
CSCI 5541: Natural Language Processing
Lecture 14: Ethics and Explainability
Shirley A. Hayati

Many slides borrowed from Carlos Guestrin’s and Yulia Tsevtkov’s
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Outline
❑ Introduction and Sociotechnical Perspective
❑ Calibration and Fairness
❑ Debiasing techniques in NLP systems
❑ Explainability and Transparency
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Ethics

“the discipline dealing with what is good and bad and with moral duty and 
obligation”

(Merriam Webster Dictionary)

“Ethics is the philosophical study of morality. 
It is a study of what are good and bad ends to pursue in life and what it is 

right and wrong to do in the conduct of life.”
(Introduction to Ethics, John Deigh, 2012)
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Is it ethical to build a classifier for recruiting employees?

Yes or No?
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Are Emily and Greg More Employable than Lakisha and Jamal? 
[Bertrand & Mullainathan ‘03]
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Case Study: Law-Enforcement Chatbots in 
Panoptica
❑ High profile string of identity theft attacks on elderly citizens
❑ Centered around “dark web” forum that police have difficulty accessing
❑ Voters endorse increase of law enforcement capacity and action online
❑ Police deploy JEREMY chatbot that can convincingly engage in conversation 

with individuals suspected of committing or trading in ID theft
❑ JEREMY can successfully assemble dossiers of evidence, including intent to 

commit crime

https://aiethics.princeton.edu/wp-content/uploads/sites/587/2018/10/Princeton-AI-Ethics-Case-Study-4.pdf

https://aiethics.princeton.edu/wp-content/uploads/sites/587/2018/10/Princeton-AI-Ethics-Case-Study-4.pdf
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Hypothetical Case Study: Panoptica
To address ethical concerns, JEREMY is also:
❑ Free of human biases 
❑ Minimizes privacy invasion by only targeting suspects (1984)
❑ Has airtight security -- conversations won’t be leaked

https://aiethics.princeton.edu/wp-content/uploads/sites/587/2018/10/Princeton-AI-Ethics-Case-Study-4.pdf

https://aiethics.princeton.edu/wp-content/uploads/sites/587/2018/10/Princeton-AI-Ethics-Case-Study-4.pdf
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https://aiethics.princeton.edu/wp-content/uploads/sites/587/2018/10/Princeton-AI-Ethics-Case-Study-4.pdf

https://aiethics.princeton.edu/wp-content/uploads/sites/587/2018/10/Princeton-AI-Ethics-Case-Study-4.pdf
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No Easy Answers
❑ In-depth ethical 

explorations with 
Princeton case studies:
https://aiethics.princet
on.edu/case-
studies/case-study-
pdfs/

❑ Even with effective 
safeguards, advanced 
systems run into ethical 
problems

https://aiethics.princeton.edu/case-studies/case-study-pdfs/
https://aiethics.princeton.edu/case-studies/case-study-pdfs/
https://aiethics.princeton.edu/case-studies/case-study-pdfs/
https://aiethics.princeton.edu/case-studies/case-study-pdfs/
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Trade-Off: Privacy and Surveillance 
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Biased Decisions
Ads targeted (using ML) based on 
predicted features of users... 

Some users don’t get the 
“opportunity” of the ad...
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Manipulation of Behavior
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Automation and Employment
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Automation and Employment
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Decisions by Proxy
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https://www.youtube.com/watch?v=Mme2Aya_6Bc
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Existential Risk
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Existential Risk
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You will be a decision-maker in 

these ethical concerns
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An exercise
Which word is more likely to be used by a female?

Giggle - Laugh

(Preotiuc-Pietro et al. ‘16)
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An exercise
Which word is more likely to be used by a female?

Giggle - Laugh

(Preotiuc-Pietro et al. ‘16)
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An exercise
Which word is more likely to be used by an older person?

Impressive - Amazing

(Preotiuc-Pietro et al. ‘16)
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An exercise
Which word is more likely to be used by an older person?

Impressive - Amazing

(Preotiuc-Pietro et al. ‘16)
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An exercise
Which word is more likely to be used by a person of higher occupational 
class?

