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The auto-regressive language models (e.g., GPT3 [BMR+20]) trained on human-written text can pro-
duce natural text as humans do. In this homework, you will implement and use various decoding
algorithms, generate text using the pre-trained large language models (LLMs) on different generation
tasks, evaluate the output text, and justify the limitations of current decoding methods. The lead TA
for this assignment is Shuyu Gan (gan00067@umn.edu). Please communicate with the lead TA via
Slack, email, or during office hours. This is an individual homework.

This assignment assumes that you have covered most of the search algorithms and evaluation metrics in
text generation on Language Models: Search and Decoding (Feb 18) and Language Models: Evaluations
and Applications (Mar 4). Please read the reading materials and lecture notes if you missed class.

In this homework,you are not required to implement language models from scratch. Instead, your goal
is to build a complete text generation research pipeline using existing tools and models. The
pipeline will cover: task selection, decoding, automatic evaluation, human evaluation, and analysis of
outputs. Please follow the steps below, report the results from the Tasks in each step, and submit
three deliverables: (1) a spreadsheet with results, (2) your codebase with Jupyter notebook, and (3) a
PDF report

Step 1: Trying out different decoding algorithms using HuggingFace

1 from transformers import AutoTokenizer, AutoModelForCausalLM

2

3 tokenizer = AutoTokenizer.from_pretrained("gpt2")

4 model = AutoModelForCausalLM.from_pretrained("gpt2")

5

6 prompt = "Today I believe we can finally"

7 input_ids = tokenizer(prompt, return_tensors="pt").input_ids

8

9 /* generate up to 30 tokens */

10 outputs = model.generate(input_ids, do_sample=False, max_length=30)

11 tokenizer.batch_decode(outputs, skip_special_tokens=True)

12

13 /* step 1 */

14 outputs1 = model.YourDecodingAlgorithmToImplement1(input_ids)

15 outputs2 = model.YourDecodingAlgorithmToImplement2(input_ids)

16 ..

17

You can first go to (HuggingFace API on text generation) and run an example script to generate
text. For instance in the example above, once you load pre-trained autoregressive language models
like GPT2 [RWC+19], the HuggingFace library allows you to select a variety of decoding algorithms.

Task 1 You should report the outputs from four different decoding algorithms covered in the class:
greedy search, beam search, top-k sampling, and top-p sampling. You are not expected to implement
these algorithms yourself. Instead, directly use the pre-implemented decoding functions in HuggingFace
(e.g., the generate() method with proper arguments).

For a prompt like “Today, I believe we can finally,” you should report four output text from the
four different decoding algorithms with the specific parameters you used (e.g., beam size, n-
best, k, p). For this step, make up five prompts yourself – you can use any random prompts you want.

gan00067@umn.edu
https://jimtmooney.github.io/Courses/S25/index.html#lm_search
https://jimtmooney.github.io/Courses/S25/index.html#lm_eval
https://jimtmooney.github.io/Courses/S25/index.html#lm_eval
https://huggingface.co/docs/transformers/main/en/main_classes/text_generation#transformers.GenerationMixin
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Figure 1: HuggingFace Dataset Interface: https://huggingface.co/datasets?task categories=task
categories:summarization

In addition, you must calculate the per-token log-likelihood or the perplexity of each generated
output sequence. For details, see the official tutorial: Perplexity calculation in HuggingFace.

Reporting. Prepare a spreadsheet. In the first tab, each row corresponds to one prompt. The
columns should include: the prompt, four outputs (one per decoding algorithm), the decoding para-
meters, and the perplexity/log-likelihood. Thus, the first tab should be an N-by-7 table, where N=5.
You will add further tabs in later steps. As an example, your spreadsheet should look like the following
Table 1(one row shown here).

Prompt Greedy Beam Top-k Top-p Parameters PPL/LL
Today, I believe... ... ... ... ... beam=5; k=50; p=0.95 loglik=-123.4; ppl=45.6

Table 1: An example row of the spreadsheet format for Step 1 results.

https://huggingface.co/datasets?task_categories=task_categories:summarization
https://huggingface.co/datasets?task_categories=task_categories:summarization
https://huggingface.co/docs/transformers/main/en/perplexity
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Figure 2: Loading the pre-trained T5 model fine-tuned on XSUM dataset

Step 2: Decoding for downstream generation tasks

Perplexity is an intrinsic method to evaluate your language model. Now, we evaluate the language
model with an extrinsic evaluation. First, select a specific task for evaluating decoding algorithms
where the task provides reference text. For instance, you can choose a dataset called XSUM [NCL18]
from the summarization task in the HuggingFace dataset repository, as depicted in Figure 1. You can
see some example instances from Dataset Preview and download the dataset easily from a few lines of
code:

1 from datasets import load_dataset

2 dataset = load_dataset("xsum")

Various tasks are available, such as machine translation, abstraction summarization, dialogue genera-
tion, paraphrasing, and style transfer, where the input and output text (reference text) are provided.
Please check available tasks and fine-tuned models in HuggingFace Tasks.

