
CSCI 5541: Natural Language Processing
Lecture 15: LLM Compute efficiency and engineering
James Mooney

With slides borrowed from Song Han (MIT)

CSCI 5541 NLP

What Is Efficiency and Why Does It Matter?
❑ Efficiency for NLP is concerned with delivering faster, cheaper, smaller, less

energy intensive solutions to problems involving natural language
❑ Faster models means LLM model services (GPT3.5, Claude 2.0, etc.) can

meet the demands of many clients more quickly
❑ Cheaper models reduce costs for LLM model service providers
❑ Smaller model sizes allow for service providers to use fewer resources and

can allow for individuals to deploy LLMs to their own (smaller) devices
❑ Less energy intensive means lower cost and easier to deploy at the edge,

where energy is harder to come by

2

CSCI 5541 NLP

What Is Efficiency and Why Does It Matter?
❑ Efficiency for NLP is concerned with delivering faster, cheaper, smaller,

less energy intensive solutions to problems involving natural language
❑ Faster models means LLM model services (GPT3.5, Claude 2.0, etc.) can

meet the demands of many clients more quickly
❑ Cheaper models reduce costs for LLM model service providers
❑ Smaller model sizes allow for service providers to use fewer resources and

can allow for individuals to deploy LLMs to their own (smaller) devices
❑ Less energy intensive means lower cost and easier to deploy at the edge,

where energy is harder to come by

3

CSCI 5541 NLP

Model Energy Use

4

Computing’s Energy Problem (and What We Can Do About it) [Horowitz, M., IEEE ISSCC 2014

CSCI 5541 NLP

Model Size

5

CSCI 5541 NLP

Model Cost

6

CSCI 5541 NLP

Development Speed

7

https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm

CSCI 5541 NLP

Efficiency Tradeoff

8

❑ More efficient models (smaller,
faster) typically come at a cost of
some performance of the model
itself

❑ In the other direction, getting more
performance from a model
architecture likely means it will be
larger, and require more
computation Efficiency (speed, 1/size, etc.)

CSCI 5541 NLP

How to Improve Model Efficiency?

9

Hardware Software

CSCI 5541 NLP

What Makes a Language Model Slow

10

CSCI 5541 NLP

Efficient LLMs
❑ Quantization

o Background
o K-Means vs. Linear Quantization
o Quantization Granularity
o Quantization Aware Training (QAT) vs Post-Training Quantization (PTQ)
o LLM Quantization (LLM.int8(), SmoothQuant, AWQ, 1-bit LLMs)

❑ Sparsity (Mixture of Experts, Deja Vu: Contextual Sparsity)
❑ Long Context (PagedAttention, StreamingLLM, MHA/GQA/MQA, H20)
❑ Speculative Decoding
❑ Parameter Efficient Fine-Tuning (BitFit, Adapter, Prompt Tuning, LoRA)

11

CSCI 5541 NLP

Efficient LLMs
❑ Quantization

o Background
o K-Means vs. Linear Quantization
o Quantization Granularity
o Quantization Aware Training (QAT) vs Post-Training Quantization (PTQ)
o LLM Quantization (LLM.int8(), SmoothQuant, AWQ, 1-bit LLMs)

❑ Sparsity (Mixture of Experts, Deja Vu: Contextual Sparsity)
❑ Long Context (PagedAttention, StreamingLLM, MHA/GQA/MQA, H20)
❑ Speculative Decoding
❑ Parameter Efficient Fine-Tuning (BitFit, Adapter, Prompt Tuning, LoRA)

12

CSCI 5541 NLP

Quantization

13

Reduce model size by
replacing high bit-
width
representations with
low bit-width
representations

CSCI 5541 NLP

Efficient LLMs
❑ Quantization

o Background
o K-Means vs. Linear Quantization
o Quantization Granularity
o Quantization Aware Training (QAT) vs Post-Training Quantization (PTQ)
o LLM Quantization (LLM.int8(), SmoothQuant, AWQ, 1-bit LLMs)

