CSCI 5541 NLP 24

Encoder: Self-Attention
❑ In (self-)attention: Each query (token in current layer) matches

each key to varying degrees. We return a sum of values (token in
previous layer) weighted by the query-key match (attention score).

I like natural

0.60.20,51.5 2.10.5-15 3 8.11.5-25 4

Token 1, Layer 1 Token 2, Layer 1 Token 3, Layer 1

9.69.23.2-.5

Token 1, Layer 2

query (token in current layer)

values (token in previous layer)

query-key match (attention score)

CSCI 5541 NLP 25

Recipe for Self-Attention in the Transformer Encoder

❑ Step 1: For each word x_i, calculate its query, key, and value.

❑ Step 2: Calculate attention score between query and keys.

❑ Step 3: Take the softmax to normalize attention scores.

❑ Step 4: Take a weighted sum of values.

Model parameters to learn (randomly initialized)

I like natural

0.60.20,51.5 2.10.5-15 3 8.11.5-25 4

Token 1, Layer 1 Token 2, Layer 1 Token 3, Layer 1

9.69.23.2-.5

Token 1, Layer 2

CSCI 5541 NLP 26

Recipe for (Vectorized) Self-Attention in the Transformer Encoder

❑ Step 1: For each word , calculate its query, key, and value.

❑ Step 2: Calculate attention score between query and keys.

❑ Step 3: Take the softmax to normalize attention scores.

❑ Step 4: Take a weighted sum of values.

CSCI 5541 NLP 27

https://jalammar.github.io/illustrated-transformer/

Model parameters to learn (randomly initialized)

https://jalammar.github.io/illustrated-transformer/

CSCI 5541 NLP 28

❑ Step 1: For each word , calculate
its query, key, and value.

https://jalammar.github.io/illustrated-transformer/

https://jalammar.github.io/illustrated-transformer/

CSCI 5541 NLP 29

❑ Step 2: Calculate attention score
between query and keys.

❑ Step 3: Take the softmax to normalize
attention scores.

❑ Step 4: Take a weighted sum of values.

https://jalammar.github.io/illustrated-transformer/

I like natural

0.60.20,51.5 2.10.5-15 3 8.11.5-25 4

Token 1, Layer 1 Token 2, Layer 1 Token 3, Layer 1

9.69.23.2-.5

Token 1, Layer 2

Next layer’s token

embedding for

https://jalammar.github.io/illustrated-transformer/

CSCI 5541 NLP 30

https://jalammar.github.io/illustrated-transformer/

https://jalammar.github.io/illustrated-transformer/

CSCI 5541 NLP 31

Multi-headed self-attention
❑ It gives the attention layer multiple “representation subspaces”
❑Multiple sets of Query/Key/Value weight matrices (Transformer uses eight

attention heads, so we end up with eight sets for each encoder/decoder).
Each of these sets is randomly initialized.

CSCI 5541 NLP 32

Multi-headed self-attention
❑ It gives the attention layer multiple “representation subspaces”
❑Multiple sets of Query/Key/Value weight matrices (Transformer uses eight

attention heads, so we end up with eight sets for each encoder/decoder).
Each of these sets is randomly initialized.

CSCI 5541 NLP 33

Condensing multi-head attentions into a single matrix

https://jalammar.github.io/illustrated-transformer/

Model parameters to learn (randomly initialized)

https://jalammar.github.io/illustrated-transformer/

CSCI 5541 NLP 34

https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb
https://github.com/jessevig/bertviz

https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb
https://github.com/jessevig/bertviz

CSCI 5541 NLP 35

https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb
https://github.com/jessevig/bertviz

https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb
https://github.com/jessevig/bertviz

CSCI 5541 NLP 36

CSCI 5541 NLP 37

Other tricks than attention?

CSCI 5541 NLP 38

But attention isn’t quite all you need!
❑ Problem: Since there are no element-wise non-linearities, self-attention

is simply performing a re-averaging of the value vectors.
❑ Easy fix: Apply a feedforward layer to the output of attention, providing

non-linear activation (and additional expressive power).

Equation for Feed-Forward layer

CSCI 5541 NLP 39

Stacking deep neural nets
❑ Training trick #1: Residual Connections
❑ Training trick #2: LayerNorm
❑ Training trick #3: Scaled Dot Product Attention

Repeat N
times

(number of
layers)

CSCI 5541 NLP 40

Trick #1: Residual Connections [He et al., 2016]

❑ Residual connections are a simple but powerful technique
from computer vision.

