CSCI5541: Natural Language Processing

Lecture 10: Deep Dive on Transformers

Dongyeop Kang (DK), University of Minnesota $\\\ ESO
N
dongyeop@umn.edu | twitter.com/dongyeopkang | dykang.github.io S Y
> T z
compuTer science .~ . o
& ENGINeering 4s3

Using some slides borrowed from Anna Goldie (Google Brain) and John Hweitt (Stanford)

M UNIVERSITY OF MINNESOTA

Driven to Discovers®

mailto:dongyeop@umn.edu
https://twitter.com/dongyeopkang
https://dykang.github.io/

FLMo BERT ¢

(Peters et al., 2018) h‘) (Devlin et al., 2019)
Stacked Bidirectional RNN trained to predict Transformer-based model to predict masked word using
next word in language modeling task bidirectional context and next sentence prediction
32 10 38 48 ar 40 »2 22 40 [33 T8
e e e e e O N I | R R [to v [roen zinwd | s =
A A
< -3 | 32 B2 | 98 -4 | 94 &2 31 52 14 -3 B2
| —_— like E— = - | — _
| Tobwn t.tmect | IR L Tomn 3 toert |

CSCI 5541 NLP

Positive / Negative ®

y

T

6.5 2.2 =3}, 9.6

X141 + X0y + X343 + XqQy + X50sg

Weighted sum
a; =0 as = 0.32
a7 = 0.64 az = 0.02 a, = 09
53 85 -1 5.1 2.1 8.7 =7 4.2 9.7 6.1 95 99 -2 52 85 6.8 7.3 26 3.1 83
like natural language processing

CSCI 5541 NLP

At the end, we have one representation % U‘DR
for each layer for each token q};

Input Length (T)
\

3.2 1.0 38 46 87 4.0 -1 5.2 9.2 4.0 33 78
Token 1, Layer 3 Token 2, Layer 3 Token 3, Layer 3
——
S
-5 3.2 9.2 9.6 -4 9.4 -5. 3.1 5.2 1.4 -3. 8.2
L _<
GJ Token 1, Layer 2 Token 2, Layer 2 Token 3, Layer 2
1.5 05 0.2 0.6 53 -1 0.5 2.1 54 -2 15 8.1
Token 1, Layer 1 Token 2, Layer 1 Token 3, Layer 1
I like natural

CSCI 5541 NLP

Summary of Transformers

Probabilities
| Softmax)
Attention I; All You Need Unear)
1 A sequence-to-sequence model Weswanietal 2017)
based entirely on attention [,w A
J Strong results on translation and a ~C) | s
Forward T 3 7 N x

wide variety of other tasks — R —

Nx | —(Add& Norm) Masked

 Fast: only matrix multiplications e | ||

Attention Attention
ey S, T)
— 7 &),
Positional Positional
Encodi D s> :
ncoding Encoding
Input Qutput
Embedding Embedding
Inputs Outputs
(shifted right)

CSCI 5541 NLP

Strong results/findings and
applications of Transformers

CSCI 5541 NLP

Strong results with Transformers on machine translation

BLEU Training Cost (FLOPs)

Model
EN-DE EN-FR EN-DE EN-FR

ByteNet [18] 23.75
Deep-Att + PosUnk [39] 39.2 1.0 -10%°
GNMT + RL [38] 24.6 39.92 2.3-1019 1.4-10%
ConvS2S [9] 25.16 40.46 9.6-10% 1.5.10%
MoE [32] 26.03 40.56 2.0-10% 1.2-10%
Deep-Att + PosUnk Ensemble [39] 40.4 8.0 - 10%°
GNMT + RL Ensemble [38] 26.30 41.16 .
ConvS2S Ensemble [9] 41,29
Transformer (base model) 27.3 38.1
Transformer (big) 284 41.8

[Test sets: WMT 2014 English-German and English-French]

(Vaswani et al. 2017)

CSCI 5541 NLP 7 m

Strong results with Transformers on document summarization

Model Test perplexity ROUGE-L
seq2seq-attention, L = 500 5.04952 12.7
Transformer-ED, L = 500 2.46645

Transformer-D, L = 4000
Transformer-DMCA, no MoE-layer, L = 11000 |2.05159
Transformer-DMCA, MoE-128, L = 11000 1.92871
Transformer-DMCA, MoE-256, L = 7500 1.90325

