
CSCI 5541: Natural Language Processing
Lecture 13: Instructing and augmenting LLMs

Slides are made by Zae Myung Kim (https://zaemyung.github.io/)

Dongyeop Kang (DK), University of Minnesota

dongyeop@umn.edu | twitter.com/dongyeopkang | dykang.github.io

https://zaemyung.github.io/
mailto:dongyeop@umn.edu
https://twitter.com/dongyeopkang
https://dykang.github.io/

CSCI 5541 NLP 2

Instruction Tuning

CSCI 5541 NLP 3

Language models are not aligned with user intent [Ouyang et al., 2022].

https://arxiv.org/abs/2203.02155

CSCI 5541 NLP 4

Language models are not aligned with user intent [Ouyang et al., 2022].

→ We can finetune it with responses we want!

https://arxiv.org/abs/2203.02155

CSCI 5541 NLP 5

Recap on pretrain-finetune paradigm

Source: cs224n, Stanford

❑ Pretraining can greatly improve performances on downstream NLP tasks

by serving as parameter initialization.

Step 1: Pretrain (via language modeling)

Lots of text; learn general things!

Step 2: Finetune (on your task)

Not many labels; adapt to the task!

CSCI 5541 NLP 6

Scaling up finetuning

Source: cs224n, Stanford

❑ Pretraining can greatly improve performances on downstream NLP tasks

by serving as parameter initialization.

Step 1: Pretrain (via language modeling)

Lots of text; learn general things!

Step 2: Finetune (on many tasks)

Many labels; adapt to many tasks!

CSCI 5541 NLP

❑ Collect examples of ((instruction, input), output) pairs across many tasks

and finetune an LM and evaluate on unseen tasks

7

Instruction finetuning

[FLAN-T5; Chung et al., 2022]

https://arxiv.org/abs/2210.11416

CSCI 5541 NLP 8

Instruction finetuning vs. standard finetuning
❑ The main difference lies in the data that the model is trained on

o Standard supervised finetuning trains models on input examples and their
corresponding outputs.

o Instruction finetuning augments input-output examples with instructions, which
enables instruction-tuned models to generalize more easily to new tasks.

[Wei et al., 2022]

https://openreview.net/forum?id=gEZrGCozdqR

CSCI 5541 NLP

❑ 62 NLP datasets

❑ 12 “task clusters”

9

Instruction finetuning

[FLAN-T5; Chung et al., 2022]

https://arxiv.org/abs/2210.11416

CSCI 5541 NLP

❑ Natural instruction templates for each task

10

Instruction finetuning templates

[FLAN-T5; Chung et al., 2022]

https://arxiv.org/abs/2210.11416

CSCI 5541 NLP 11

Instruction pretraining?
❑ Scaling up data and model improves performance.
❑ SuperNaturalInstructions dataset contains over 1.6K tasks, 3M+ examples

[Wang et al., 2022]

https://arxiv.org/abs/2210.11416

CSCI 5541 NLP 12

Or less is more?
❑ “LIMA – Less Is More for Alignment” (Zhou et al. 2023)
❑ Authors report that LLaMa 65B model finetuned on a collection of high quality and

diverse 1,000 samples are enough to beat models trained on much larger instruction
datasets.

https://arxiv.org/abs/2305.11206

CSCI 5541 NLP 13

General-purpose (left) vs Task-specific (right) Instruction Tuning

Densifying the task distribution to strictly instructions within the text revision domain can largely
improve model performance for revision tasks over scaling model size with general instructions

[Raheja et al., EMNLP Findings 23]

Sparse task distribution

Translate to
French

Summarize
this text

Generalize to composite & unseen tasks

Make text
coherent

Neutralize text

Rewrite easier to
understand

Dense task distribution

Paraphrase this

Make text readable and
coherent

Make text more
polite

CSCI 5541 NLP 14

User-driven Revision (CoEdIT)

[Raheja et al., EMNLP Findings 23]

Conversational Text Editing via Instruction Tuning

CSCI 5541 NLP 15

Quantitative Evaluations of Text Revision Models

CoEdIT’s task specific instruction tuning
largely outperforms most generally
instruction-tuned models

Overall, CoEdIT generates better text edits
than models that are even 60x larger

[Raheja et al., EMNLP Findings 23]

