
CSCI 5541: Natural Language Processing
Lecture 10: Deep Dive on Transformers

Dongyeop Kang (DK), University of Minnesota

dongyeop@umn.edu | twitter.com/dongyeopkang |  dykang.github.io

Using some slides borrowed from Anna Goldie (Google Brain) and John Hweitt (Stanford)

mailto:dongyeop@umn.edu
https://twitter.com/dongyeopkang
https://dykang.github.io/


CSCI 5541 NLP 2

ELMo BERT
Stacked Bidirectional RNN trained to predict 

next word in language modeling task
Transformer-based model to predict masked word using 

bidirectional context and next sentence prediction

(Peters et al., 2018) (Devlin et al., 2019)
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I like natural language processing
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I like natural
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Summary of Transformers

❑ A sequence-to-sequence model 
based entirely on attention

❑ Strong results on translation and a 
wide variety of other tasks

❑ Fast: only matrix multiplications

Attention Is All You Need 
(Vaswani et al. 2017)
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Strong results/findings and 
applications of Transformers
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Strong results with Transformers on machine translation

[Test sets: WMT 2014 English-German and English-French]

(Vaswani et al. 2017)
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Strong results with Transformers on document summarization

WikiSum dataset (Liu et al., 2018)
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Strong results with (pre-trained) Transformers on classification 
tasks

https://paperswithcode.com/

Sentiment classification 
on SST-2 dataset

https://paperswithcode.com/
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Transformers used outside of NLP

Image Classification Protein folding

AlphaFold2 (Jumper et al., 2021)

Vision Transformer (ViT) outperforms ResNet-based baselines 
with substantially less compute (Dosovitskiy et al. 2020)
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Scaling laws
❑With Transformers, language modeling performance improves smoothly as we increase 

model size, training data, and computing resources.
❑ This power-law relationship has been observed over multiple orders of magnitude with 

no sign of slowing down! 

Kaplan et al., 2020, Scaling Laws for Neural Language Models
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Scaling laws
❑ If we keep scaling up these models (with no change to the architecture), could they 

eventually match or exceed human-level performance?

Kaplan et al., 2020, Scaling Laws for Neural Language Models
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Why self-attention?
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Recurrence in RNNs

Encoding: Encode input 
sentences with bi-directional 
LSTM

Decoding: Define your outputs (parse, 
sentence, summary) as a sequence/label, and 
use LSTM to decode it.
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Sequence-to-sequence with attention

Use attention to allow flexible 
access to input memory
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Issues with recurrent models: Linear interaction distance

❑Forward RNNs are unrolled “left-to-right”.
❑It encodes linear locality:

o Nearby words often affect each other’s meanings

❑Problem: RNNs take O(sequence length) steps for distant word 
pairs to interact
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Issues with recurrent models: Lack of parallelizability

❑ Forward and backward passes have O(seq length) un-parallelizable 
operations
o GPUs (and TPUs) can perform many independent computations at once! But future RNN hidden 

states can’t be computed fully before past RNN hidden states have been computed
o Particularly problematic as sequence length increases, as we can no longer batch many examples 

together due to memory limitations

Numbers indicate min # of steps before a state can be computed
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If not recurrence, then what? How about (self) attention?

❑ Attention treats each word’s representation as a query to access and 
incorporate information from a set of values. 
o We saw attention from the decoder to the encoder; 
o Self-attention is encoder-encoder (or decoder-decoder) attention where each word 

attends to each other word within the input (or output).

All words attend to all words in 
previous layer; most arrows are 
omitted

O(seq length) O(Layers)
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Encoder Decoder

Repeat N 
times 

(number of 
layers)

Repeat N 
times 

(number of 
layers)
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”I went to the store. At the store, I bought fresh strawberries.”

https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb
https://github.com/jessevig/bertviz

https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb
https://github.com/jessevig/bertviz
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https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb
https://github.com/jessevig/bertviz

https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb
https://github.com/jessevig/bertviz
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Encoder: Self-Attention
Recap: Attention as a query to access and 
incorporate information from a set of values. 
Let's think of attention as a "fuzzy" or approximate 
hashtable: 
❑ To look up a value, we compare a query against keys in a 

table. 
❑ In a hashtable

o Each query (hash) maps to exactly one key-value pair. 
❑ In (self-)attention: 

o Each query (token in current layer) matches each key to varying 
degrees. 

o We return a sum of values (token in previous layer) weighted by 
the query-key match (attention score).
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Encoder: Self-Attention
❑ In (self-)attention: Each query (token in current layer) matches 

each key to varying degrees. We return a sum of values (token in 
previous layer) weighted by the query-key match (attention score).