WikiSum dataset (Liu et al., 2018)

CSCI 5541 NLP 8 m

Strong results with (pre-trained) Transformers on classification
tasks

SMART-RoBERTa Large 975 Natura Juage Models through Principled Regularized () : 2019

2 1538 974 _r o9 e RS TSETAMIAWIATIES @ @ 2019 J[wmwerme
MUPPET Roberta Large 7 R e e) 0 5 2021

4 ALBERT o Wl e et O @ 201
Sentiment classification e
on SST-2 dataset : 12ER L oo Tt Tastant 0

6§ StructBERTROBERTa ensemble 974 bR A R e 5 2019

XUNet

{single model)

gr (ST U ‘ ok i 2 0 5 2019
ELECTRA: Pre-trai Text | der ator g
ELECTRA 969: reret s R O 7 2020

EFL 969 Entailment as Few-Shot Learner O 5] 2021 | Tesstormer |

.~ XLNet-Large

{ensembie)

T s S O @ 2019

11 RoBERTa v el s e ot e Rl 9) 2019 [eanstormer

https://paperswithcode.com/

CSCI 5541 NLP

https://paperswithcode.com/

Transformers used outside of NLP

Protein folding Image Classification

Vision Transformer (ViT) outperforms ResNet-based baselines
with substantially less compute (Dosovitskiy et al. 2020)

AlphaFold2 (Jumper et al., 2021)

CSCI 5541 NLP

Scaling laws

] With Transformers, language modeling performance improves smoothly as we increase
model size, training data, and computing resources.

] This power-law relationship has been observed over multiple orders of magnitude with
no sign of slowing down!

7 .
4.2
6 — L={(D/5.4-101%)0095 | 56 —— L=(Nf8.81013)0.076
3.9
4.8
o J
§) 3.6 4.0
e
g 3.3 1.2
=3
3.0
24
L = (Crunf2.3 - 108) 70050
2 . — . . 2.7 ' . " '
10°* 107 1w0F 107° 107! 10 108 10° 109 107 10°
Compute Dataset Size Parameters
PF-days, non-embedding tokens non-embedding

Kaplan et al., 2020, Scaling Laws for Neural Language Models

1 AR

CSCI 5541 NLP

Scaling laws

] If we keep scaling up these models (with no change to the architecture), could they
eventually match or exceed human-level performance?

7 .
4.2
6 — L=(D/5.4-1013)0.095 | 56 —— L=(N/8.B 10130076
3.9
4.8
@ 5
§) 3.6 4.0
e
@ 3.3 3.2
F 3
3.0
24
L = (Crunf2.3 - 108) 0050 \ N
7 . — ' v ¥ . , . . \
10°* 107 10% 107° 107" 10 108 10° 105 107 10° \
Compute N Dataset Size N Parameters N\
PF-days, non-embedding A tokens non-embedding A

A

Kaplan et al., 2020, Scaling Laws for Neural Language Models

12 AR

CSCI 5541 NLP

Why self-attention?

CSCI 5541 NLP

Recurrence in RNINs @cﬂ

i

Encoding: Encode input Decoding: Define your outputs (parse,
sentences with bi-directional sentence, summary) as a sequence/label, and
LSTM use LSTM to decode it.

CSCI 5541 NLP

Sequence-to-sequence with attention o

~ T

HEH

Use attention to allow flexible
access to input memory

CSCI 5541 NLP

. P®
|lssues with recurrent models: Linear interaction distance q,,@“

IForward RNNs are unrolled “left-to-right".

It encodes linear locality:
o Nearby words often affect each other’'s meanings

-

| tasty pizza
JProblem: RNNs take O(sequence length) steps for distant word

pairs to interact

O(sequence length)

)
[|
---I -—-I--u—-
o-oi Hi-o-q—-

The chef who .. ate

Info of chef has gone through
O(sequence length) many layers!

CSCI 5541 NLP

Issues with recurrent models: Lack of parallelizability

 Forward and backward passes have O(seq length) un-parallelizable

operations
o GPUs (and TPUs) can perform many independent computations at once! But future RNN hidden
states can't be computed fully before past RNN hidden states have been computed

o Particularly problematic as sequence length increases, as we can no longer batch many examples
together due to memory limitations

1*2‘5 . see
= Y A\
0-“14‘24\ @ > * 000 —
h:! hz hT

Numbers indicate min # of steps before a state can be computed

CSCI 5541 NLP

If not recurrence, then what? How about (self) attention?