CSCI 5541 NLP 16

CoEdit on HuggingFace

https://huggingface.co/grammarly/coedit-large

from transformers import AutoTokenizer,

T5ForConditionalGeneration

tokenizer =

AutoTokenizer.from_pretrained("grammarly/coedit-large")

model =

T5ForConditionalGeneration.from_pretrained("grammarly/coe

dit-large")

input_text = 'Fix grammatical errors in this sentence:

When I grow up, I start to understand what he said is

quite right.'

input_ids = tokenizer(input_text,

return_tensors="pt").input_ids

outputs = model.generate(input_ids, max_length=256)

edited_text = tokenizer.decode(outputs[0],

skip_special_tokens=True)

[Raheja et al., EMNLP Findings 23]

https://huggingface.co/grammarly/coedit-large

CSCI 5541 NLP 17

Augmented Language Models

CSCI 5541 NLP 18

Weakness of LLMs
❑ Pre-trained LLMs struggle at completing tasks that require:

o Latest knowledge after the model pretraining time cutoff or

o Knowledge with internal/private knowledge base

o Symbolic or other deterministic execution capabilities

❑ These issues stem from their fundamental limitations:

o They are trained to perform statistical modeling given a single parametric model

and a limited context

o Their main objective function, the next token prediction task, does not cater for

explicit symbolic capabilities

CSCI 5541 NLP 19

Augmented Language Models
❑ Recent trend is to move slightly away from the purely statistical

language modeling and integrate external components

o So that a more relevant context is produced at the cost of more computation

o Resulting in non-parametric models

❑ An augmentation can be viewed in three dimensions: [Mialon et al. 2023]

o Reasoning: breaking up a complex task into smaller subtasks

o Tool: external modules that can be called

o Act: Calling of a tool to have an effect

https://arxiv.org/abs/2302.07842

CSCI 5541 NLP 20

Augmented Language Models

[Zhang et al. 2023]

(Reasoning)

(Act)

https://arxiv.org/pdf/2311.11797.pdf

CSCI 5541 NLP 21

Reasoning

CSCI 5541 NLP 22

Reasoning
❑ Reasoning is the ability to make inferences using evidence and logic.

o Commonsense, mathematical, symbolic, etc.

o Often this involves deductions from inference chains, i.e. “multi-step reasoning”

❑ Main challenge is to break down a complex problem into smaller

subproblems and generate the solution by composing the (correctly

predicted) answers to the subproblems.

❑ Eliciting reasoning in LLMs

o Eliciting reasoning with prompting

o Divide and concur with recursive prompting

o Teaching LLMs to reason

CSCI 5541 NLP 23

Eliciting reason with prompting
❑ Essentially methods can be categorized as either zero-shot or few-shot

❑ Zero-shot prompting

o “Let’s think step by step.” [Kojima et al. 2022]

o “Chain-of-thought decoding” [Wang and Zhou 2024]

https://openreview.net/pdf?id=e2TBb5y0yFf
https://arxiv.org/pdf/2402.10200.pdf

CSCI 5541 NLP 24

Eliciting reason with prompting
❑ Few-shot prompting – variants of CoT prompting

[Besta et al. 2024]

https://arxiv.org/pdf/2308.09687.pdf

CSCI 5541 NLP 25

Eliciting reason with prompting
❑ Few-shot prompting – via “programming”

o ReAct prompting [Yao et al. 2022]

https://www.width.ai/post/react-prompting

https://arxiv.org/abs/2210.03629
https://www.width.ai/post/react-prompting

CSCI 5541 NLP 26

Eliciting reason with prompting
❑ Few-shot prompting – via

“programming”

o ReAct prompting [Yao et al. 2022]

https://arxiv.org/abs/2210.03629

CSCI 5541 NLP 27

Programing LLMs for multi-step reasoning
❑ ART (Automatic multi-step reasoning and tool-use for large

language models; Paranjape et al. 2023):
o ART automatically creates decompositions (multistep reasoning) for

examples of new tasks.
o ART retrieves comparable task instances from a library, enabling

quick task analysis and tool application.
o Using a structured query language, it facilitates reading intermediate

stages, pausing for external tool use, and restarting after tool output
integration.
✔ At each step, the framework selects and utilizes the most

appropriate tools.

https://arxiv.org/abs/2303.09014

CSCI 5541 NLP 28

Programing LLMs for multi-step reasoning

CSCI 5541 NLP 29

Programing LLMs for multi-step reasoning

CSCI 5541 NLP 30

Using Tools and Act

CSCI 5541 NLP 31

Tools and Act
❑ Expanding LLMs’ capabilities to access and leverage external

knowledge and computational resources beyond what is stored in their

own weights.

