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Instruction Tuning
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Language models are not aligned with user intent [Ouyang et al., 2022].

https://arxiv.org/abs/2203.02155
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Language models are not aligned with user intent [Ouyang et al., 2022].

→ We can finetune it with responses we want!

https://arxiv.org/abs/2203.02155
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Recap on pretrain-finetune paradigm

Source: cs224n, Stanford

❑ Pretraining can greatly improve performances on downstream NLP tasks 

by serving as parameter initialization.

Step 1: Pretrain (via language modeling)

Lots of text; learn general things!

Step 2: Finetune (on your task)

Not many labels; adapt to the task!
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Scaling up finetuning

Source: cs224n, Stanford

❑ Pretraining can greatly improve performances on downstream NLP tasks 

by serving as parameter initialization.

Step 1: Pretrain (via language modeling)

Lots of text; learn general things!

Step 2: Finetune (on many tasks)

Many labels; adapt to many tasks!
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❑ Collect examples of ((instruction, input), output) pairs across many tasks 

and finetune an LM and evaluate on unseen tasks

7

Instruction finetuning

[FLAN-T5; Chung et al., 2022]

https://arxiv.org/abs/2210.11416
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Instruction finetuning vs. standard finetuning
❑ The main difference lies in the data that the model is trained on

o Standard supervised finetuning trains models on input examples and their 
corresponding outputs.

o Instruction finetuning augments input-output examples with instructions, which 
enables instruction-tuned models to generalize more easily to new tasks.

[Wei et al., 2022]

https://openreview.net/forum?id=gEZrGCozdqR
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❑ 62 NLP datasets

❑ 12 “task clusters”

9

Instruction finetuning

[FLAN-T5; Chung et al., 2022]

https://arxiv.org/abs/2210.11416


CSCI 5541 NLP

❑ Natural instruction templates for each task

10

Instruction finetuning templates

[FLAN-T5; Chung et al., 2022]

https://arxiv.org/abs/2210.11416
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Instruction pretraining?
❑ Scaling up data and model improves performance.
❑ SuperNaturalInstructions dataset contains over 1.6K tasks, 3M+ examples

[Wang et al., 2022]

https://arxiv.org/abs/2210.11416
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Or less is more?
❑ “LIMA – Less Is More for Alignment” (Zhou et al. 2023) 
❑ Authors report that LLaMa 65B model finetuned on a collection of high quality and 

diverse 1,000 samples are enough to beat models trained on much larger instruction 
datasets.

https://arxiv.org/abs/2305.11206
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General-purpose (left) vs Task-specific (right) Instruction Tuning

Densifying the task distribution to strictly instructions within the text revision domain can largely 
improve model performance for revision tasks over scaling model size with general instructions

[Raheja et al., EMNLP Findings 23]

Sparse task distribution

Translate to 
French

Summarize 
this text

Generalize to composite & unseen tasks

Make text 
coherent

Neutralize text

Rewrite easier to 
understand

Dense task distribution

Paraphrase this

Make text readable and 
coherent

Make text more 
polite
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User-driven Revision (CoEdIT)

[Raheja et al., EMNLP Findings 23]

Conversational Text Editing via Instruction Tuning



CSCI 5541 NLP 15

Quantitative Evaluations of Text Revision Models

CoEdIT’s task specific instruction tuning 
largely outperforms most generally 
instruction-tuned models

Overall, CoEdIT generates better text edits 
than models that are even 60x larger

[Raheja et al., EMNLP Findings 23]
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CoEdit on HuggingFace

https://huggingface.co/grammarly/coedit-large

from transformers import AutoTokenizer, 

T5ForConditionalGeneration

tokenizer = 

AutoTokenizer.from_pretrained("grammarly/coedit-large")

model = 

T5ForConditionalGeneration.from_pretrained("grammarly/coe

dit-large")

input_text = 'Fix grammatical errors in this sentence: 

When I grow up, I start to understand what he said is 

quite right.'

input_ids = tokenizer(input_text, 

return_tensors="pt").input_ids

outputs = model.generate(input_ids, max_length=256)

edited_text = tokenizer.decode(outputs[0], 

skip_special_tokens=True)