I like natural
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Recipe for Self-Attention in the Transformer Encoder

❑ Step 1: For each word x_i, calculate its query, key, and value.

❑ Step 2: Calculate attention score between query and keys.

❑ Step 3: Take the softmax to normalize attention scores.

❑ Step 4: Take a weighted sum of values.

Model parameters to learn (randomly initialized)

I like natural
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Recipe for (Vectorized) Self-Attention in the Transformer Encoder

❑ Step 1: For each word , calculate its query, key, and value.

❑ Step 2: Calculate attention score between query and keys.

❑ Step 3: Take the softmax to normalize attention scores.

❑ Step 4: Take a weighted sum of values.
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https://jalammar.github.io/illustrated-transformer/

Model parameters to learn (randomly initialized)

https://jalammar.github.io/illustrated-transformer/
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❑ Step 1: For each word , calculate 
its query, key, and value.

https://jalammar.github.io/illustrated-transformer/

https://jalammar.github.io/illustrated-transformer/
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❑ Step 2: Calculate attention score 
between query and keys.

❑ Step 3: Take the softmax to normalize 
attention scores.

❑ Step 4: Take a weighted sum of values.

https://jalammar.github.io/illustrated-transformer/

I like natural
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Next layer’s token 

embedding for 

https://jalammar.github.io/illustrated-transformer/
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https://jalammar.github.io/illustrated-transformer/

https://jalammar.github.io/illustrated-transformer/
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Multi-headed self-attention
❑ It gives the attention layer multiple “representation subspaces”
❑Multiple sets of Query/Key/Value weight matrices (Transformer uses eight 

attention heads, so we end up with eight sets for each encoder/decoder). 
Each of these sets is randomly initialized.
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Multi-headed self-attention
❑ It gives the attention layer multiple “representation subspaces”
❑Multiple sets of Query/Key/Value weight matrices (Transformer uses eight 

attention heads, so we end up with eight sets for each encoder/decoder). 
Each of these sets is randomly initialized.
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Condensing multi-head attentions into a single matrix

https://jalammar.github.io/illustrated-transformer/

Model parameters to learn (randomly initialized)

https://jalammar.github.io/illustrated-transformer/
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https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb
https://github.com/jessevig/bertviz

https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb
https://github.com/jessevig/bertviz
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https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb
https://github.com/jessevig/bertviz

https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb
https://github.com/jessevig/bertviz
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Other tricks than attention?
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But attention isn’t quite all you need!
❑ Problem: Since there are no element-wise non-linearities, self-attention 

is simply performing a re-averaging of the value vectors.
❑ Easy fix: Apply a feedforward layer to the output of attention, providing 

non-linear activation (and additional expressive power).

Equation for Feed-Forward layer
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Stacking deep neural nets
❑ Training trick #1: Residual Connections
❑ Training trick #2: LayerNorm
❑ Training trick #3: Scaled Dot Product Attention

Repeat N 
times 

(number of 
layers)



CSCI 5541 NLP 40

Trick #1: Residual Connections [He et al., 2016]

❑ Residual connections are a simple but powerful technique 
from computer vision. 

❑ Similar to additive connection in LSTM
❑ Directly passing "raw" embeddings to the next layer 

prevents the network from "forgetting" or distorting 
important information as it is processed by many layers.
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Trick #2: Layer Normalization [Ba et al., 2016]

❑ Problem: Difficult to train the parameters of a given 
layer because its input from the layer beneath keeps 
shifting. 

❑ Solution: Reduce uninformative variation by 
normalizing to zero mean and standard deviation of one 
within each layer.
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Layer norm vs Batch norm

Features
(768)

Sequence Length
(512)

Features
(768)

Sequence Length
(512)

Mini-Batch (32) Mini-Batch (32)
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https://theaisummer.com/normalization

https://theaisummer.com/normalization
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Trick #3: Scaled Dot Product Attention

❑ After LayerNorm, the mean and var of vector 
elements is 0 and 1, respectively.

❑ But, the dot product still tends to take on 
extreme values, as its variance scales with 
dimensionality dk
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Representing The Order of The Sequence Using Positional Encoding

❑ Since self-attention doesn’t build in order information, we need 
to encode the order of the sentence in our keys, queries, and 
values.