Once you choose a specific task and dataset for your text generation, you then need to get actual
outputs from the generation model. This homework does not require you to train your own generation
models from scratch on the target dataset. Instead, on the dataset page, you can find the existing
fine-tuned models (blue box in Figure 1).1 For instance, you can load the small T5 model already
fine-tuned on XSUM dataset https://huggingface.co/gniemiec/t5-small-finetuned-xsum, as shown in
Figure 2. On the top right, click the Use in Transformers button to access lines of code for loading
the model into HuggingFace.

1If the dataset page does not include the model list, you can search the dataset name in the model cards.

https://huggingface.co/datasets/xsum
https://huggingface.co/tasks
https://huggingface.co/gniemiec/t5-small-finetuned-xsum
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Task 2 On the test set (or development set if there is no test set given) of the dataset you choose,
you can simply generate the output summary or responses using the default decoding functions in
HuggingFace. In this step, you have to write your own script to load the fine-tuned model and decode
output text given input text from the test samples. Below is an example script to load the model and
decode a batch of test input:

1 from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

2

3 tokenizer = AutoTokenizer.from_pretrained("gniemiec/t5-small-finetuned-xsum")

4

5 model = AutoModelForSeq2SeqLM.from_pretrained("gniemiec/t5-small-finetuned-xsum")

6

7 /* generate your own summary using different decoding algorithms */

8 outputs1 = model.YourDecodingAlgorithmToImplement1(input_ids)

9 outputs2 = model.YourDecodingAlgorithmToImplement2(input_ids)

10 ..

11 tokenizer.batch_decode(outputs1, skip_special_tokens=True)

12 ..

Specifically, you will use the four decoding algorithms implemented in Step #1 and generate output
texts on the test set of your target task. If your test set is more than 50 samples, please only use the
first 50 samples in the following evaluation.

Reporting. In the second tab of your spreadsheet, make one row for each input sample. Each
row should include: the input text, four generated outputs, and the reference text. Thus, the second
tab should be an N-by-6 table, where N is the number of test samples (maximum 50), as illustrated
in Table 2(One row example).

Input Greedy Beam Top-k Top-p Reference
(Sample input) ... ... ... ... (Gold reference)

Table 2: An example row of the spreadsheet format for Step 2 results.

Step 3: Automatic and Human Evaluation

Lastly, you evaluate quality of your generated text by choosing the right evaluation metric for your
task. Since this is not an open-ended generation task, you can use reference-based evaluation metrics
to determine how similar your generated outputs are to the reference text.

1

2 /* generate your own summary using different decoding algorithms */

3 outputs1 = model.YourDecodingAlgorithmToImplement1(input_ids)

4 outputs2 = model.YourDecodingAlgorithmToImplement2(input_ids)

5 ..

6 token_outputs1 = tokenizer.batch_decode(outputs1, skip_special_tokens=True)

7 ..
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Task 3.1 There are two categories of automatic evaluation: content overlap-based metrics (e.g.,
BLEU [PRWZ02], ROUGE [LH03]) and model-based metrics (e.g., Word Mover’s distance [KSKW15],
BERT score [ZKW+20]). You should choose at least one content-overlap metric and at least one
model-based metric, and measure these metric scores of your decoded outputs in Step #2
with respect to the reference text. Please consider which automatic metrics would be appropriate
for your task and provide a justification in the report. By reading the original papers of the dataset
or task you are using, you can find which evaluation metrics are used on which tasks. Again, it is not
necessary to implement these metrics from scratch; instead, you can find pre-implemented evaluation
metrics at Huggingface’s evaluate-metric. For instance, below is an example usage of Huggingface’s
evaluate function for BLEU metric:

1

2 >>> predictions = ["hello there general kenobi", "foo bar foobar"]

3 >>> references = [

4 ... ["hello there general kenobi", "hello there !"],

5 ... ["foo bar foobar"]

6 ... ]

7 >>> bleu = evaluate.load("bleu")

8 >>> results = bleu.compute(predictions=predictions, references=references)

9 >>> print(results)

10 {"bleu": 1.0, "precisions": [1.0, 1.0, 1.0, 1.0], "brevity_penalty": 1.0,

11 "length_ratio": 1.1666666666666667, "translation_length": 7,

12 "reference_length": 6}

As you decode your outputs, you need to report the metric score of each sample in a new column
in the spreadsheet made in Step #2. The report should include the averaged metric scores across
all samples (e.g., 50 test samples) and a comparison of the decoding algorithms that work.