❑ Similar to additive connection in LSTM
❑ Directly passing "raw" embeddings to the next layer

prevents the network from "forgetting" or distorting
important information as it is processed by many layers.

CSCI 5541 NLP 41

Trick #2: Layer Normalization [Ba et al., 2016]

❑ Problem: Difficult to train the parameters of a given
layer because its input from the layer beneath keeps
shifting.

❑ Solution: Reduce uninformative variation by
normalizing to zero mean and standard deviation of one
within each layer.

CSCI 5541 NLP 42

Layer norm vs Batch norm

Features
(768)

Sequence Length
(512)

Features
(768)

Sequence Length
(512)

Mini-Batch (32) Mini-Batch (32)

CSCI 5541 NLP 43

https://theaisummer.com/normalization

https://theaisummer.com/normalization

CSCI 5541 NLP 44

Trick #3: Scaled Dot Product Attention

❑ After LayerNorm, the mean and var of vector
elements is 0 and 1, respectively.

❑ But, the dot product still tends to take on
extreme values, as its variance scales with
dimensionality dk

CSCI 5541 NLP 45

Representing The Order of The Sequence Using Positional Encoding

❑ Since self-attention doesn’t build in order information, we need
to encode the order of the sentence in our keys, queries, and
values.

❑ Consider representing each sequence index as a vector

❑ Easy to incorporate this info into our self-attention block: just
add the 𝑝𝑖 to our inputs!

CSCI 5541 NLP 46

Position representation vectors through sinusoids

❑ Sinusoidal position representations: concatenate sinusoidal functions of
varying periods:

❑ Pros: Periodicity indicates that maybe “absolute position” isn’t as important
❑ Cons: Not learnable; also the extrapolation doesn’t really work

CSCI 5541 NLP 47

CSCI 5541 NLP 48

CSCI 5541 NLP 49

Decoder

Repeat N
times

(number of
layers)

CSCI 5541 NLP

Decoder: Masked Multi-Head Self-Attention

❑Problem: How do we prevent the decoder from
"cheating"? If we have a language modeling objective,
can't the network just look ahead and "see" the
answer?

❑ Solution: Masked Multi-Head Attention.
❑ At a high-level, we hide (mask) information about future

tokens from the model.

CSCI 5541 NLP 51

Masking the future in self-attention
❑ To use self-attention in decoders, we need to

ensure we can’t peek at the future.
❑ At every timestep, we could change the set of

keys and queries to include only past words.
(Inefficient!)

❑ To enable parallelization, we mask out attention
to future words by setting attention scores to −∞

We can look at these (not
greyed out) words

For encoding
these words

CSCI 5541 NLP 52

Encoder-Decoder Attention
❑We saw that self-attention is when keys, queries,

and values come from the same source.
❑ In the decoder, we have attention that looks more

like seq2seq with attention.
o Let ℎ1.. ℎ𝑇 be output vectors from the Transformer encoder; 𝑥𝑖 ∈ ℝ𝑇

o Let 𝑧1.. 𝑧𝑇 be input vectors from the Transformer decoder, 𝑧𝑖 ∈ ℝ𝑇

❑ Then keys and values are drawn from the encoder
(like a memory):
o ki = K hi , vi = V hi.

❑ And the queries are drawn from the decoder,
o qi = Qzi

CSCI 5541 NLP 53

CSCI 5541 NLP 54

CSCI 5541 NLP 55

Drawback of Transformer

CSCI 5541 NLP 56

Drawback of Transformer
❑ Static positional embedding representations:

o Are simple absolute indices the best we can do to represent position?
o Relative linear position attention [Shaw et al., 2018]
o Dependency syntax-based position [Wang et al., 2019]

❑ Quadratic compute in self-attention:
o Computing all pairs of interactions (𝑇^2) means our computation grows

quadratically with the sequence length! For recurrent models, it only grew linearly!
o Reduce 𝑂(𝑇^2) all-pairs self-attention cost?

CSCI 5541 NLP 57

Reduce 𝑂(𝑇^2) all-pairs self-attention cost?