Suggestions - Proposals

(Preotiuc-Pietro et al. ‘16)
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An exercise
Which word is more likely to be used by a person of higher occupational 
class?

Suggestions - Proposals

(Preotiuc-Pietro et al. ‘16)
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Why do we intuitively recognize 
a default social group?
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Implicit Bias
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How Humans Make Decisions
System 1

(Kahneman & Tversky 1973, 1974, 2002)

System 2
automatic

fast
parallel

unconscious
associative

effortful
slow
serial

conscious
rule-governed
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Psychological perspective on cognitive bias
❑ Biases inevitably form because human mind tends to:

o Categorize the world to simplify processing
o Store learned information in mental representations (schemas)
o Automatically and unconsciously activate stored information whenever one 

encounters a category member

Cognitive bias is a systematic pattern of deviation from rationality in judgment
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❑ confirmation bias: paying more attention to information that reinforces 
previously held beliefs and ignoring evidence to the contrary

❑ ingroup favoritism: when one favors in-group members over out-group 
members 

❑ group attribution error: when one generalizes about a group based on a group of 
representatives

❑ halo effect: when overall impression of a person impacts evaluation of their 
specific traits

❑ just-world hypothesis: when one protects a desire for a just world by blaming 
the victims

❑ etc.
31

Common biases
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Implicit biases are pervasive, unconscious, and can automatically 

influence the ways in which we see and treat others, 

even when we are determined to be fair and objective.
Slide credit: Geoff Kaufman



CSCI 5541 NLP

Language is a primary means through which stereotypes and prejudice 

are communicated and perpetuated 

(Hamilton and Trolier, 1986; Bar-Tal et al., 2013)

35

Stereotypes and language
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Fear of confirming a negative stereotype about one’s group (Steele & 

Aronson, 1995)

● Often leads to anxiety and negative feelings that can use up mental resources and 

undermine one’s confidence and ability to succeed

○ In one experiment, Black college students performed worse on standardized tests when their 

race was emphasized. When race was not emphasized, their performance was better and 

similar to White students. (Steele & Aronson, 1995)

● Exacerbated by repeated experiences with microaggressions reducing one’s sense 

of belonging or self-belief in a particular domain 

○ e.g., women in STEM: Beasley & Fischer’12; Shapiro & Williams’12

36

Stereotype Threat
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Implicit Association Test (IAT)  (Greenwald et al., 1998)

GOOD

Love

BAD
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Implicit Association Test (IAT)  

GOOD

Hatred

BAD
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Implicit Association Test (IAT) 

GOOD

Spectacular

BAD
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Implicit Association Test (IAT) 

European 

Americans

African 

Americans
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Implicit Association Test (IAT) 

African 

Americans

European 

Americans
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Implicit Association Test (IAT) 

African 

Americans

or 

BAD

European 

Americans

or

GOOD

Spectacular
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Implicit Association Test (IAT) 
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or 
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Implicit Association Test (IAT) 

African 

Americans

or 

BAD

European 

Americans

or

GOOD
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Implicit Association Test (IAT) 

African 

Americans

or 

GOOD

European 

Americans

or

BAD

Appealing
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Implicit Association Test (IAT) 
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or 
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or
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Implicit Association Test (IAT) 

African 

Americans

or 

GOOD

European 

Americans

or

BAD
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Implicit Association Test (IAT) 

African 

Americans

or 

GOOD

European 

Americans

or

BAD

Rotten
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Implicit Association Test (IAT)  (Greenwald et al., 1998)

The IAT involves making repeated judgments (by pressing a key on a keyboard) to label words or images 

that pertain to one of two categories presented simultaneously (e.g., categorizing pictures of African 

American or European American and categorizing positive/negative adjectives). 

The test compares response times when different pairs of categories share a response key on keyboard 

(e.g., African American + GOOD vs African American + BAD vs European American + 

GOOD vs European American + BAD )
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Biases

Cognitive Bias

Statistical Bias

Social biases in AI, data, algorithms, applications
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Biases in AI (& NLP)
AI is (as of now) only System1
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Positive or Negative?

Do I look ok?

You’re so pretty!
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Positive or Negative?

Check out my 

new physics 

paper! 

Why physics? 

You’re so pretty!

Do I look ok?