Task 3.2 You may notice that automatic evaluation does not always accurately measure your task’s
performance. In this task, you will devise two or three aspects of human evaluation related
to your target task; please check out what types of aspects (e.g., fluency, coherence, formality,
typicality) could be used in the human evaluation of generated text in the lecture on Language Model
Evaluation. Include a justification for these choices in your report. After this, you should manually
annotate scores of each aspect with a Likert scale (1-5).

This step aims to identify the gap between automatic evaluation metrics and human evaluations and
to highlight their differences in your report. Because human evaluation is time-consuming and costly,
you should evaluate only 20 generated texts in total, regardless of the decoding method used.

To avoid any biases from the predicted outputs, you should make a third tab in your spreadsheet with
a row for each of the first 20 test samples. Since this is an individual homework and you may not
be an expert judge, please still provide your own annotations on the chosen evaluation dimensions
(e.g., factuality, fluency, coherence) using a Likert scale (1-5). If possible, you are encouraged to collect
additional annotations from peers or others to increase reliability, but this is optional.

Your spreadsheet should therefore include the first 20 test samples and the corresponding human
evaluation scores. Report the averaged automatic and human evaluation scores for the first
20 samples and analyze how they differ in practice in your report.

https://huggingface.co/evaluate-metric
https://huggingface.co/spaces/evaluate-metric/bleu
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Deliverables

Please upload your code, spreadsheet, and report to Canvas by Oct 19 , 11:59pm.

Code: You should submit a zipped file containing the decoding algorithms with evaluation scripts
with Jupyter Notebook.

Report and Spreadsheet: Submit a PDF report (maximum six pages, excluding references and
appendix) and a spreadsheet (CSV, Excel, or Google Sheet). The spreadsheet must include three tabs
corresponding to:

• Step 1: Decoding outputs for five prompts (N=5), four decoding methods, hyper-parameters, and
perplexity/log-likelihood (N×7 table).

• Step 2: Decoded outputs for the first 50 test samples (N ≤ 50), including input text, four decoding
outputs, reference text(N×6 table).

• Step 3: Evaluation of Step 2 results. Extend the Step 2 tab by adding new columns for automatic
evaluation scores (e.g., ROUGE-L, BERTScore) for each decoding method across all samples. In
addition, create a separate third tab for human evaluation of the first 20 samples, including your
own Likert-scale ratings on the selected evaluation dimensions.(If you are able to collect extra
annotations from peers or others, you may also include them, but this is optional.)

For the report, you must use the provided LaTeX template (link).

Formatting convention: All your files submitted should follow this naming convention: CSCI5541-
F25-HW4-{Name}.{zip,pdf,csv}.

Rubric (25 points + 4 bonus points)

• Task 1 : Implementation of Decoding Algorithms (12 points)
– All 4 decoding algorithms implemented, outputs in spreadsheet (+2 x 4 algorithms = +8)
– Parameters of the algorithms included in spreadsheet (+1)
– Prompt is consistent across all algorithms (+1)
– Perplexity/Likelihood of each output is calculated and in spreadsheet (+2)

• Task 2: Decoding for extrinsic evaluation (2 points)
– Nx6 spreadsheet correctly generated with inputs, four outputs, and reference text (+1)
– No mistakes in results or code (+1)

• Task 3.1 Automatic Evaluation (4 points)
– At least one overlap-based metric is implemented and justification included (+1)
– At least one model-based metric is implemented and justification included (+1)
– Metrics are calculated between reference text and decoded outputs (+1)
– Average metric score across all samples is reported (+1)

• Task 3.2 Human Evaluation (5 points)
– At least 2-3 aspects of human evaluation for the target task devised (+2)
– Reasoning given behind choice of aspects (+2)
– Difference between human and automatic evaluation is highlighted in report (+1)

• Report (2 points)
– Report contains full information about models and dataset chosen, the requested spreadsheets

and associated metric results, a comparison of decoding algorithms, and justification of design
decisions. (+2)

– Partial report submitted (i.e., some pieces of the report are missing) (+1)
• Bonus Point (Max: +4 points)

– Trying out other advanced decoding algorithms implemented in HuggingFace (+1)

https://canvas.umn.edu/courses/518535/assignments/4843124
https://www.overleaf.com/read/scjnckpvdsdx#778821
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– Multiple evaluation metrics (2 of each category(content overlap and model-metric) are imple-
mented) (+1)

– Any other interesting analyses performed (+2)
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