[Raheja et al., EMNLP Findings 23]

https://huggingface.co/grammarly/coedit-large
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Augmented Language Models
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Weakness of LLMs
❑ Pre-trained LLMs struggle at completing tasks that require:

o Latest knowledge after the model pretraining time cutoff or

o Knowledge with internal/private knowledge base

o Symbolic or other deterministic execution capabilities

❑ These issues stem from their fundamental limitations:

o They are trained to perform statistical modeling given a single parametric model

and a limited context

o Their main objective function, the next token prediction task, does not cater for 

explicit symbolic capabilities
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Augmented Language Models
❑ Recent trend is to move slightly away from the purely statistical 

language modeling and integrate external components

o So that a more relevant context is produced at the cost of more computation

o Resulting in non-parametric models

❑ An augmentation can be viewed in three dimensions: [Mialon et al. 2023]

o Reasoning: breaking up a complex task into smaller subtasks

o Tool: external modules that can be called

o Act: Calling of a tool to have an effect

https://arxiv.org/abs/2302.07842
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Augmented Language Models

[Zhang et al. 2023]

(Reasoning)

(Act)

https://arxiv.org/pdf/2311.11797.pdf
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Reasoning
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Reasoning
❑ Reasoning is the ability to make inferences using evidence and logic.

o Commonsense, mathematical, symbolic, etc.

o Often this involves deductions from inference chains, i.e. “multi-step reasoning”

❑ Main challenge is to break down a complex problem into smaller 

subproblems and generate the solution by composing the (correctly 

predicted) answers to the subproblems.

❑ Eliciting reasoning in LLMs

o Eliciting reasoning with prompting

o Divide and concur with recursive prompting

o Teaching LLMs to reason
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Eliciting reason with prompting
❑ Essentially methods can be categorized as either zero-shot or few-shot

❑ Zero-shot prompting

o “Let’s think step by step.” [Kojima et al. 2022]

o “Chain-of-thought decoding” [Wang and Zhou 2024]

https://openreview.net/pdf?id=e2TBb5y0yFf
https://arxiv.org/pdf/2402.10200.pdf


CSCI 5541 NLP 24

Eliciting reason with prompting
❑ Few-shot prompting – variants of CoT prompting

[Besta et al. 2024]

https://arxiv.org/pdf/2308.09687.pdf
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Eliciting reason with prompting
❑ Few-shot prompting – via “programming” 

o ReAct prompting [Yao et al. 2022]

https://www.width.ai/post/react-prompting

https://arxiv.org/abs/2210.03629
https://www.width.ai/post/react-prompting
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Eliciting reason with prompting
❑ Few-shot prompting – via 

“programming” 

o ReAct prompting [Yao et al. 2022]

https://arxiv.org/abs/2210.03629
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Programing LLMs for multi-step reasoning
❑ ART (Automatic multi-step reasoning and tool-use for large 

language models; Paranjape et al. 2023): 
o ART automatically creates decompositions (multistep reasoning) for 

examples of new tasks.
o ART retrieves comparable task instances from a library, enabling 

quick task analysis and tool application.
o Using a structured query language, it facilitates reading intermediate 

stages, pausing for external tool use, and restarting after tool output 
integration.
✔ At each step, the framework selects and utilizes the most 

appropriate tools.

https://arxiv.org/abs/2303.09014
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Programing LLMs for multi-step reasoning
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Programing LLMs for multi-step reasoning
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Using Tools and Act
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Tools and Act
❑ Expanding LLMs’ capabilities to access and leverage external 

knowledge and computational resources beyond what is stored in their 

own weights.

❑ This integration, via special tokens, allows LLMs to perform tasks like:

o Exact computation

o Symbolic reasoning

o Information retrieval, etc.

❑ Tools can range from:

o Calling (another) LLM or other programs like Python interpreter

o Querying (vector) databases, knowledge graphs, or search engines

o Often referred to as “information retrieval”
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Tools and Act
❑ Use Google Search for document retrieval to augment LLMs. [Lazaridou et 

al. 2022]

o Given a question, clean text (paragraph) is extracted out of 20 URLs 

returned by Google. 

o Paragraphs are ranked by TF-IDF based cosine similarity between 

evidence paragraphs and the query. 

o Only the most relevant paragraph is used in the prompt to produce 

an answer

https://arxiv.org/abs/2203.05115
https://arxiv.org/abs/2203.05115
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Augmenting LLMs with Retrieval
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Augmenting LLMs with Retrieval
❑ “Internal retrieval” from LLMs could be also beneficial

o Generate knowledge about a topic before answering the question [Liu et al. 2022]

Generate some knowledge about the input. Examples:

Input: What type of water formation is formed by clouds?