] Attention treats each word's representation as a query to access and
incorporate information from a set of values.

o We saw attention from the decoder to the encoder;

o Self-attention is encoder-encoder (or decoder-decoder) attention where each wor
attends to each other word within the input (or output).

attentionl.

attention

All words attend to all words in
previous layer; most arrows are
omitted

O{seqglength)O(Layers)

embedding

& » 3 2 22 % 2 « Ar & 4 2 82 & 3 L A “

DT T T Output
Probabilities

i3] o 82 a3 T Softmax
T =TT T

Linear

15 as 02 os . ' 7 N\
suin , Ly | Add & Norm '45

Feed
Forward

R | Add & Norm :

attention : 4 1
attention - e AddF& Dok Multi-Head
) BN B E B eed Attention
embedding . I
h; h, h, Fon:vard T 7 Nx
) N
Nix Add & Norm
Add & Norm Masked
Multi-Head
Attention
AT pa—p
- _JJ
Positional ¢ Positional
Encoding Encoding
Input Qutput
Embedding Embedding
Inputs Outputs
(shifted right)

CSCI 5541 NLP

82 & 3

QOutput
Probabilities

2 12 2w

Linear

~
| Add & Norm h

Feed
Forward

| Add & Norm ;
Add & Norm Mult-Head

Feed Attention

Forward
‘ z Decoder
| —
Add & Norm

~»{"Add & Norm) e

15 58 02 00

attention

attention

embedding

Multi-Head Multi-Head
Repeat N Attention Attention R epeat N
tP 3 times
imes — (number of
(number of Positional) Positional layers)
layers) Encoding ‘ Encoding
Input
Embedding

Inputs Outputs
(shifted right)

CSCI 5541 NLP

I

“ went to the store. At the store, | bought fresh strawberries.’

Layer. 2 5 Attention: All =

H "N N N |
[CLS] SINE
' i

m i went went
.: tﬂ‘ tﬂ Positonal 3 (Positionad
m - th'E! thE! e I = put I I (\:xx}r . I e
[e~ | feF store store]]
[] o . . P
= = [SEP] [SEP]
[~] [at at
the the
[e~ Bl <
store store
~ Bl <
s s 2 i i
s € 3 bought bought
Y] o O
£ Q fresh fresh
S § £
L straw straw
##berries ##berries
[SEP] [SEP]

CSCI 5541 NLP

https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb
https://github.com/jessevig/bertviz

Layers

CSCI 5541 NLP

https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb
https://github.com/jessevig/bertviz

Encoder: Self-Attention

Recap: Attention as a query to access and
iIncorporate information from a set of values.

_et's think of attention as a "fuzzy" or approximate = _ & “Ey &7
s e | |
nashtable:
] To look up a value, we compare a query against keys in a . c
table. kl Vi 1
I{z Vv, 2 v,
J In a hashtable e q ;

o Each query (hash) maps to exactly one key-value pair.

J In (self-)attention:

o Each query (token in current layer) matches each key to varying
degrees.

o We return a sum of values (token in previous layer) weighted by

the iueri—kei match ‘attention scorel.

Ea
Ln
UF

34

'hw
=
£
X |IFIFx|IFK|IFxK| x| x
o Lo

&
=

-~
&
=

et

Encoder: Self-Attention

 In (self-)attention: Each query (token in current layer) matches
each key to varying degrees. We return a sum of values (token in =
previous layer) weighted by the query-key match (attention score).

query (token in current layer)

Xqa4 + Xalla + X303y

£t

-5 3.2 9.2 9.6

Token 1, Layer 2

query-key match (attention score)

15 0,5 0.2 0.6 53

=il 0.5 2.1 54 -2

1.5 8.1

Token 1, Layer 1 Token 2, Layer 1

I like

Token 3, Layer 1

natural

values (token in previous layer)

CSCI 5541 NLP

NIV

ST E TR i

L) k- A | ucaEy I 6

Recipe for Self-Attention in the Transformer Encoder

Model parameters to learn (randomly initialized)