You’re so pretty!
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Positive or Negative?

Do I look ok?

You’re so pretty 

for your age!

You’re so pretty 

for a black girl!

You’re too pretty 

to be gay!

Do I look ok?

You’re so pretty!

Check out my 

new physics 

paper! 

Why physics? 

You’re so pretty!
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ML perpetuates stereotypes...
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ML perpetuates stereotypes... (Nov 16, 2023)
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https://www.vox.com/2015/9/18/9348821/photography-race-bias
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These biases show up in ML...
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And, it’s not just about diversity or 

coverage in the data we collect...

Must ensure all development decisions 

reflect values we want the model to exhibit

Sociotechnical Perspective
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Gemini Incident (Feb 2024)
❑ Google took down chatbot’s ability 

to create images of people after 
viral posts on X

https://twitter.com/JohnLu0x/status/1760066875583816003

https://www.nytimes.com/2024/02/22/technology/google-gemini-german-

uniforms.html

https://twitter.com/JohnLu0x/status/1760066875583816003
https://www.nytimes.com/2024/02/22/technology/google-gemini-german-uniforms.html
https://www.nytimes.com/2024/02/22/technology/google-gemini-german-uniforms.html
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Gemini Incident (Feb 2024)
❑ Myth of tech neutrality

https://twitter.com/altryne/status/1760358916624719938

https://twitter.com/altryne/status/1760358916624719938
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Speech Recognition and African American 
Vernacular English (AAVE)

❑ Personal assistants are becoming ubiquitous 
and often useful

❑ Study showed recognition accuracy much 
lower for black people

❑ For whom should we optimize performance?
o How do we prioritize?
o Is AAVE more or less important than accents of 

Hispanics or people from the South?
o Who decides?
o How do we achieve the desired performance?
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Autonomous Cars and the Trolley Problem
❑ Autonomous vehicles could save lives

o 1.25 million traffic fatalities globally in 2013
❑ Who makes life-or-death decisions for 

autonomous cars? How?
o Go faster in a windy deserted road at a higher 

risk to self
o Merge faster in a highway at higher risk to 

others
o Hit a pedestrian or swerve down a cliff



CSCI 5541 NLP 65

Image Captioning and Gender
❑ Captioning can give blind and low-vision people access 

to information
o But, models cannot predict gender identity. And, model’s 

gender prediction is biased by assumptions of labelers
❑ However, sighted individuals make assumptions and 

inferences. Not including gender prediction could limit 
access to information needs and perspectives of 
different individuals may be in conflict
o But, models cannot predict gender identity

o How do you make this tradeoff?
o Who should make this decision?
o How should the user receive this information?

ClipCap (Mokady, Hertz, Bermano 2021)
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Bias in Machine Translation
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Bias in Machine Translation
❑ Translations can perpetuate 

stereotypes. Even with infinite and 
representative data, this issue will not 
be resolved

❑ Really complex user experience, since 
user may not even know about 
gendered languages

❑ How do we resolve this conflict with a 
simple user experience?

If >50% of doctors are male in 

the dataset, all instances of 

“doctor” translated to male form
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Gender Bias on the Web
❑ The dominant class is often portrayed and perceived as relatively more professional (Kay, 

Matuszek, and Munson 2015)

❑ Males are over-represented in the reporting of web-based news articles (Jia, Lansdall-Welfare, and 

Cristianini 2015)

❑ Males are over-represented in twitter conversations (Garcia, Weber, and Garimella 2014)

❑ Biographical articles about women on Wikipedia disproportionately discuss romantic relationships or 

family-related issues (Wagner et al. 2015)

❑ IMDB reviews written by women are perceived as less useful (Otterbacher 2013)

AI



CSCI 5541 NLP 69

AI

Online data is riddled with SOCIAL STEREOTYPES
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AI

Consequence: models are also biased
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Large-language models are incredibly powerful
❑ Impressive results on a wide range of tasks

o Space is dominated by large companies
✔ OpenAI/Microsoft, Google, Meta..

o Should others have access?
❑ Break the dominance of large companies
❑ Enable significant research on LLMs and on AI 

safety
❑ Should we have released the model?
❑ Who should have access to this technology? Who 

decides?
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Techniques for sociotechnical AI
❑ Calibration and Fairness
❑ Debiasing techniques in NLP systems
❑ Explainability and Transparency
❑ Adversarial Attacks
❑ Privacy
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Calibration and Fairness
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Calibrated Predictions Intuition
❑ People make predictions all the time

o “Don’t worry... I’m 90% sure there will be croissants left.”
o But, are there croissants left 90% of the times I say this???