❑ Sparsity (Mixture of Experts, Deja Vu: Contextual Sparsity)
❑ Long Context (PagedAttention, StreamingLLM, MHA/GQA/MQA, H20)
❑ Speculative Decoding
❑ Parameter Efficient Fine-Tuning (BitFit, Adapter, Prompt Tuning, LoRA)

14

CSCI 5541 NLP

K-Means Quantization vs Linear Quantization

15

CSCI 5541 NLP

K-Means Quantization vs Linear Quantization

16

CSCI 5541 NLP

K-Means Quantization

17

Deep Compression [Han et al., ICLR 2016]

CSCI 5541 NLP

K-Means Quantization

18

Deep Compression [Han et al., ICLR 2016]

Original weights

CSCI 5541 NLP

K-Means Quantization

19

Deep Compression [Han et al., ICLR 2016]

Stored weights after
clustering

CSCI 5541 NLP

K-Means Quantization

20

Deep Compression [Han et al., ICLR 2016]

Retrieved weights to
be used at inference

time

CSCI 5541 NLP

K-Means Quantization vs Linear Quantization

21

CSCI 5541 NLP

Linear Quantization

22

❑ Apply linear function on
weights and hidden state
activations from floating
point values (r) to integer
values (q)

❑ Original weights (black),
Quantized bins (red)

❑ Black weights are mapped
to one of the vertical red
lines

CSCI 5541 NLP

Linear Quantization

23

❑ Apply linear function on
weights and hidden state
activations from floating
point values (r) to integer
values (q)

❑ Original weights (black),
Quantized bins (red)

❑ Black weights are mapped
to one of the vertical red
lines

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

32-bit float to 4-bit int

CSCI 5541 NLP

Linear Quantization

24

❑ Apply linear function on
weights and hidden state
activations from floating
point values (r) to integer
values (q)

❑ Original weights (black),
Quantized bins (red)

❑ Black weights are mapped
to one of the vertical red
lines

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

32-bit float to 4-bit int

Before Quantization: -.14
After Quantization: -2

CSCI 5541 NLP

Linear Quantization

25

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [Jacobet al., CVPR 2018]

CSCI 5541 NLP

Linear Quantization

26

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [Jacobet al., CVPR 2018]

Original
Weights

CSCI 5541 NLP

Linear Quantization

27

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [Jacobet al., CVPR 2018]

Stored Values

CSCI 5541 NLP

Linear Quantization

28

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [Jacobet al., CVPR 2018]

Retrieved weights to
be used at inference

time

CSCI 5541 NLP

Efficient LLMs
❑ Quantization

o Background
o K-Means vs. Linear Quantization
o Quantization Granularity
o Quantization Aware Training (QAT) vs Post-Training Quantization (PTQ)
o LLM Quantization (LLM.int8(), SmoothQuant, AWQ, 1-bit LLMs)

❑ Sparsity (Mixture of Experts, Deja Vu: Contextual Sparsity)
❑ Long Context (PagedAttention, StreamingLLM, MHA/GQA/MQA, H20)
❑ Speculative Decoding
❑ Parameter Efficient Fine-Tuning (BitFit, Adapter, Prompt Tuning, LoRA)

29

CSCI 5541 NLP

Weight Granularity

30

❑ Weight matrices will often have
different variances along each
output channel

❑ High variance in weights means
that applying linear
quantization will result in large
performance degradation

❑ To fix this, we can perform
linear quantization along each
channel of the weight tensor
separately

SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models[Xiao et. al., ICML 2023]

CSCI 5541 NLP

Activation Granularity

31

❑ Activations can have a similar
problem whereby the variance
by channel can be quite
different

❑ The variance by token can also
differ dramatically

❑ When applying quantization, we
should split up channels, tokens
to take this into account

SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models[Xiao et. al., ICML 2023]

CSCI 5541 NLP

Efficient LLMs
❑ Quantization

o Background
o K-Means vs. Linear Quantization
o Quantization Granularity
o Quantization Aware Training (QAT) vs Post-Training Quantization (PTQ)
o LLM Quantization (LLM.int8(), SmoothQuant, AWQ, 1-bit LLMs)

