
CSCI 5541: Natural Language Processing
Lecture 10: Deep Dive on Transformers

Using some slides borrowed from Anna Goldie (Google Brain) and John Hweitt (Stanford)
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Announcement (1014)
❑ Proposal Report (due: tonight)
❑ HW4 due (due: Oct 19, Sunday)

o Need extension?
❑ A series of exciting guest lectures are booked!

o LLMs as agents (Oct 28) by Shuyu Gan
o Artificial cognition (Nov 6) by Karin de Langis
o Interpretability and Explainability (Nov 11) by Ryan Peters
o Human-AI Collaboration (Nov 20) by Shirley A. Hayati
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ELMo BERT
Stacked Bidirectional RNN trained to predict 

next word in language modeling task
Transformer-based model to predict masked word using 

bidirectional context and next sentence prediction

(Peters et al., 2018) (Devlin et al., 2019)
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I like natural language processing
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I like natural

1.5 0,5 0.2 0.6 5 3 -1 0.5 2.1 5 4 -2 1.5 8.1

Token 1, Layer 1 Token 2, Layer 1 Token 3, Layer 1

-.5 3.2 9.2 9.6

Token 1, Layer 2

-.4 9.4 -5. 3.1

Token 2, Layer 2

5.2 1.4 -3. 8.2

Token 3, Layer 2

3.2 1.0 3.8 4.6

Token 1, Layer 3

8.7 4.0 -1. 5.2

Token 2, Layer 3

9.2 4.0 3.3 7.8

Token 3, Layer 3

At the end, we have one representation 
for each layer for each token

La
ye

rs
 (L

)
Input Length (T)



CSCI 5541 NLP 6

Summary of Transformers

❑ A sequence-to-sequence model 
based entirely on attention

❑ Strong results on translation and a 
wide variety of other tasks

❑ Faster: More easy to train in a parallel 
fashion

❑ (At right) Encoder-Decoder 
Transformer

Attention Is All You Need 
(Vaswani et al. 2017)
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Strong results/findings and 
applications of Transformers
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Strong results with Transformers on machine translation

[Test sets: WMT 2014 English-German and English-French]

(Vaswani et al. 2017)
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Strong results with Transformers on document summarization

WikiSum dataset (Liu et al., 2018)
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Strong results with (pre-trained) Transformers on classification 
tasks

https://paperswithcode.com/

Sentiment classification 
on SST-2 dataset

https://paperswithcode.com/
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Transformers used outside of NLP

Image Classification Protein folding

AlphaFold2 (Jumper et al., 2021)

Vision Transformer (ViT) outperforms ResNet-based baselines 
with substantially less compute (Dosovitskiy et al. 2020)
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Scaling laws
❑With Transformers, language modeling performance improves smoothly as we increase 

model size, training data, and computing resources.
❑ This power-law relationship has been observed over multiple orders of magnitude with 

no sign of slowing down! 

Kaplan et al., 2020, Scaling Laws for Neural Language Models



CSCI 5541 NLP 13

Why self-attention?
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Recurrence in RNNs

Encoding: Encode input 
sentences with bi-directional 
LSTM

Decoding: Define your outputs (parse, 
sentence, summary) as a sequence/label, and 
use LSTM to decode it.

tokens

layers
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Sequence-to-sequence with attention

Use attention to allow flexible 
access to input memory
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Issues with recurrent models: Linear interaction distance

❑Forward RNNs are unrolled “left-to-right”.
❑It encodes linear locality:

o Nearby words often affect each other’s meanings

❑Problem: RNNs take O(sequence length) steps for distant word 
pairs to interact
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Issues with recurrent models: Lack of parallelizability

❑ Forward and backward passes have O(seq length) un-parallelizable 
operations
o GPUs (and TPUs) can perform many independent computations at once! But future RNN hidden 

states can’t be computed fully before past RNN hidden states have been computed
o Particularly problematic as sequence length increases, as we can no longer batch many examples 

together due to memory limitations

Numbers indicate min # of steps before a state can be computed
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If not recurrence, then what? How about (self) attention?

❑ Attention treats each word’s representation as a query to 
access and incorporate information from a set of values. 
o We saw attention from the decoder to the encoder; 
o Self-attention is encoder-encoder (or decoder-decoder) attention 

where each word attends to each other word within the input (or 
output).

All words attend to all words in 
previous layer; most arrows are 
omitted

O(seq length) O(Layers)
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Encoder Decoder

Repeat N 
times 

(number of 
layers)

Repeat N 
times 

(number of 
layers)
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”I went to the store. At the store, I bought fresh strawberries.”

https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb
https://github.com/jessevig/bertviz

https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb
https://github.com/jessevig/bertviz
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https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb
https://github.com/jessevig/bertviz

https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb
https://github.com/jessevig/bertviz
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Encoder: Self-Attention
Recap: Attention as a query to access and 
incorporate information from a set of values. 
Let's think of attention as a "fuzzy" or approximate 
hashtable: 
❑ To look up a value, we compare a query against keys in a 

table. 
❑ In a hashtable

o Each query (hash) maps to exactly one key-value pair. 
❑ In (self-)attention: 

o Each query (token in current layer) matches each key to varying 
degrees. 

o We return a sum of values (token in previous layer) weighted by 
the query-key match (attention score).
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Encoder: Self-Attention
❑ In (self-)attention: Each query (token in current layer) matches 

each key to varying degrees. We return a sum of values (token in 
previous layer) weighted by the query-key match (attention score).

