
CSCI 5541: Natural Language Processing
Lecture 15: LLM Compute efficiency and engineering
James Mooney
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What Is Efficiency and Why Does It Matter?
❑ Efficiency for NLP is concerned with delivering faster, cheaper, smaller, less 

energy intensive solutions to problems involving natural language
❑ Faster models means LLM model services (GPT3.5, Claude 2.0, etc.) can 

meet the demands of many clients more quickly
❑ Cheaper models reduce costs for LLM model service providers
❑ Smaller model sizes allow for service providers to use fewer resources and 

can allow for individuals to deploy LLMs to their own (smaller) devices
❑ Less energy intensive means lower cost and easier to deploy at the edge, 

where energy is harder to come by
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Model Energy Use
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Computing’s Energy Problem (and What We Can Do About it) [Horowitz, M., IEEE ISSCC 2014 
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Model Size
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Model Cost
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Development Speed
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https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm
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Efficiency Tradeoff
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❑ More efficient models (smaller, 
faster) typically come at a cost of 
some performance of the model 
itself

❑ In the other direction, getting more 
performance from a model 
architecture likely means it will be 
larger, and require more 
computation Efficiency (speed, 1/size, etc.)
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How to Improve Model Efficiency?
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Hardware Software
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What Makes a Language Model Slow
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Efficient LLMs
❑ Quantization

o Background
o K-Means vs. Linear Quantization
o Quantization Granularity
o Quantization Aware Training (QAT) vs Post-Training Quantization (PTQ)
o LLM Quantization (LLM.int8(), SmoothQuant, AWQ, 1-bit LLMs)

❑ Sparsity (Mixture of Experts, Deja Vu: Contextual Sparsity)
❑ Long Context (PagedAttention, StreamingLLM, MHA/GQA/MQA, H20)
❑ Speculative Decoding
❑ Parameter Efficient Fine-Tuning (BitFit, Adapter, Prompt Tuning, LoRA)
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Quantization

13

Reduce model size by 
replacing high bit-
width 
representations with 
low bit-width 
representations
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K-Means Quantization vs Linear Quantization
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K-Means Quantization vs Linear Quantization
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K-Means Quantization
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Deep Compression [Han et al., ICLR 2016]
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K-Means Quantization
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Deep Compression [Han et al., ICLR 2016]

Original weights
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K-Means Quantization
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Deep Compression [Han et al., ICLR 2016]

Stored weights after 
clustering
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K-Means Quantization
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Deep Compression [Han et al., ICLR 2016]

Retrieved weights to 
be used at inference 

time 
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K-Means Quantization vs Linear Quantization
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Linear Quantization

22

❑ Apply linear function on 
weights and hidden state 
activations from floating 
point values (r) to integer 
values (q)

❑ Original weights (black), 
Quantized bins (red)

❑ Black weights are mapped 
to one of the vertical red 
lines
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Linear Quantization
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❑ Apply linear function on 
weights and hidden state 
activations from floating 
point values (r) to integer 
values (q)

❑ Original weights (black), 
Quantized bins (red)

❑ Black weights are mapped 
to one of the vertical red 
lines

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

32-bit float to 4-bit int
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Linear Quantization
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❑ Apply linear function on 
weights and hidden state 
activations from floating 
point values (r) to integer 
values (q)

❑ Original weights (black), 
Quantized bins (red)

❑ Black weights are mapped 
to one of the vertical red 
lines

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

32-bit float to 4-bit int

Before Quantization: -.14
After Quantization: -2
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Linear Quantization

25

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [Jacobet al., CVPR 2018]
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Linear Quantization
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Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [Jacobet al., CVPR 2018]

Original 
Weights
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Linear Quantization
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Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [Jacobet al., CVPR 2018]

Stored Values
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Linear Quantization

28

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [Jacobet al., CVPR 2018]

Retrieved weights to 
be used at inference 

time
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Efficient LLMs
❑ Quantization

o Background
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Weight Granularity

30

❑ Weight matrices will often have 
different variances along each 
output channel

❑ High variance in weights means 
that applying linear 
quantization will result in large 
performance degradation

❑ To fix this, we can perform 
linear quantization along each 
channel of the weight tensor 
separately

SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models[Xiao et. al., ICML 2023]
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Activation Granularity

31

❑ Activations can have a similar 
problem whereby the variance 
by channel can be quite 
different

❑ The variance by token can also 
differ dramatically

❑ When applying quantization, we 
should split up channels, tokens 
to take this into account

SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models[Xiao et. al., ICML 2023]
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Quantization Aware Training (QAT)
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Quantize while training

https://pytorch.org/blog/quantization-in-practice/
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Post Training Quantization (PTQ)
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Quantize after training

https://pytorch.org/blog/quantization-in-practice/
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LLM.int8() (W8A8)