❑ Sparsity (Mixture of Experts, Deja Vu: Contextual Sparsity)
❑ Long Context (PagedAttention, StreamingLLM, MHA/GQA/MQA, H20)
❑ Speculative Decoding
❑ Parameter Efficient Fine-Tuning (BitFit, Adapter, Prompt Tuning, LoRA)

32

CSCI 5541 NLP

Quantization Aware Training (QAT)

33

Quantize while training

https://pytorch.org/blog/quantization-in-practice/

CSCI 5541 NLP

Post Training Quantization (PTQ)

34

Quantize after training

https://pytorch.org/blog/quantization-in-practice/

CSCI 5541 NLP

Efficient LLMs
❑ Quantization

o Background
o K-Means vs. Linear Quantization
o Quantization Granularity
o Quantization Aware Training (QAT) vs Post-Training Quantization (PTQ)
o LLM Quantization (LLM.int8(), SmoothQuant, AWQ, 1-bit LLMs)

❑ Sparsity (Mixture of Experts, Deja Vu: Contextual Sparsity)
❑ Long Context (PagedAttention, StreamingLLM, MHA/GQA/MQA, H20)
❑ Speculative Decoding
❑ Parameter Efficient Fine-Tuning (BitFit, Adapter, Prompt Tuning, LoRA)

35

CSCI 5541 NLP

LLM.int8() (W8A8)

36

LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale [Dettmers et. al., NeurIPS 2022]

CSCI 5541 NLP

SmoothQuant (W8A8)

37

Observation: High variance
channels are fixed in activations
in LLM FFN layers-weights
have relatively little difference
in variance

SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models[Xiao et. al., ICML 2023]

CSCI 5541 NLP

SmoothQuant (W8A8)

38

SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models[Xiao et. al., ICML 2023]

CSCI 5541 NLP

SmoothQuant (W8A8)

39

SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models[Xiao et. al., ICML 2023]

CSCI 5541 NLP

AWQ (W4A16)

40

AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration [Lin et. al., arxiv 2023]

CSCI 5541 NLP

AWQ (W4A16)

41

AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration [Lin et. al., arxiv 2023]

Normal quantization on LLMs performs

poorly due to outliers in the model’s hidden

state

CSCI 5541 NLP

AWQ (W4A16)

42

AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration [Lin et. al., arxiv 2023]

LLM.int8() can resolve these issues, but

mixed precision matrix multiplication is

hardware inefficient

CSCI 5541 NLP

AWQ (W4A16)

43

AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration [Lin et. al., arxiv 2023]

As in SmoothQuant, we can resolve this

issue by shifting the difficulty to the weights

using a scaling factor.

CSCI 5541 NLP

AWQ (W4A16)

44

AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration [Lin et. al., arxiv 2023]

Where Smoothquant quantizes both

activations and weights, AWQ only quantizes

the weights

CSCI 5541 NLP

Era of 1-bit LLMs (W1.58A8)

45

Weight-only QAT algorithm that uses only weights in {-1, 0, 1}

The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits [Ma et al., 2024]

CSCI 5541 NLP

Era of 1-bit LLMs (W1.58A8)

46

The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits [Ma et al., 2024]

CSCI 5541 NLP

Efficient LLMs
❑ Quantization

o Background
o K-Means vs. Linear Quantization
o Quantization Granularity
o Quantization Aware Training (QAT) vs Post-Training Quantization (PTQ)
o LLM Quantization (LLM.int8(), SmoothQuant, AWQ, 1-bit LLMs)

❑ Sparsity (Mixture of Experts, Deja Vu: Contextual Sparsity)
❑ Long Context (PagedAttention, StreamingLLM, MHA/GQA/MQA, H20)
❑ Speculative Decoding
❑ Parameter Efficient Fine-Tuning (BitFit, Adapter, Prompt Tuning, LoRA)

47

CSCI 5541 NLP

Sparsity

48

Even though our model may
have many parameters, we can
get speedups by only using a
much smaller number of those
parameters for a given
instance

CSCI 5541 NLP

Mixture of Experts (MoE)

49

Replace FFN layers in
traditional
transformers with a
switching FFN layer
(more generally called
an MoE layer)

CSCI 5541 NLP

Mixture of Experts (MoE)