❑ This integration, via special tokens, allows LLMs to perform tasks like:

o Exact computation

o Symbolic reasoning

o Information retrieval, etc.

❑ Tools can range from:

o Calling (another) LLM or other programs like Python interpreter

o Querying (vector) databases, knowledge graphs, or search engines

o Often referred to as “information retrieval”

CSCI 5541 NLP 32

Tools and Act
❑ Use Google Search for document retrieval to augment LLMs. [Lazaridou et

al. 2022]

o Given a question, clean text (paragraph) is extracted out of 20 URLs

returned by Google.

o Paragraphs are ranked by TF-IDF based cosine similarity between

evidence paragraphs and the query.

o Only the most relevant paragraph is used in the prompt to produce

an answer

https://arxiv.org/abs/2203.05115
https://arxiv.org/abs/2203.05115

CSCI 5541 NLP 33

Augmenting LLMs with Retrieval

CSCI 5541 NLP 34

Augmenting LLMs with Retrieval
❑ “Internal retrieval” from LLMs could be also beneficial

o Generate knowledge about a topic before answering the question [Liu et al. 2022]

Generate some knowledge about the input. Examples:

Input: What type of water formation is formed by clouds?

Knowledge: Clouds are made of water vapor.

Input: {question}

Knowledge:

https://arxiv.org/abs/2110.08387

CSCI 5541 NLP 35

Augmenting LLMs with Retrieval
❑ “Internal retrieval” from

LLMs could be also
beneficial

o Iterative prompting of

LLM for text refinement

task [Schick et al. 2022]

o The “plan” can come

from human users too.

https://arxiv.org/pdf/2208.11663.pdf

CSCI 5541 NLP 36

Augmenting LLMs with Programming Language
❑ Ask LLM to generate programming language statements to resolve

natural language reasoning problems, hence offloading the solution

step to a runtime such as a Python interpreter.

PAL (Program-aided language models); Gao et al. 2022 and PoT (Program of Thoughts prompting); Chen et al. 2022

https://arxiv.org/abs/2211.10435
https://arxiv.org/abs/2211.12588

CSCI 5541 NLP 37

Augmenting LLMs with External APIs
❑ TALM (Tool Augmented Language Models; Parisi et al. 2022): LM augmented with

text-to-text API calls.

o LM is guided to generate |tool-call and tool input text conditioned on task input text to construct

API call requests

o When |result shows up, the specified tool API is called and the returned result gets appended to

the text sequence as |output token.

https://arxiv.org/abs/2205.12255

CSCI 5541 NLP 38

Augmenting LLMs with External APIs
❑ Toolformer (Schick et al. 2023) use external tools via simple APIs, which is built in

a self-supervised manner and only requires a handful of demonstrations for each
API.

o Calculator to help LM with the lack of precise math skills;

o Q&A system to help with unfaithful content and hallucination;

o Search engine to provide up-to-date information after pretraining cut off time;

o Translation system to improve performance on low resource language;

o Calendar to make LM be aware of time progression.

https://arxiv.org/abs/2302.04761

CSCI 5541 NLP 39

Toolformer Training
Step 1:

Prompting to annotate potential API
calls.

Ask a pre-trained LM to annotate a

dataset via few-shot learning with API
call usage examples.

CSCI 5541 NLP

Step 2:

Filter annotations based on whether

API calls help predict future tokens.

Use a self-supervised loss to decide

which API calls are actually helpful.

40

Toolformer Training

CSCI 5541 NLP 41

Toolformer Training
Step 3:

Fine-tune LM on this annotated dataset.

The training data is a combination of the original
dataset and its augmented version.

CSCI 5541 NLP 42

Evaluation

CSCI 5541 NLP 43

Evaluating on unseen tasks
❑ We evaluate on “unseen” or “zero-shot” tasks where no datasets from that task were

seen during instruction tuning.
→ Emergent abilities of LLMs!