36

LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale [Dettmers et. al., NeurIPS 2022]
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SmoothQuant (W8A8)
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Observation: High variance 
channels are fixed in activations 
in LLM FFN layers-weights 
have relatively little difference 
in variance

SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models[Xiao et. al., ICML 2023]
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SmoothQuant (W8A8)
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SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models[Xiao et. al., ICML 2023]
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SmoothQuant (W8A8)
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SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models[Xiao et. al., ICML 2023]
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AWQ (W4A16)
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AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration [Lin et. al., arxiv 2023]
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AWQ (W4A16)
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AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration [Lin et. al., arxiv 2023]

Normal quantization on LLMs performs 

poorly due to outliers in the model’s hidden 

state 
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AWQ (W4A16)
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AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration [Lin et. al., arxiv 2023]

LLM.int8() can resolve these issues, but 

mixed precision matrix multiplication is 

hardware inefficient
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AWQ (W4A16)
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AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration [Lin et. al., arxiv 2023]

As in SmoothQuant, we can resolve this 

issue by shifting the difficulty to the weights 

using a scaling factor.  
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AWQ (W4A16)

44

AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration [Lin et. al., arxiv 2023]

Where Smoothquant quantizes both 

activations and weights, AWQ only quantizes 

the weights
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Era of 1-bit LLMs (W1.58A8)
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Weight-only QAT algorithm that uses only weights in {-1, 0, 1}

The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits [Ma et al., 2024]
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Era of 1-bit LLMs (W1.58A8)
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The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits [Ma et al., 2024]
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Efficient LLMs
❑ Quantization
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o LLM Quantization (LLM.int8(), SmoothQuant, AWQ, 1-bit LLMs)

❑ Sparsity (Mixture of Experts, Deja Vu: Contextual Sparsity)
❑ Long Context (PagedAttention, StreamingLLM, MHA/GQA/MQA, H20)
❑ Speculative Decoding
❑ Parameter Efficient Fine-Tuning (BitFit, Adapter, Prompt Tuning, LoRA)

47



CSCI 5541 NLP

Sparsity

48

Even though our model may 
have many parameters, we can 
get speedups by only using a 
much smaller number of those 
parameters for a given 
instance
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Mixture of Experts (MoE)

49

Replace FFN layers in 
traditional 
transformers with a 
switching FFN layer 
(more generally called 
an MoE layer) 
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Mixture of Experts (MoE)
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Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity [Fedus et al., CoRR 2021]
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Mixture of Experts (MoE)

51

Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity [Fedus et al., CoRR 2021]

Four FFN layers
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Mixture of Experts (MoE)
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Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity [Fedus et al., CoRR 2021]

Only one is used per token
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Mixture of Experts (MoE)
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Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity [Fedus et al., CoRR 2021]

Only 25% of the FFN parameters 
are used for a single token
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Deja Vu: Contextual Sparsity
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Observation 1: Model activations 
change very little between 
consecutive layers of a network

Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time [Liu et al., 2023]
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Deja Vu: Contextual Sparsity
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Observation 2: Most attention heads 
and most neurons are not used 

Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time [Liu et al., 2023]
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Deja Vu: Contextual Sparsity
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Sparsification: Use predictors in each 
layer to determine which neurons to 
activate and which attention heads to 
use – ignore all unpredicted 
heads/neurons

Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time [Liu et al., 2023]
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Efficient LLMs
❑ Quantization

o Background
o K-Means vs. Linear Quantization
o Quantization Granularity
o Quantization Aware Training (QAT) vs Post-Training Quantization (PTQ)
o LLM Quantization (LLM.int8(), SmoothQuant, AWQ, 1-bit LLMs)

❑ Sparsity (Mixture of Experts, Deja Vu: Contextual Sparsity)
❑ Long Context (PagedAttention, StreamingLLM, MHA/GQA/MQA, H20)
❑ Speculative Decoding
❑ Parameter Efficient Fine-Tuning (BitFit, Adapter, Prompt Tuning, LoRA)
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The KV-Cache

58

The transformer needs to have access to the keys and values for all 
previous tokens in all layers for all heads when

https://awsdocs-neuron.readthedocs-hosted.com/en/latest/general/appnotes/transformers-neuronx/generative-llm-inference-with-neuron.html
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The KV-Cache

59

In total, we must store 

Batch_size  *  seq_len * num_heads * num_layers * emb_dim * 2

separate values in the kv cache
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PagedAttention

60

How does a large LLM service (large ChatGPT) handle multiple incoming 
requests with respect to the KV-cache?
-Originally, most systems just assign fixed sized blocks of memory to each 
incoming request. How to improve?