50

Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity [Fedus et al., CoRR 2021]

CSCI 5541 NLP

Mixture of Experts (MoE)

51

Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity [Fedus et al., CoRR 2021]

Four FFN layers

CSCI 5541 NLP

Mixture of Experts (MoE)

52

Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity [Fedus et al., CoRR 2021]

Only one is used per token

CSCI 5541 NLP

Mixture of Experts (MoE)

53

Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity [Fedus et al., CoRR 2021]

Only 25% of the FFN parameters
are used for a single token

CSCI 5541 NLP

Deja Vu: Contextual Sparsity

54

Observation 1: Model activations
change very little between
consecutive layers of a network

Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time [Liu et al., 2023]

CSCI 5541 NLP

Deja Vu: Contextual Sparsity

55

Observation 2: Most attention heads
and most neurons are not used

Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time [Liu et al., 2023]

CSCI 5541 NLP

Deja Vu: Contextual Sparsity

56

Sparsification: Use predictors in each
layer to determine which neurons to
activate and which attention heads to
use – ignore all unpredicted
heads/neurons

Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time [Liu et al., 2023]

CSCI 5541 NLP

Efficient LLMs
❑ Quantization

o Background
o K-Means vs. Linear Quantization
o Quantization Granularity
o Quantization Aware Training (QAT) vs Post-Training Quantization (PTQ)
o LLM Quantization (LLM.int8(), SmoothQuant, AWQ, 1-bit LLMs)

❑ Sparsity (Mixture of Experts, Deja Vu: Contextual Sparsity)
❑ Long Context (PagedAttention, StreamingLLM, MHA/GQA/MQA, H20)
❑ Speculative Decoding
❑ Parameter Efficient Fine-Tuning (BitFit, Adapter, Prompt Tuning, LoRA)

57

CSCI 5541 NLP

The KV-Cache

58

The transformer needs to have access to the keys and values for all
previous tokens in all layers for all heads when

https://awsdocs-neuron.readthedocs-hosted.com/en/latest/general/appnotes/transformers-neuronx/generative-llm-inference-with-neuron.html

CSCI 5541 NLP

The KV-Cache

59

In total, we must store

Batch_size * seq_len * num_heads * num_layers * emb_dim * 2

separate values in the kv cache

CSCI 5541 NLP

PagedAttention

60

How does a large LLM service (large ChatGPT) handle multiple incoming
requests with respect to the KV-cache?
-Originally, most systems just assign fixed sized blocks of memory to each
incoming request. How to improve?

Efficient Memory Management for Large Language Model Serving with PagedAttention (Kwon et al., 2023)

CSCI 5541 NLP

PagedAttention

61

Let’s adopt a similar approach to that found in virtual memory!

Efficient Memory Management for Large Language Model Serving with PagedAttention (Kwon et al., 2023)

CSCI 5541 NLP

PagedAttention

62

Efficient Memory Management for Large Language Model Serving with PagedAttention (Kwon et al., 2023)

CSCI 5541 NLP

StreamingLLM

63

How can we extend models to have much longer context length at minimal cost?

Efficient Streaming Language Models with Attention Sinks [Xiao et al., 2023]

CSCI 5541 NLP

StreamingLLM

64

How can we extend models to have much longer context length at minimal cost?

Efficient Streaming Language Models with Attention Sinks [Xiao et al., 2023]

Too
much

storage

CSCI 5541 NLP

StreamingLLM

65

How can we extend models to have much longer context length at minimal cost?

Efficient Streaming Language Models with Attention Sinks [Xiao et al., 2023]

Bad
performance

CSCI 5541 NLP

StreamingLLM

66

How can we extend models to have much longer context length at minimal cost?

Efficient Streaming Language Models with Attention Sinks [Xiao et al., 2023]

Too much
recomputation

CSCI 5541 NLP

StreamingLLM

67

Observation: Most attention is either placed on the first token or to tokens that
the model has recently seen.