Knowledge: Clouds are made of water vapor.

Input: {question}

Knowledge:

https://arxiv.org/abs/2110.08387
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Augmenting LLMs with Retrieval
❑ “Internal retrieval” from 

LLMs could be also 
beneficial

o Iterative prompting of 

LLM for text refinement 

task [Schick et al. 2022]

o The “plan” can come 

from human users too.

https://arxiv.org/pdf/2208.11663.pdf
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Augmenting LLMs with Programming Language
❑ Ask LLM to generate programming language statements to resolve 

natural language reasoning problems, hence offloading the solution 

step to a runtime such as a Python interpreter.

PAL (Program-aided language models); Gao et al. 2022 and PoT (Program of Thoughts prompting); Chen et al. 2022

https://arxiv.org/abs/2211.10435
https://arxiv.org/abs/2211.12588
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Augmenting LLMs with External APIs
❑ TALM (Tool Augmented Language Models; Parisi et al. 2022): LM augmented with 

text-to-text API calls.

o LM is guided to generate |tool-call and tool input text conditioned on task input text to construct 

API call requests

o When |result shows up, the specified tool API is called and the returned result gets appended to 

the text sequence as |output token.

https://arxiv.org/abs/2205.12255
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Augmenting LLMs with External APIs
❑ Toolformer (Schick et al. 2023) use external tools via simple APIs, which is built in 

a self-supervised manner and only requires a handful of demonstrations for each 
API. 

o Calculator to help LM with the lack of precise math skills;

o Q&A system to help with unfaithful content and hallucination;

o Search engine to provide up-to-date information after pretraining cut off time;

o Translation system to improve performance on low resource language;

o Calendar to make LM be aware of time progression.

https://arxiv.org/abs/2302.04761
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Toolformer Training
Step 1:

Prompting to annotate potential API 
calls. 

Ask a pre-trained LM to annotate a 

dataset via few-shot learning with API 
call usage examples. 
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Step 2:

Filter annotations based on whether 

API calls help predict future tokens.

Use a self-supervised loss to decide 

which API calls are actually helpful.

40

Toolformer Training
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Toolformer Training
Step 3:

Fine-tune LM on this annotated dataset.

The training data is a combination of the original 
dataset and its augmented version.
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Evaluation
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Evaluating on unseen tasks
❑ We evaluate on “unseen” or “zero-shot” tasks where no datasets from that task were 

seen during instruction tuning.
→ Emergent abilities of LLMs!

[FLAN-T5; Chung et al., 2022]

https://arxiv.org/abs/2210.11416
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Evaluating on new benchmarks
❑ Massive Multitask Language Understanding 

(MMLU) [Hendrycks et al., 2021]

New benchmarks consisting of 57 diverse 
knowledge intensive tasks

https://arxiv.org/abs/2009.03300
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Evaluating on new benchmarks
❑ BIG-Bench [Srivastava et al., 2022] with more than 200+ tasks

https://arxiv.org/abs/2206.04615
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Evaluating on new benchmarks
❑ CoBBLEr [Koo et al. 2023], “Benchmarking Cognitive Biases in Large Language Models as 

Evaluators”
o For evaluating LLMs for their capabilities as unbiased automatic evaluators

https://arxiv.org/abs/2309.17012
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Evaluating on new benchmarks
❑ CoBBLEr [Koo et al. 2023]

o Implicit biases: general prompt setting
o Induced biases: try to induce undesired behaviors akin to adversarial attacks

https://arxiv.org/abs/2309.17012
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Evaluating on new benchmarks
❑ CoBBLEr [Koo et al. 2023]

o Even popular LLMs like GPT-4 are shown to have biases!
o So be careful when using them as evaluators in replacement of human workers.

https://arxiv.org/abs/2309.17012
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Concluding Remarks
❑ On alignment

o Training LLMs on various tasks enhances their ability to execute instructions for new tasks. 

o Instruction-tuned LLMs exhibits better zero-shot and few-shot capability.

o The number of instruction tuning clusters and the scale of the model are important to the 

performance of LLMs.

o Many new benchmarks have been developed to test the models capability as well as to alert 

their pitfalls.

❑ On augmentation
o The emergence of reasoning abilities in LLMs facilitates the incorporation of various tools and 

knowledge bases, thereby greatly enhancing their overall capability.

o Deciding which tools to use and what relevant external knowledge to integrate is the key.

o As tasks get more complex, LLMs’ long-term planning capability is put to test.
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