I'(0
kl
K, v,
. q K
] Step 2: Calculate attention score between query and keys. K, N
ke Vs
eii =4q;-k; ke
x :x + k7
J Step 3: Take the softmax to normalize attention scores. N o
exp(e;;) R
a;; = softmax(e;;) =
E Exp(elk) ike natural
_ k
] Step 4: Take a weighted sum of values. Output; = Z a;v;
Jj

CSCI 5541 NLP

Recipe for (Vectorized) Self-Attention in the Transformer Encoder

Il Step 1: For each word, calculate its query, key, and value.
Q=XWR K=XWK VvV=XWV

D Step 2: Calculate attention score between query and keys.
E = QKT

J Step 3: Take the softmax to normalize attention scores.
A = softmax(E)

J Step 4: Take a weighted sum of values.

Output = AV

CSCI 5541 NLP

Output = softmax(QKT)V

Model parameters to learn (randomly initialized)

Input Thinking Machines
Embedding X1 X2

Queries q1 qz

Keys

Values V1 V2

https://jalammar.github.io/illustrated-transformer/

27 AN

CSCI 5541 NLP

https://jalammar.github.io/illustrated-transformer/

] Step 1: For each word, calculate X wo Q
its query, key, and value. Thinking

Machines

Q=XW2 K=XWK V=XWVY

https://jalammar.github.io/illustrated-transformer/

28 AR

CSCI 5541 NLP

https://jalammar.github.io/illustrated-transformer/

] Step 2: Calculate attention score
between query and keys.

E = QK a .
Vv
] Step 3: Take the softmax to normalize "
attention scores. softmax ()
A = softmax(E) Vdy
] Step 4: Take a weighted sum of values. = e
Output = AV X103 + x5 + X305
Output = softmax (QK)V
https://jalammar.github.io/illustrated-transformer/

CSCI 5541 NLP

29 AR

https://jalammar.github.io/illustrated-transformer/

ENCODER #2

Qutput

)

Probabiities

o i i

A

1
. (I

A

ENCODER #1

Feed Forward
Neural Network

Acd & Norm

Add & Norm v
Food Anertion
Forward Nx

Feed Forward
Neural Network

Add & Norm

Maskod
Muth-Head
Atention

=T =3,

_‘)

Positional
Encoding

Self-Attention

Inputs Qutputs
{shifted nght)

o 3

I
J) I I

Thinking

CSCI 5541 NLP

Machines

https://jalammar.github.io/illustrated-transformer/

0 AR

https://jalammar.github.io/illustrated-transformer/

Multi-headed self-attention

It gives the attention layer multiple “representation subspaces'’

1 Multiple sets of Query/Key/Value weight matrices (Transformer uses eight
attention heads, so we end up with eight sets for each encoder/decoder).
Each of these sets is randomly initialized.

ATTENTION HEAD #0

CSCI 5541 NLP

Multi-headed self-attention

It gives the attention layer multiple “representation subspaces'’

1 Multiple sets of Query/Key/Value weight matrices (Transformer uses eight
attention heads, so we end up with eight sets for each encoder/decoder).
Each of these sets is randomly initialized.

X

“Jf X

ATTENTION HEAD #0 ATTENTION HEAD #1

Qo Q1

W.o [W.o Calculating attention separately in
1) | 1

eight different attention heads

v

ATTENTION ATTENTION ATTENTION
HEAD #0 HEAD #1 HEAD #7
2 : ;_ur, EEE HL
w w =] El |

CSCI 5541 NLP

Model parameters to learn (randomly initialized)

Condensing multi-head attentions into a single matrix

2) Multiply with a weight
matrix that was trained
jointly with the model

1) Concatenate all the attention heads

"HEE @ EEN @ EEE | EE X
] | |

3) The result would be the = matrix that captures information
from all the attention heads. We can send this forward to the FFNN

- ¥

https://jalammar.github.io/illustrated-transformer/

33 AR

CSCI 5541 NLP

https://jalammar.github.io/illustrated-transformer/

[~
K
K
i
B

Ha

attention
attention

embedding 8 O © B o & @ @

CSCI 5541 NLP

h, h

Layer:| 5 §|Attention:| Input - Input

A

Cross_
the_
street_
because_
it_

ATTENTION
HEAD &0

ATTENTION
HEAD #1

ATTENTION
HEAD &7

https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb
https://github.com/jessevig/bertviz