Efficient Memory Management for Large Language Model Serving with PagedAttention (Kwon et al., 2023)
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PagedAttention
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Let’s adopt a similar approach to that found in virtual memory!

Efficient Memory Management for Large Language Model Serving with PagedAttention (Kwon et al., 2023)
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PagedAttention
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Efficient Memory Management for Large Language Model Serving with PagedAttention (Kwon et al., 2023)
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StreamingLLM

63

How can we extend models to have much longer context length at minimal cost?

Efficient Streaming Language Models with Attention Sinks [Xiao et al., 2023]
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StreamingLLM
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How can we extend models to have much longer context length at minimal cost?

Efficient Streaming Language Models with Attention Sinks [Xiao et al., 2023]

Too 
much 

storage
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StreamingLLM
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How can we extend models to have much longer context length at minimal cost?

Efficient Streaming Language Models with Attention Sinks [Xiao et al., 2023]

Bad 
performance
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StreamingLLM
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How can we extend models to have much longer context length at minimal cost?

Efficient Streaming Language Models with Attention Sinks [Xiao et al., 2023]

Too much 
recomputation



CSCI 5541 NLP

StreamingLLM

67

Observation: Most attention is either placed on the first token or to tokens that 
the model has recently seen.

Efficient Streaming Language Models with Attention Sinks [Xiao et al., 2023]
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StreamingLLM
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Efficient Streaming Language Models with Attention Sinks [Xiao et al., 2023]
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MHA/GQA/MQA

69

GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints
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MHA/GQA/MQA
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GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints

Each attention head calculates separate 
keys and values for each token
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MHA/GQA/MQA
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GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints

Attention heads are split into groups. 
Each group has one key/value per token.
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MHA/GQA/MQA
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GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints

Attention heads share the same keys 
and values for each token
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H20: Heavy Hitter Oracle
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H2O: Heavy-Hitter Oracle for Efficient Generative Inference of Large Language Models [Zhang et. al, 2023]

Evict all but k-
highest 
cumulative 
attention tokens 
from cache



CSCI 5541 NLP

H20: Heavy Hitter Oracle
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H2O: Heavy-Hitter Oracle for Efficient Generative Inference of Large Language Models [Zhang et. al, 2023]

Evict all but k-
highest 
cumulative 
attention tokens 
from cache
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Efficient LLMs
❑ Quantization

o Background
o K-Means vs. Linear Quantization
o Quantization Granularity
o Quantization Aware Training (QAT) vs Post-Training Quantization (PTQ)
o LLM Quantization (LLM.int8(), SmoothQuant, AWQ, 1-bit LLMs)

❑ Sparsity (Mixture of Experts, Deja Vu: Contextual Sparsity)
❑ Long Context (PagedAttention, StreamingLLM, MHA/GQA/MQA, H20)
❑ Speculative Decoding
❑ Parameter Efficient Fine-Tuning (BitFit, Adapter, Prompt Tuning, LoRA)
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The Memory Bandwidth Bottleneck

76

● Two parts of computing each 
add time to any given task →
○ Memory loading (Gb/s)
○ Computation (FLOPS)

● Over time, memory loading 
has gotten slower relative to 
computation

● This means memory loading 
can be more of a bottleneck if 
we are only using things we 
load from memory one time

Turing Award Presentation, 2021 [Dongarra]

https://www.youtube.com/watch?v=cSO0Tc2w5Dg
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Compute vs. IO

77

● One way to alleviate this is to 
increase the amount of 
computation we perform for 
each byte we load from 
memory

● This is called the arithmetic 
intensity of a given 
program/function

● Generally, we would prefer to 
be in the compute bound 
region more often as this is 
where work is being done
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Speculative Decoding

78

● In standard autoregressive 
decoding, we are only using 
each parameter one time
when the batch size is 1

● This means standard 
decoding has a low arithmetic 
intensity and is memory 
bound

● We have a bunch more 
compute we could be getting 
for free given how massively 
parallel GPUs are 

Big Little Decoder [Kim, et. al]
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Speculative Decoding

79

● Speculative decoding resolves 
this by ‘speculating’ multiple 
tokens into the future with a 
smaller, cheaper model

Big Little Decoder [Kim, et. al]
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Speculative Decoding

80

● Speculative decoding resolves 
this by ‘speculating’ multiple 
tokens into the future with a 
smaller, cheaper model

Big Little Decoder [Kim, et. al]

Draft of potential 
next tokens
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Speculative Decoding