❑ Calibration: Whenever you say outcome z is true 80% of time, then p(z=1) = 
80%
o We want predictions to align with frequency of events!
o Good machine learning practices often lead to nearly calibrated classifiers (or after 

post processing)
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Calibration and Sufficiency
❑ Calibration by Groups Implies Sufficiency. Then, sufficiency is satisfied

❑ Learning Models that Satisfy Sufficiency = Learning Calibrated Classifiers
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❑ Can’t we just live without 

calibration? While deep learning 

achieves great performance, they 
are sometimes wrong. 

❑ But if they are always 99% 

confident, the consequences of 

being wrong could be critical and 

we must have less trust in these 
systems. 

❑ The failure to be not sure can limit 

the applications of DL in safety-
critical real-world systems.

On Calibration of Modern Neural Networks

https://arxiv.org/pdf/1706.04599.pdf
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Debiasing Techniques 
in NLP Systems
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Word Embeddings Reflect Human Biases
Present in Data
❑ man is to computer programmer as woman is to x

[Bolukbasi et al. 2016]
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Approach to Removing Bias in Word Embeddings
❑ Consider pairs of female-male gendered words

o Define gender axes she-he, woman-man, queen-king, ..
o Obtain orthonormal bases for “gendered subspace”

❑ Consider list of gender-neutral words
o Flight attendant, doctor, shoes,...

❑ Debias gender neutral words by removing projection into gendered 
subspace:

[Bolukbasi et al. 2016]

Debiased “doctor” 

embedding

Orthogonal to 

gender subspace
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Debiasing

[Bolukbasi et al. 2016]

“gender subspace”

Don’t change

Debias
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Bias is Very Prevalent in NLP Models
❑ Models typically trained on human-generated corpora

o Biased use of language
o Biased (and sometimes abusive) treatment of different groups

❑ Models will reflect these biases
❑ It is very challenging to remove these biases from data

o geometry of embeddings retains biases (Gonen & Goldberg 2019)
o Defining and removing complex, multidimensional stereotypes seems extremely difficult

❑ When working with NLP (and any other data) is important to:
o Examine data and models closely
o Discover sources of bias
o Understand and mitigate impact
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Explainability and
Transparency
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If AI Systems are System 1
Black-box system → can we explain their reasoning?
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Train a Neural Network to Predict 
Wolf v. Husky
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Desired accuracy threshold is 99%
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Explanations for Neural Network Prediction

Spurious correlation
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Spurious Correlation in NLP Hayati et al., (EMNLP 2021)

https://arxiv.org/pdf/2109.02738.pdf
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Test Accuracy May Not Capture Critical Issues

❑ Bad data
❑ Biases
❑ Poor performance in critical cases
❑ ...

How can we debug a model?
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Interpretability in AI

Giving humans a mental model of the 

machine’s model behavior
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Learning Interpretable Models
(c.f., Lethan & Rudin 2015)
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Accuracy vs Interpretability
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Post-hoc Explanations
❑ Given a (huge, complex) model, provide human explanations for predictions
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Explanations Bridge Humans and Models
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Must-haves for a good explanation
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Must-haves for a good explanation
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Explanations Bridge Humans and Models

Faithful Interpretable
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Local Explanations vs. Global Explanations

Global explanation may 

be too complicated

Local explanation: Interpretable description of the 

model behavior in the neighborhood of a prediction
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Local Explanations vs. Global Explanations
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Incorporating human labels for model explanation