Layer: EIRY Heac: EIRG Attenton:

[CLS]
the
cat
sat

on
the
mat

[SEP]
the
cat

lay
on

CSCI 5541 NLP

[CLS]
the
cat
sat
on
the
mat
[SEP]
the
cat

lay
on

https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb
https://github.com/jessevig/bertviz

Layer: [N Head: [Attention: [EEEEG—E

Query q q x k (elementwise)

[CLS]
the

@% cat

https //qithub.com/iessevig/bertviz

hitps.//colab. research le. com/github/tensorflowtensor2tensor/blob/master/tensor2tensor/notebooks/hello t2t.ipynb

CSCI 5541 NLP 36 M

Other tricks than attention?

CSCI 5541 NLP 37

But attention isn’t quite all you need!

1 Problem: Since there are no element-wise non-linearities, self-attention
Is simply performing a re-averaging of the value vectors.

A Easy fix: Apply a feedforward layer to the output of attention, providing
non-linear activation (and additional expressive power).

wn \S J)
t t
Equation for Feed-Forward layer
. — m; = MLP(output;)
t t = W, * ReLU(W; X output; + b;) + b,
[)/

CSCI 5541 NLP

Stacking deep neural nets

‘raining tric
‘raining tric

HyEy .

‘raining tric

CSCI 5541 NLP

K #1: Residual Connections
K #2: LayerNorm

K #3: Scaled Dot Product Attention

STACK
MORE
LAYERS

Repeat N
times
(number of
layers)

Alention

Trick #1: Residual Connections [He et al., 2016]

J Residual connections are a simple but powerful technique
from computer vision.

] Similar to additive connection in LSTM

 Directly passing "raw" embeddings to the next layer T T
prevents the network from "forgetting" or distorting
important information as it is processed by many layers.

=5 F Residual connections are WL
xf i (xf —1) + xf -1 also thought to smooth the & &7
loss landscape and make ol sk
training easier! [Loss landscape visualzation,

Lietal, 2018, on a ResNet)

s AR

CSCI 5541 NLP

Trick #2: Layer Normalization [Ba et al., 2016]

J Problem: Difficult to train the parameters of a given
layer because its input from the layer beneath keeps
shifting.

] Solution: Reduce uninformative variation by

normalizing to zero mean and standard deviation of one
within each layer.

H

Qutput
Probabilities

Add & Norm

Feed
Forward
m

IAdd&NO(IT:

Multi-Head
Attention

Masked
Muiti-Head
Attention

1
.

7 Nix
Add & Norm

@

Standard Deviation: o' = \j %Z (af =)

=1

1
Mean: #' =)«

i=1

] E'"""f""“"
Inputs (srg:ggk::;m)
£
. X" —U
£
O €

CSCI 5541 NLP

Layer norm vs Batch norm

Layer Norm Batch Norm
A SN A E——
AN NN
ANERNERN \\
Seque(r;c1ezliength Sequence Length N
, (512) N
N
N
N
N
Features Features
(768) > (768) >
Mini-Batch (32) Mini-Batch (32)

CSCI 5541 NLP

Layer Norm

Batch Norm Group Normalization

A A A .
\ \ D
Merged Spatial Merged Spatial =N —
erged Spatia er atia S
Dimensions (HW) Dimensions (H,W) O"ﬁ:g:g;pﬁ:% S .
Channels C Channels C Channels C
» >
Mini-Batch Samples N Mini-Batch Samples N Mini-Batch Samples N
Instance Norm
The 3D weight of a 60 | val error
conv layer
A A — Batch Norm (BN)
=N 551 ——Layer Norm (LN)
Merged Spatial Kemel size
Dimensions (H.W) Instance Norm (IN)
50 — Group Norm (GN)
45
E’;;
Channels C Output = 40
> channels > £
o
Mini-Batch Samples N 15 -
Input channels -
_}n -
25 F
qﬂ L 1 | Il 1 1 i 1
0 10 20 30 40 50 60 T0 g0 Q0 100

CSCI 5541 NLP

epochs

3 AR

https://theaisummer.com/normalization

Trick #3: Scaled Dot Product Attention

J After LayerNorm, the mean and var of vector e

elementsis 0 and 1, respectively.
J But, the dot product still tends to take on

extreme values, as its variance scales with

dimensionality dx

t

MatMul

SoftMax
)
Mask (opt.)