Efficient Streaming Language Models with Attention Sinks [Xiao et al., 2023]

CSCI 5541 NLP

StreamingLLM

68

Efficient Streaming Language Models with Attention Sinks [Xiao et al., 2023]

CSCI 5541 NLP

MHA/GQA/MQA

69

GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints

CSCI 5541 NLP

MHA/GQA/MQA

70

GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints

Each attention head calculates separate
keys and values for each token

CSCI 5541 NLP

MHA/GQA/MQA

71

GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints

Attention heads are split into groups.
Each group has one key/value per token.

CSCI 5541 NLP

MHA/GQA/MQA

72

GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints

Attention heads share the same keys
and values for each token

CSCI 5541 NLP

H20: Heavy Hitter Oracle

73

H2O: Heavy-Hitter Oracle for Efficient Generative Inference of Large Language Models [Zhang et. al, 2023]

Evict all but k-
highest
cumulative
attention tokens
from cache

CSCI 5541 NLP

H20: Heavy Hitter Oracle

74

H2O: Heavy-Hitter Oracle for Efficient Generative Inference of Large Language Models [Zhang et. al, 2023]

Evict all but k-
highest
cumulative
attention tokens
from cache

CSCI 5541 NLP

Efficient LLMs
❑ Quantization

o Background
o K-Means vs. Linear Quantization
o Quantization Granularity
o Quantization Aware Training (QAT) vs Post-Training Quantization (PTQ)
o LLM Quantization (LLM.int8(), SmoothQuant, AWQ, 1-bit LLMs)

❑ Sparsity (Mixture of Experts, Deja Vu: Contextual Sparsity)
❑ Long Context (PagedAttention, StreamingLLM, MHA/GQA/MQA, H20)
❑ Speculative Decoding
❑ Parameter Efficient Fine-Tuning (BitFit, Adapter, Prompt Tuning, LoRA)

75

CSCI 5541 NLP

The Memory Bandwidth Bottleneck

76

● Two parts of computing each
add time to any given task →
○ Memory loading (Gb/s)
○ Computation (FLOPS)

● Over time, memory loading
has gotten slower relative to
computation

● This means memory loading
can be more of a bottleneck if
we are only using things we
load from memory one time

Turing Award Presentation, 2021 [Dongarra]

https://www.youtube.com/watch?v=cSO0Tc2w5Dg

CSCI 5541 NLP

Compute vs. IO

77

● One way to alleviate this is to
increase the amount of
computation we perform for
each byte we load from
memory

● This is called the arithmetic
intensity of a given
program/function

● Generally, we would prefer to
be in the compute bound
region more often as this is
where work is being done

CSCI 5541 NLP

Speculative Decoding

78

● In standard autoregressive
decoding, we are only using
each parameter one time
when the batch size is 1

● This means standard
decoding has a low arithmetic
intensity and is memory
bound

● We have a bunch more
compute we could be getting
for free given how massively
parallel GPUs are

Big Little Decoder [Kim, et. al]

CSCI 5541 NLP

Speculative Decoding

79

● Speculative decoding resolves
this by ‘speculating’ multiple
tokens into the future with a
smaller, cheaper model

Big Little Decoder [Kim, et. al]

CSCI 5541 NLP

Speculative Decoding

80

● Speculative decoding resolves
this by ‘speculating’ multiple
tokens into the future with a
smaller, cheaper model

Big Little Decoder [Kim, et. al]

Draft of potential
next tokens

CSCI 5541 NLP

Speculative Decoding

81

● Speculative decoding resolves
this by ‘speculating’ multiple
tokens into the future with a
smaller, cheaper model

● We can now send this set of
tokens on to a much larger
model to verify the sequence

Big Little Decoder [Kim, et. al]

Draft of potential
next tokens

CSCI 5541 NLP

Speculative Decoding

82

● Because the sequence will be
run in parallel the arithmetic
intensity will be proportional
to the number of draft tokens

● We run each token through
and see if the output of the
large model matches that of
the smaller, draft model

Big Little Decoder [Kim, et. al]

CSCI 5541 NLP

Speculative Decoding

83

● Because the sequence will be
run in parallel the arithmetic
intensity will be proportional
to the number of draft tokens

● We run each token through
and see if the output of the
large model matches that of
the smaller, draft model

● We accept the matching
tokens

Big Little Decoder [Kim, et. al]