❑ LinFormer (Wang et al., 2020); O(T^2) -> O(T)
o Map the sequence length dimension to a lower-dimensional space for values, keys

CSCI 5541 NLP 58

Reduce 𝑂(𝑇^2) all-pairs self-attention cost?

❑ BigBird (Zaheer et al., 2021)
o Replace all-pairs interactions with a family of other interactions, like local windows,

looking at everything, and random interactions.

CSCI 5541 NLP 59

TRANSFORMER VARIANTS
Lots of focus on reducing the
computational complexity of
transformer models.

CSCI 5541 NLP 60

Do Transformer Modifications Transfer?
❑ "Surprisingly, we find that most modifications do not meaningfully improve performance."

CSCI 5541 NLP 61

Scaling up Transformer

http://hal.cse.msu.edu/teaching/2020-fall-deep-learning/14-nlp-and-transformers/#/22/0/9

http://hal.cse.msu.edu/teaching/2020-fall-deep-learning/14-nlp-and-transformers/

CSCI 5541 NLP 62

Scaling up Transformer

http://hal.cse.msu.edu/teaching/2020-fall-deep-learning/14-nlp-and-transformers/#/22/0/9

http://hal.cse.msu.edu/teaching/2020-fall-deep-learning/14-nlp-and-transformers/

CSCI 5541 NLP 63

Scaling up Transformer

http://hal.cse.msu.edu/teaching/2020-fall-deep-learning/14-nlp-and-transformers/#/22/0/9

http://hal.cse.msu.edu/teaching/2020-fall-deep-learning/14-nlp-and-transformers/

CSCI 5541 NLP 64

Summary
❑ Transformers are a new neural network model that only uses attention

(and many other training tricks!!)
❑However, the models are extremely expensive
❑ Improvements (unfortunately) seem to mostly come from even more

expensive models and more data
❑ If you can afford large data and large compute, transformers are the go to

architecture, instead of CNNs, RNNs, etc.
o Why? On our way back to fully-connected models, throwing out the inductive bias of

CNNs and RNNs.

	Slide 1: CSCI 5541: Natural Language Processing
	Slide 2
	Slide 3
	Slide 4
	Slide 5: Summary of Transformers
	Slide 6
	Slide 7: Strong results with Transformers on machine translation
	Slide 8: Strong results with Transformers on document summarization
	Slide 9: Strong results with (pre-trained) Transformers on classification tasks
	Slide 10: Transformers used outside of NLP
	Slide 11: Scaling laws
	Slide 12: Scaling laws
	Slide 13
	Slide 14: Recurrence in RNNs
	Slide 15: Sequence-to-sequence with attention
	Slide 16: Issues with recurrent models: Linear interaction distance
	Slide 17: Issues with recurrent models: Lack of parallelizability
	Slide 18: If not recurrence, then what? How about (self) attention?
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23: Encoder: Self-Attention
	Slide 24: Encoder: Self-Attention
	Slide 25: Recipe for Self-Attention in the Transformer Encoder
	Slide 26: Recipe for (Vectorized) Self-Attention in the Transformer Encoder
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31: Multi-headed self-attention
	Slide 32: Multi-headed self-attention
	Slide 33: Condensing multi-head attentions into a single matrix
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38: But attention isn’t quite all you need!
	Slide 39: Stacking deep neural nets
	Slide 40: Trick #1: Residual Connections [He et al., 2016]
	Slide 41: Trick #2: Layer Normalization [Ba et al., 2016]
	Slide 42: Layer norm vs Batch norm
	Slide 43
	Slide 44: Trick #3: Scaled Dot Product Attention
	Slide 45: Representing The Order of The Sequence Using Positional Encoding
	Slide 46: Position representation vectors through sinusoids
	Slide 47
	Slide 48
	Slide 49
	Slide 50: Decoder: Masked Multi-Head Self-Attention
	Slide 51: Masking the future in self-attention
	Slide 52: Encoder-Decoder Attention
	Slide 53
	Slide 54
	Slide 55
	Slide 56: Drawback of Transformer
	Slide 57: Reduce 𝑂(𝑇^2) all-pairs self-attention cost?
	Slide 58: Reduce 𝑂(𝑇^2) all-pairs self-attention cost?
	Slide 59
	Slide 60: Do Transformer Modifications Transfer?
	Slide 61: Scaling up Transformer
	Slide 62: Scaling up Transformer
	Slide 63: Scaling up Transformer
	Slide 64: Summary