❑ Consider representing each sequence index as a vector

❑ Easy to incorporate this info into our self-attention block: just 
add the 𝑝𝑖 to our inputs! 
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Position representation vectors through sinusoids

❑ Sinusoidal position representations: concatenate sinusoidal functions of 
varying periods:

❑ Pros: Periodicity indicates that maybe “absolute position” isn’t as important 
❑ Cons: Not learnable; also the extrapolation doesn’t really work
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Decoder

Repeat N 
times 

(number of 
layers)
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Decoder: Masked Multi-Head Self-Attention

❑Problem: How do we prevent the decoder from 
"cheating"? If we have a language modeling objective, 
can't the network just look ahead and "see" the 
answer? 

❑ Solution: Masked Multi-Head Attention. 
❑ At a high-level, we hide (mask) information about future 

tokens from the model.
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Masking the future in self-attention
❑ To use self-attention in decoders, we need to 

ensure we can’t peek at the future. 
❑ At every timestep, we could change the set of 

keys and queries to include only past words. 
(Inefficient!) 

❑ To enable parallelization, we mask out attention 
to future words by setting  attention scores to −∞

We can look at these (not 
greyed out) words

For encoding 
these words
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Encoder-Decoder Attention
❑We saw that self-attention is when keys, queries, 

and values come from the same source. 
❑ In the decoder, we have attention that looks more 

like seq2seq with attention. 
o Let ℎ1.. ℎ𝑇 be output vectors from the Transformer encoder; 𝑥𝑖 ∈ ℝ𝑇

o Let 𝑧1.. 𝑧𝑇 be input vectors from the Transformer decoder, 𝑧𝑖 ∈ ℝ𝑇

❑ Then keys and values are drawn from the encoder
(like a memory): 
o ki = K hi , vi = V hi. 

❑ And the queries are drawn from the decoder, 
o qi = Qzi
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Drawback of Transformer
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Drawback of Transformer
❑ Static positional embedding representations: 

o Are simple absolute indices the best we can do to represent position? 
o Relative linear position attention [Shaw et al., 2018] 
o Dependency syntax-based position [Wang et al., 2019]

❑ Quadratic compute in self-attention: 
o Computing all pairs of interactions (𝑇^2) means our computation grows 

quadratically with the sequence length! For recurrent models, it only grew linearly! 
o Reduce 𝑂(𝑇^2) all-pairs self-attention cost?
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Reduce 𝑂(𝑇^2) all-pairs self-attention cost?

❑ LinFormer (Wang et al., 2020); O(T^2) -> O(T)
o Map the sequence length dimension to a lower-dimensional space for values, keys
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Reduce 𝑂(𝑇^2) all-pairs self-attention cost?

❑ BigBird (Zaheer et al., 2021)
o Replace all-pairs interactions with a family of other interactions, like local windows, 

looking at everything, and random interactions.
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TRANSFORMER VARIANTS
Lots of focus on reducing the 
computational complexity of 
transformer models.
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Do Transformer Modifications Transfer?
❑ "Surprisingly, we find that most modifications do not meaningfully improve performance."
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Scaling up Transformer

http://hal.cse.msu.edu/teaching/2020-fall-deep-learning/14-nlp-and-transformers/#/22/0/9

http://hal.cse.msu.edu/teaching/2020-fall-deep-learning/14-nlp-and-transformers/
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Scaling up Transformer

http://hal.cse.msu.edu/teaching/2020-fall-deep-learning/14-nlp-and-transformers/#/22/0/9

http://hal.cse.msu.edu/teaching/2020-fall-deep-learning/14-nlp-and-transformers/
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Scaling up Transformer

http://hal.cse.msu.edu/teaching/2020-fall-deep-learning/14-nlp-and-transformers/#/22/0/9

http://hal.cse.msu.edu/teaching/2020-fall-deep-learning/14-nlp-and-transformers/
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Summary
❑ Transformers are a new neural network model that only uses attention 

(and many other training tricks!!)
❑However, the models are extremely expensive
❑ Improvements (unfortunately) seem to mostly come from even more 

expensive models and more data
❑ If you can afford large data and large compute, transformers are the go to 

architecture, instead of CNNs, RNNs, etc. 
o Why? On our way back to fully-connected models, throwing out the inductive bias of 

CNNs and RNNs.
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