MatMul

I

Q K V

Updated Self-Attention Equation

Output = softmax(QKT)V »

Output = softmax (QKT

di |V

CSCI 5541 NLP

Representing The Order of The Sequence Using Positional Encoding

 Since self-attention doesn’t build in order information, we need
to encode the order of the sentence in our keys, queries, and

values.
1 Consider representing each sequence index as a vector

p; € RY, fori € {1,2, ..., T} are position vectors

J Easy to incorporate this info into our self-attention block: just

" . I _
add the pi to our inputs! v = B, + Py e ST
~ networks, we do this at the
di = q; + Pi first layer! You could
1. concatenate them as well,
ki — ki + Pj but people mostly just add...

CSCI 5541 NLP

Position representation vectors through sinusoids

 Sinusoidal position representations: concatenate sinusoidal functions of
varying periods:

(sin(i/100002°1/4)

i 2+1/d
sin(wy.t), ifi=2k cos(z/lo.ooo)

cos(wg.t), ifi=2k+1 .
sin(i/looooz‘gfd)
Cos(i/10000%7/%)

 Pros: Periodicity indicates that maybe “absolute position” isn't as important
1 Cons: Not learnable; also the extrapolation doesn't really work

CSCI 5541 NLP

.
31 ST
1111
nmialatatiiints
IR IAATAIAS

HH———————
i A

A A A A TR
A R R A B
IR R L R

i L
I

c
R~
wv
c
@
E
o
o
£
o
°
@
Q
£
w

IR LTI RAR A LR
R L

|

JAfH
LM U

AOAAARAALLLLALERAEARALLLLLAERAERAY

uonIsod

47

CSCI 5541 NLP

CSCI 5541 NLP

ENCODER #1

I

DECODER #1

ENCODER #0

N\

DECODER #0

EMBEDDING
WITH TIME
SIGNAL

POSITIONAL
ENCODING

EMBEDDINGS

INPUT

Output
Probabilities

Linear

| Add & Norm '45

Feed
Forward

R | Add & Norm z

|
L Add & Norm Multi-Head

Feed Attention

Forward
‘ 2= Decoder
) N
Add & Norm

Nx
¢—>| Add & Norm | Masked

Multi-Head Multi-Head
Attention Attention

AT)

. J/

Positional D
Encoding

-

Repeat N
times
(number of
layers)

Input
Embedding

I

Inputs Outputs
(shifted right)

CSCI 5541 NLP

Probabéities

Decoder: Masked Multi-Head Self-Attention ==

1 Problem: How do we prevent the decoder from
"cheating"? If we have a language modeling objective,
can't the network just look ahead and "see" the
answer?

J Solution: Masked Multi-Head Attention.

1 At a high-level, we hide (mask) information about future
tokens from the model.

CSCI 5541 NLP M

Masking the future in self-attention

. To use self-attention in decoders, we need to
ensure we can't peek at the future.

] At every timestep, we could change the set of We can look at these (not
. : greyed out) words
keys and queries to include only past words.
- o
(Inefficient!) S e @

J To enable parallelization, we mask out attention (START]
to future words by setting attention scores to -
The

T » M
q; kj,j <1i
—00,j > i Forencoding

these words

e; j = chef

who

CSCI 5541 NLP

Encoder-Decoder Attention

J We saw that self-attention is when keys, queries,
and values come from the same source.

J In the decoder, we have attention that looks more
like seq2seq with attention.
o Let hy.. hy be output vectors from the Transformer encoder; x; € RT
o Let z;..zy be input vectors from the Transformer decoder, z; € RT
 Then and values are drawn from the encoder
(like @ memory):
o ki= Kh;,v; =Vh;
J And the queries are drawn from the decoder,
di = Qz

EMBEDDING
WITH TIME
SIGMAL

EMBEDDINGS

INPUT

O

CSCI 5541 NLP

Decoding time step: 1(2)3 4 5 &

At

........