Several famous people of

Accept RejectSample

CSCI 5541 NLP

Advanced Approaches

84

Big Little Decoder [Kim, et. al]

More advanced approaches will use draft
trees, rather than draft sequences

CSCI 5541 NLP

Efficient LLMs
❑ Quantization

o Background
o K-Means vs. Linear Quantization
o Quantization Granularity
o Quantization Aware Training (QAT) vs Post-Training Quantization (PTQ)
o LLM Quantization (LLM.int8(), SmoothQuant, AWQ, 1-bit LLMs)

❑ Sparsity (Mixture of Experts, Deja Vu: Contextual Sparsity)
❑ Long Context (PagedAttention, StreamingLLM, MHA/GQA/MQA, H20)
❑ Speculative Decoding
❑ Parameter Efficient Fine-Tuning (BitFit, Adapter, Prompt Tuning, LoRA)

85

CSCI 5541 NLP

BitFit

86

Update only the
bias parameters

BitFit: Simple Parameter-efficient Fine-tuning for Transformer-based Masked Language-models [Zeken et al, ACL 2021]

CSCI 5541 NLP

Adapter

87

Add trainable
layers after each
feedforward layer

Parameter-Efficient Transfer Learning for NLP [Houlsby et al, ICML 2019]

CSCI 5541 NLP

Prompt Tuning (Soft Prompting)

88

Train a continuous, learnable prompt in embedding space for each task we
are training on

The Power of Scale for Parameter-Efficient Prompt Tuning [Lester, ACL 2021]

CSCI 5541 NLP

LoRA

89

❑ Hypothesizes that fine-tuning
results in only low rank updates

❑ Thus, we may approximate the
updates themselves as low-rank
and train on this low-rank
approximation directly

The Power of Scale for Parameter-Efficient Prompt Tuning [Lester, ACL 2021]

CSCI 5541 NLP

LoRA

90

The Power of Scale for Parameter-Efficient Prompt Tuning [Lester, ACL 2021]

Normal Finetuning:

h = Wx
Update W

CSCI 5541 NLP

LoRA

91

The Power of Scale for Parameter-Efficient Prompt Tuning [Lester, ACL 2021]

Normal Finetuning:

h = Wx

LoRA Finetuning:

h = Wx + BAx

Update W

Update B,A

Leave W unchanged

CSCI 5541 NLP

LoRA

92

The Power of Scale for Parameter-Efficient Prompt Tuning [Lester, ACL 2021]

CSCI 5541 NLP

Summary
❑ Efficient inference algorithms in LLMs lead to lower cost, faster inference,

and smaller models
❑ Quantization and sparsity are the primary techniques for realizing these

efficiencies
❑ PEFT techniques allow for faster fine-tuning with smaller storage

requirements

93

CSCI 5541 NLP

Future Directions
❑ Better, more adaptive inference

systems
o Adaptive speculative decoding
o Variable Model Serving

❑ Improved efficiency benchmarking
❑ More efficient architectures

94

CSCI 5541 NLP

Open Source Models/Inference Systems
❑ Models

o Llama3.2
o Qwen2.5
o Mixtral

❑ Quantization
o AWQ
o LLM.int8()
o QLoRA
o GGUF

95

❑ Inference Systems
o vLLM
o SGLang
o Tensor-RT LLM
o Llama.cpp
o oLLama
o Huggingface TGI

https://huggingface.co/collections/meta-llama/llama-32-66f448ffc8c32f949b04c8cf
https://huggingface.co/collections/Qwen/qwen25-66e81a666513e518adb90d9e
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://github.com/mit-han-lab/llm-awq
https://huggingface.co/docs/bitsandbytes/main/en/index
https://huggingface.co/docs/bitsandbytes/main/en/index
https://huggingface.co/spaces/ggml-org/gguf-my-repo
https://github.com/vllm-project/vllm
https://github.com/sgl-project/sglang
https://github.com/NVIDIA/TensorRT-LLM
https://github.com/ggerganov/llama.cpp
https://github.com/ollama/ollama
https://github.com/huggingface/text-generation-inference