81

● Speculative decoding resolves 
this by ‘speculating’ multiple 
tokens into the future with a 
smaller, cheaper model

● We can now send this set of 
tokens on to a much larger 
model to verify the sequence

Big Little Decoder [Kim, et. al]

Draft of potential 
next tokens
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Speculative Decoding

82

● Because the sequence will be 
run in parallel the arithmetic 
intensity will be proportional 
to the number of draft tokens

● We run each token through 
and see if the output of the 
large model matches that of 
the smaller, draft model

Big Little Decoder [Kim, et. al]
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Speculative Decoding

83

● Because the sequence will be 
run in parallel the arithmetic 
intensity will be proportional 
to the number of draft tokens

● We run each token through 
and see if the output of the 
large model matches that of 
the smaller, draft model

● We accept the matching 
tokens

Big Little Decoder [Kim, et. al]

Several famous people of

Accept RejectSample
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Advanced Approaches

84

Big Little Decoder [Kim, et. al]

More advanced approaches will use draft 
trees, rather than draft sequences
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Efficient LLMs
❑ Quantization

o Background
o K-Means vs. Linear Quantization
o Quantization Granularity
o Quantization Aware Training (QAT) vs Post-Training Quantization (PTQ)
o LLM Quantization (LLM.int8(), SmoothQuant, AWQ, 1-bit LLMs)

❑ Sparsity (Mixture of Experts, Deja Vu: Contextual Sparsity)
❑ Long Context (PagedAttention, StreamingLLM, MHA/GQA/MQA, H20)
❑ Speculative Decoding
❑ Parameter Efficient Fine-Tuning (BitFit, Adapter, Prompt Tuning, LoRA)
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BitFit

86

Update only the 
bias parameters

BitFit: Simple Parameter-efficient Fine-tuning for Transformer-based Masked Language-models [Zeken et al, ACL 2021]
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Adapter

87

Add trainable 
layers after each 
feedforward layer

Parameter-Efficient Transfer Learning for NLP [Houlsby et al, ICML 2019]
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Prompt Tuning (Soft Prompting)

88

Train a continuous, learnable prompt in embedding space for each task we 
are training on

The Power of Scale for Parameter-Efficient Prompt Tuning [Lester, ACL 2021]
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LoRA

89

❑ Hypothesizes that fine-tuning 
results in only low rank updates

❑ Thus, we may approximate the 
updates themselves as low-rank 
and train on this low-rank 
approximation directly

The Power of Scale for Parameter-Efficient Prompt Tuning [Lester, ACL 2021]



CSCI 5541 NLP

LoRA

90

The Power of Scale for Parameter-Efficient Prompt Tuning [Lester, ACL 2021]

Normal Finetuning:

h = Wx
Update W
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LoRA

91

The Power of Scale for Parameter-Efficient Prompt Tuning [Lester, ACL 2021]

Normal Finetuning:

h = Wx

LoRA Finetuning:

h = Wx + BAx

Update W

Update B,A

Leave W unchanged



CSCI 5541 NLP

LoRA

92

The Power of Scale for Parameter-Efficient Prompt Tuning [Lester, ACL 2021]
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Summary
❑ Efficient inference algorithms in LLMs lead to lower cost, faster inference, 

and smaller models
❑ Quantization and sparsity are the primary techniques for realizing these 

efficiencies
❑ PEFT techniques allow for faster fine-tuning with smaller storage 

requirements

93
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Future Directions
❑ Better, more adaptive inference 

systems
o Adaptive speculative decoding
o Variable Model Serving

❑ Improved efficiency benchmarking
❑ More efficient architectures

94
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Open Source Models/Inference Systems
❑ Models

o Llama3.2
o Qwen2.5
o Mixtral

❑ Quantization
o AWQ
o LLM.int8()
o QLoRA
o GGUF

95

❑ Inference Systems 
o vLLM
o SGLang
o Tensor-RT LLM
o Llama.cpp
o oLLama
o Huggingface TGI

https://huggingface.co/collections/meta-llama/llama-32-66f448ffc8c32f949b04c8cf
https://huggingface.co/collections/Qwen/qwen25-66e81a666513e518adb90d9e
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://github.com/mit-han-lab/llm-awq
https://huggingface.co/docs/bitsandbytes/main/en/index
https://huggingface.co/docs/bitsandbytes/main/en/index
https://huggingface.co/spaces/ggml-org/gguf-my-repo
https://github.com/vllm-project/vllm
https://github.com/sgl-project/sglang
https://github.com/NVIDIA/TensorRT-LLM
https://github.com/ggerganov/llama.cpp
https://github.com/ollama/ollama
https://github.com/huggingface/text-generation-inference
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