Encodng

' B
K (L softma)
o t
‘ ENCODERS] [DECODERS
LN
4 t + +

|

0oOOO O O O
PREVIOUS
UUUUU TS

ASd & Norm

[Ac3 8 Norm |

Nasgec
Muti-Heact

Aeverton
LN J
——
Positional Positionad
Encodng Encodng

logits iR e I =) =)

0 1234 5 * . Vvocab_size Inguts Outputs

C Linear)

*
Decoder stack output i 5 (5

CSCI 5541 NLP

Which word in our vocabulary

. : : Gt am
is associated with this index?
Get the index of the cell
with the highest value ’
(argmax)
log_probs 5 5 5 5 5 5 5
@ 12345 * . vocab_size
(Softmax) ‘ el | s
4 Encodng QO i
logits Im’«;:m Imrul
12345 ’ VOCBb_S ize Inputs m(i.g::::;m:
C Linear)
Decoder stack output 3 6 T

CSCI 5541 NLP

Drawback of Transformer

CSCI 5541 NLP

Drawback of Transformer

] Static positional embedding representations:
o Are simple absolute indices the best we can do to represent position?
o Relative linear position attention [Shaw et al., 2018]
o Dependency syntax-based position [Wang et al., 2019]

] Quadratic compute in self-attention:

o Computing all pairs of interactions (T~2) means our computation grows
quadratically with the sequence length! For recurrent models, it only grew linearly!

o Reduce 0(T"2) all-pairs self-attention cost?

CSCI 5541 NLP

Reduce O(T*2) all-pairs self-attention cost?

J LinFormer (Wang et al., 2020); O(T~2) -> O(T)

o Map the sequence length dimension to a lower-dimensional space for values, keys

5127128 1024764 2048/32 4086116 81928 16384/4 32768/2 65536/
Sequence length £ batch size

K (V)

Linformer

wE oW

CSCI 5541 NLP

Reduce 0(T~2) all-pairs self-attention cost?

] BigBird (Zaheer et al., 2021)

o Replace all-pairs interactions with a family of other interactions, like local windows,
looking at everything, and random interactions.

)
O O L
O |
- L

“mom"- i

(a) Random attention (b) Window attention (c) Global Attention (d) BIGBIRD

CSCI 5541 NLP

TRANSFORMER VARIANTS
Lots of focus on reducing the
computational complexity of
transformer models.

Performer
(Choromanski et al., 2020)

Blockwise Transformer

(Qiu et al, 2019)

Image Transformer

(Parmar et al, 2018)

CSCI 5541 NLP

Transformer-XL
(Dai et al., 2019)

R

Compressive

urrence

Set Transformer

b Transformer
(Rae et al, 2018)
) Memo
LOW Rank / = Memory ry
Linformer A
(Wang et al,, 2020b) Kernels / C?erne?;?fofsd .
A Longformer ~ Routing
/// ETC (Beltagy et al, 2020) \T{‘gqlsnflozl;g;\)er
Linear /’ Synthesizer oo T ‘\\ i
Transformer / e Big Bird \
(Katharopoulos et al. 2020) / (Zaheer et al., 2020) \
/
. - p— I'l
Fixed/Factorized/ = ¢ o |
Random Patterns Transformer|
(Tay et al, 2020b) ||

| Reformer

/ (Kitaev et al., 2020)

’A
Sparse Transformer /
(Child et al.. 2019) 4

Axial Transformer

(Ho et al, 2019)

Do Transformer Modifications Transfer?

. 'Surprisingly, we find that most modifications do not meaningfully improve performance.”

R A 14T LN RIEPAOEE LEW Pl (65 T £
[55id L
IR

: i Do Transformer Modifications Transfer Across Implementations
i and Applications?
" - Sharan Narang® Hyung Won Chung Yi Tay William Fedus
=B Thibault Fevry! Michael Matena' Karishma Malkan'! Noah Fiedel
,,; _ Noam Shazeer Zhenzhong Lan' Yanqgi Zhou Wei Li
Nan Ding Jake Marcus Adam Roberts Colin Raffel

CSCI 5541 NLP

Scaling up Transformer

Model Layers Width Heads Params Data Training

Transformer-Base 12 512 8 B65M Bx P100 (12 hrs)

Transformer-Large 12 1024 16 213M 8x P100 (3.5 days)

http://hal.cse.msu.edu/teaching/2020-fall-deep-learning/14-nlp-and-transformers/#/2 2/0/¢