	Slide 1: CSCI 5541: Natural Language Processing
	Slide 2: What Is Efficiency and Why Does It Matter?
	Slide 3: What Is Efficiency and Why Does It Matter?
	Slide 4: Model Energy Use
	Slide 5: Model Size
	Slide 6: Model Cost
	Slide 7: Development Speed
	Slide 8: Efficiency Tradeoff
	Slide 9: How to Improve Model Efficiency?
	Slide 10: What Makes a Language Model Slow
	Slide 11: Efficient LLMs
	Slide 12: Efficient LLMs
	Slide 13: Quantization
	Slide 14: Efficient LLMs
	Slide 15: K-Means Quantization vs Linear Quantization
	Slide 16: K-Means Quantization vs Linear Quantization
	Slide 17: K-Means Quantization
	Slide 18: K-Means Quantization
	Slide 19: K-Means Quantization
	Slide 20: K-Means Quantization
	Slide 21: K-Means Quantization vs Linear Quantization
	Slide 22: Linear Quantization
	Slide 23: Linear Quantization
	Slide 24: Linear Quantization
	Slide 25: Linear Quantization
	Slide 26: Linear Quantization
	Slide 27: Linear Quantization
	Slide 28: Linear Quantization
	Slide 29: Efficient LLMs
	Slide 30: Weight Granularity
	Slide 31: Activation Granularity
	Slide 32: Efficient LLMs
	Slide 33: Quantization Aware Training (QAT)
	Slide 34: Post Training Quantization (PTQ)
	Slide 35: Efficient LLMs
	Slide 36: LLM.int8() (W8A8)
	Slide 37: SmoothQuant (W8A8)
	Slide 38: SmoothQuant (W8A8)
	Slide 39: SmoothQuant (W8A8)
	Slide 40: AWQ (W4A16)
	Slide 41: AWQ (W4A16)
	Slide 42: AWQ (W4A16)
	Slide 43: AWQ (W4A16)
	Slide 44: AWQ (W4A16)
	Slide 45: Era of 1-bit LLMs (W1.58A8)
	Slide 46: Era of 1-bit LLMs (W1.58A8)
	Slide 47: Efficient LLMs
	Slide 48: Sparsity
	Slide 49: Mixture of Experts (MoE)
	Slide 50: Mixture of Experts (MoE)
	Slide 51: Mixture of Experts (MoE)
	Slide 52: Mixture of Experts (MoE)
	Slide 53: Mixture of Experts (MoE)
	Slide 54: Deja Vu: Contextual Sparsity
	Slide 55: Deja Vu: Contextual Sparsity
	Slide 56: Deja Vu: Contextual Sparsity
	Slide 57: Efficient LLMs
	Slide 58: The KV-Cache
	Slide 59: The KV-Cache
	Slide 60: PagedAttention
	Slide 61: PagedAttention
	Slide 62: PagedAttention
	Slide 63: StreamingLLM
	Slide 64: StreamingLLM
	Slide 65: StreamingLLM
	Slide 66: StreamingLLM
	Slide 67: StreamingLLM
	Slide 68: StreamingLLM
	Slide 69: MHA/GQA/MQA
	Slide 70: MHA/GQA/MQA
	Slide 71: MHA/GQA/MQA
	Slide 72: MHA/GQA/MQA
	Slide 73: H20: Heavy Hitter Oracle
	Slide 74: H20: Heavy Hitter Oracle
	Slide 75: Efficient LLMs
	Slide 76: The Memory Bandwidth Bottleneck
	Slide 77: Compute vs. IO
	Slide 78: Speculative Decoding
	Slide 79: Speculative Decoding
	Slide 80: Speculative Decoding
	Slide 81: Speculative Decoding
	Slide 82: Speculative Decoding
	Slide 83: Speculative Decoding
	Slide 84: Advanced Approaches
	Slide 85: Efficient LLMs
	Slide 86: BitFit
	Slide 87: Adapter
	Slide 88: Prompt Tuning (Soft Prompting)
	Slide 89: LoRA
	Slide 90: LoRA
	Slide 91: LoRA
	Slide 92: LoRA
	Slide 93: Summary
	Slide 94: Future Directions
	Slide 95: Open Source Models/Inference Systems