Hayati et al., (EACL 2023)

https://aclanthology.org/2023.eacl-main.208.pdf
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Incorporating eye movements for model 
explanation

de Langis and Kang, CoNLL 2023

Reading for Politeness vs control
will understand,
like,

nominate

Most important for 

politeness (during 
real-time reading)
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Summary
❑ Interpretable models are designed to be simple/easily understood by 

humans (e.g., decision trees) 
o But, often don’t achieve desired accuracy

❑ Post-hoc explanations seek to provide human understanding for the 
predictions of a model
o Can be applied to state-of-the-art/highly complex models
o But, are, by definition, a simplification of the model’s behavior and can be highly 

misleading
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Model-Agnostic Explanations
Ignore any internal structure

Global decision may be very complicated

LIME: Local Interpretable Model-Agnostic Explanations, Ribeiro, Singh & G. KDD 16
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Model-Agnostic Explanations

Locally, decision looks simpler...

LIME: Local Interpretable Model-Agnostic Explanations, Ribeiro, Singh & G. KDD 16
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Model-Agnostic Explanations

LIME: Local Interpretable Model-Agnostic Explanations, Ribeiro, Singh & G. KDD 16

Very locally, decision looks linear
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Model-Agnostic Explanations

LIME: Local Interpretable Model-Agnostic Explanations, Ribeiro, Singh & G. KDD 16

Very locally, decision looks linear

LIME: Learn locally sparse linear 

model around each prediction
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LIME: Sparse Linear Explanations
❑ 1. Sample points around xi
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LIME: Sparse Linear Explanations
❑ 1. Sample points around xi
❑ 2. Use complex model to predict labels for each sample
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LIME: Sparse Linear Explanations
❑ 1. Sample points around xi
❑ 2. Use complex model to predict labels for each sample
❑ 3. Weigh samples according to distance to xi
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LIME: Sparse Linear Explanations
❑ 1. Sample points around xi
❑ 2. Use complex model to predict labels for each sample
❑ 3. Weigh samples according to distance to xi
❑ 4. Learn new simple model on weighted samples
❑ 5. Use simple model to explain
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LIME applied to 20 newsgroups

Atheism

Christian

https://github.com/dtak/rrr/blob/master/experiments/20%20Newsgroups.ipynb

https://github.com/dtak/rrr/blob/master/experiments/20%20Newsgroups.ipynb
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Achieving target metric may not be enough



CSCI 5541 NLP 113

Fixing bad classifiers
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Summary of LIME
❑ Model-agnostic, local explanations
❑ Identifies relevant features for each prediction

o Representation for explanation model need not be the same asfor complex models
❑ Limitations

o Assumes existence of sampling function
o Can be unstable
o Explanations simplify model behavior
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LLM and Fairness

Generate dataset

Modify text

Whose perspective?

Search, answer questions Lahoti et al., 2023

Hayati et al., 2023
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Guardrails
❑ RLHF has success minimizing harmful outputs

Ji et al., NeurIPS 2024

https://proceedings.neurips.cc/paper_files/paper/2023/file/4dbb61cb68671edc4ca3712d70083b9f-Paper-Datasets_and_Benchmarks.pdf
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Guardrails
❑ RLHF has success minimizing harmful outputs
❑ How can we explicitly ensure that responses fulfill ALL requirements:

o Aligned with user intent
o Safe
o Desired tone/behavior
o …

Ji et al., NeurIPS 2024

https://proceedings.neurips.cc/paper_files/paper/2023/file/4dbb61cb68671edc4ca3712d70083b9f-Paper-Datasets_and_Benchmarks.pdf
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Summary
❑ As we develop NLP systems, it’s important to consider ethics at every 

stage of the process
o Human subjects
o Social bias and stereotypes
o Misinformation
o Privacy

❑ Many methods and tools can help → interpretable NLP
❑ Ultimately, we must manage the utility-privacy tradeoff

o The noise added can reduce the utility of the data, making it less accurate or useful 
for certain types of analysis.
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Other Topics not covered in the class
❑ Federated Learning
❑ Personalization vs. Privacy
❑ Safety and trustworthiness in large language models
❑ Green NLP
❑ ..
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Concluding Remarks
❑ Ethics in NLP

o Who 
✔ uses the model?
✔ contributes to the model?

o For what?
o How? → data collection, model training
o Why? →why do we need such model?
o When? →what context, when is it relevant?

❑ Researchers, labelers, users all contribute to (un)fairness in NLP
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