61

CSCI 5541 NLP

http://hal.cse.msu.edu/teaching/2020-fall-deep-learning/14-nlp-and-transformers/

Scaling up Transformer

CSCI 5541 NLP

Model

Transformer-Base

Transformer-Large

BERT-Base

BERT-Large

Width Heads Params Data Training

512 65M 8x P100 (12 hrs)

1024 . 213M 8x P100 (3.5 days)
110M

340M

http://hal.cse.msu.edu/teaching/2020-fall-deep-learning/14-nlp-and-transformers/#/2 2/0/¢

62 MR

http://hal.cse.msu.edu/teaching/2020-fall-deep-learning/14-nlp-and-transformers/

Scaling up Transformer

Model Width Heads Params Training

Transformer-Base 2 51z 65M Bx P100 (12 hrs)

Transformer-Large : 213M 8x P100 (3.5 days)

BERT-Base : 110M

BERT-Large 2 340M

XLNet-Large P 340M 512x TPU-v3 (2.5 days)
RoBERTa : 355M 0 1024x V100 (1 day)
GPT-2

Megatron-LM 307: : b 512x V100 (9 days)
Turing-NLG B 256 ; ; 256x V100

GPT-3 96 02 96 ?

Brown et al, "Language Models are Few-Shot Learners®, arXiv 2020

http://hal.cse.msu.edu/teaching/2020-fall-deep-learning/14-nlp-and-transformers/#/2 2/0/¢

CSCI 5541 NLP 63 M.

http://hal.cse.msu.edu/teaching/2020-fall-deep-learning/14-nlp-and-transformers/

Summary

J Transformers are a new neural network model that only uses attention
(and many other training tricks!!)

1 However, the models are extremely expensive

1 Improvements (unfortunately) seem to mostly come from even more
expensive models and more data

 If you can afford large data and large compute, transformers are the go to
architecture, instead of CNNs, RNNs, etc.

o Why? On our way back to fully-connected models, throwing out the inductive bias of
CNNs and RNNs.

CSCI 5541 NLP

	Slide 1: CSCI 5541: Natural Language Processing
	Slide 2
	Slide 3
	Slide 4
	Slide 5: Summary of Transformers
	Slide 6
	Slide 7: Strong results with Transformers on machine translation
	Slide 8: Strong results with Transformers on document summarization
	Slide 9: Strong results with (pre-trained) Transformers on classification tasks
	Slide 10: Transformers used outside of NLP
	Slide 11: Scaling laws
	Slide 12: Scaling laws
	Slide 13
	Slide 14: Recurrence in RNNs
	Slide 15: Sequence-to-sequence with attention
	Slide 16: Issues with recurrent models: Linear interaction distance
	Slide 17: Issues with recurrent models: Lack of parallelizability
	Slide 18: If not recurrence, then what? How about (self) attention?
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23: Encoder: Self-Attention
	Slide 24: Encoder: Self-Attention
	Slide 25: Recipe for Self-Attention in the Transformer Encoder
	Slide 26: Recipe for (Vectorized) Self-Attention in the Transformer Encoder
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31: Multi-headed self-attention
	Slide 32: Multi-headed self-attention
	Slide 33: Condensing multi-head attentions into a single matrix
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38: But attention isn’t quite all you need!
	Slide 39: Stacking deep neural nets
	Slide 40: Trick #1: Residual Connections [He et al., 2016]
	Slide 41: Trick #2: Layer Normalization [Ba et al., 2016]
	Slide 42: Layer norm vs Batch norm
	Slide 43
	Slide 44: Trick #3: Scaled Dot Product Attention
	Slide 45: Representing The Order of The Sequence Using Positional Encoding
	Slide 46: Position representation vectors through sinusoids
	Slide 47
	Slide 48
	Slide 49
	Slide 50: Decoder: Masked Multi-Head Self-Attention
	Slide 51: Masking the future in self-attention
	Slide 52: Encoder-Decoder Attention
	Slide 53
	Slide 54
	Slide 55
	Slide 56: Drawback of Transformer
	Slide 57: Reduce 𝑂(𝑇^2) all-pairs self-attention cost?
	Slide 58: Reduce 𝑂(𝑇^2) all-pairs self-attention cost?
	Slide 59
	Slide 60: Do Transformer Modifications Transfer?
	Slide 61: Scaling up Transformer
	Slide 62: Scaling up Transformer
	Slide 63: Scaling up Transformer
	Slide 64: Summary