[FLAN-T5; Chung et al., 2022]

https://arxiv.org/abs/2210.11416

CSCI 5541 NLP 44

Evaluating on new benchmarks
❑ Massive Multitask Language Understanding

(MMLU) [Hendrycks et al., 2021]

New benchmarks consisting of 57 diverse
knowledge intensive tasks

https://arxiv.org/abs/2009.03300

CSCI 5541 NLP 45

Evaluating on new benchmarks
❑ BIG-Bench [Srivastava et al., 2022] with more than 200+ tasks

https://arxiv.org/abs/2206.04615

CSCI 5541 NLP 46

Evaluating on new benchmarks
❑ CoBBLEr [Koo et al. 2023], “Benchmarking Cognitive Biases in Large Language Models as

Evaluators”
o For evaluating LLMs for their capabilities as unbiased automatic evaluators

https://arxiv.org/abs/2309.17012

CSCI 5541 NLP 47

Evaluating on new benchmarks
❑ CoBBLEr [Koo et al. 2023]

o Implicit biases: general prompt setting
o Induced biases: try to induce undesired behaviors akin to adversarial attacks

https://arxiv.org/abs/2309.17012

CSCI 5541 NLP 48

Evaluating on new benchmarks
❑ CoBBLEr [Koo et al. 2023]

o Even popular LLMs like GPT-4 are shown to have biases!
o So be careful when using them as evaluators in replacement of human workers.

https://arxiv.org/abs/2309.17012

CSCI 5541 NLP 49

Concluding Remarks
❑ On alignment

o Training LLMs on various tasks enhances their ability to execute instructions for new tasks.

o Instruction-tuned LLMs exhibits better zero-shot and few-shot capability.

o The number of instruction tuning clusters and the scale of the model are important to the

performance of LLMs.

o Many new benchmarks have been developed to test the models capability as well as to alert

their pitfalls.

❑ On augmentation
o The emergence of reasoning abilities in LLMs facilitates the incorporation of various tools and

knowledge bases, thereby greatly enhancing their overall capability.

o Deciding which tools to use and what relevant external knowledge to integrate is the key.

o As tasks get more complex, LLMs’ long-term planning capability is put to test.

	Slide 1: CSCI 5541: Natural Language Processing
	Slide 2
	Slide 3
	Slide 4
	Slide 5: Recap on pretrain-finetune paradigm
	Slide 6: Scaling up finetuning
	Slide 7: Instruction finetuning
	Slide 8: Instruction finetuning vs. standard finetuning
	Slide 9: Instruction finetuning
	Slide 10: Instruction finetuning templates
	Slide 11: Instruction pretraining?
	Slide 12: Or less is more?
	Slide 13: General-purpose (left) vs Task-specific (right) Instruction Tuning
	Slide 14: User-driven Revision (CoEdIT)
	Slide 15: Quantitative Evaluations of Text Revision Models
	Slide 16: CoEdit on HuggingFace
	Slide 17
	Slide 18: Weakness of LLMs
	Slide 19: Augmented Language Models
	Slide 20: Augmented Language Models
	Slide 21
	Slide 22: Reasoning
	Slide 23: Eliciting reason with prompting
	Slide 24: Eliciting reason with prompting
	Slide 25: Eliciting reason with prompting
	Slide 26: Eliciting reason with prompting
	Slide 27: Programing LLMs for multi-step reasoning
	Slide 28: Programing LLMs for multi-step reasoning
	Slide 29: Programing LLMs for multi-step reasoning
	Slide 30
	Slide 31: Tools and Act
	Slide 32: Tools and Act
	Slide 33: Augmenting LLMs with Retrieval
	Slide 34: Augmenting LLMs with Retrieval
	Slide 35: Augmenting LLMs with Retrieval
	Slide 36: Augmenting LLMs with Programming Language
	Slide 37: Augmenting LLMs with External APIs
	Slide 38: Augmenting LLMs with External APIs
	Slide 39: Toolformer Training
	Slide 40: Toolformer Training
	Slide 41: Toolformer Training
	Slide 42
	Slide 43: Evaluating on unseen tasks
	Slide 44: Evaluating on new benchmarks
	Slide 45: Evaluating on new benchmarks
	Slide 46: Evaluating on new benchmarks
	Slide 47: Evaluating on new benchmarks
	Slide 48: Evaluating on new benchmarks
	Slide 49: Concluding Remarks