I like natural

0.60.20,51.5 2.10.5-15 3 8.11.5-25 4

Token 1, Layer 1 Token 2, Layer 1 Token 3, Layer 1

9.69.23.2-.5

Token 1, Layer 2

query (token in current layer) 

values (token in previous layer) 

query-key match (attention score)
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I like natural language processing

5.3 8.5 -1 5.1 2.1 8.7 -7 4.2 9.7 6.1 9.5 9.9 -2 5.2 8.5 6.8 7.3 2.6 3.1 8.3

Weighted sum

Positive / Negative

6.5 2.2 -3. 9.6

y

𝑥1𝑎1 + 𝑥2𝑎2 + 𝑥3𝑎3 + 𝑥4𝑎4 + 𝑥5𝑎5

6.5 2.2 -3. 9.6
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𝑎1 = 0 𝑎2 = 0.64 𝑎3 = 0.02 𝑎4 = 0.02
𝑎5 = 0.32𝑎 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝑟)
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Recipe for Self-Attention in the Transformer Encoder

❑ Step 1: For each word x_i, calculate its query, key, and value.

❑ Step 2: Calculate attention score between query and keys.

❑ Step 3: Take the softmax to normalize attention scores.

❑ Step 4: Take a weighted sum of values.

Model parameters to learn (randomly initialized)

I like natural

0.60.20,51.5 2.10.5-15 3 8.11.5-25 4
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Recipe for (Vectorized) Self-Attention in the Transformer Encoder

❑ Step 1: For each word , calculate its query, key, and value.

❑ Step 2: Calculate attention score between query and keys.

❑ Step 3: Take the softmax to normalize attention scores.

❑ Step 4: Take a weighted sum of values.
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https://jalammar.github.io/illustrated-transformer/

Model parameters to learn (randomly initialized)

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
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❑ Step 1: For each word , calculate 
its query, key, and value.

https://jalammar.github.io/illustrated-transformer/

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
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❑ Step 2: Calculate attention score 
between query and keys.

❑ Step 3: Take the softmax to normalize 
attention scores.

❑ Step 4: Take a weighted sum of values.

https://jalammar.github.io/illustrated-transformer/

I like natural

0.60.20,51.5 2.10.5-15 3 8.11.5-25 4

Token 1, Layer 1 Token 2, Layer 1 Token 3, Layer 1

9.69.23.2-.5

Token 1, Layer 2

Next layer’s token 

embedding for 

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
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https://jalammar.github.io/illustrated-transformer/

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
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Multi-headed self-attention
❑ It gives the attention layer multiple “representation subspaces”
❑Multiple sets of Query/Key/Value weight matrices (Transformer uses eight 

attention heads, so we end up with eight sets for each encoder/decoder). 
Each of these sets is randomly initialized.
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Multi-headed self-attention
❑ It gives the attention layer multiple “representation subspaces”
❑Multiple sets of Query/Key/Value weight matrices (Transformer uses eight 

attention heads, so we end up with eight sets for each encoder/decoder). 
Each of these sets is randomly initialized.
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Condensing multi-head attentions into a single matrix

https://jalammar.github.io/illustrated-transformer/

Model parameters to learn (randomly initialized)

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
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https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb
https://github.com/jessevig/bertviz

https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb
https://github.com/jessevig/bertviz
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https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb
https://github.com/jessevig/bertviz

https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb
https://github.com/jessevig/bertviz
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Recap
❑ Pass our input through the 

Wv, Wk, Wq matrices for 
each head (corresponding 
to the ‘Linear’ boxes at 
right)

❑ Perform Scaled dot product 
attention for each head

❑ Concatenate the results for 
each head

❑ Use linear layer to project to 
original output dimension 
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Other tricks than attention?
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But attention isn’t quite all you need!
❑ Problem: Since there are no element-wise non-linearities, self-attention 

is simply performing a re-averaging of the value vectors.
❑ Easy fix: Apply a feedforward layer to the output of attention, providing 

non-linear activation (and additional expressive power).

Equation for Feed-Forward layer
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Stacking deep neural nets
❑ Training trick #1: Residual Connections
❑ Training trick #2: LayerNorm
❑ Training trick #3: Scaled Dot Product Attention

Repeat N 
times 

(number of 
layers)
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Trick #1: Residual Connections [He et al., 2016]

❑ Residual connections are a simple but powerful technique 
from computer vision. 

❑ Similar to additive connection in LSTM
❑ Directly passing "raw" embeddings to the next layer 

prevents the network from "forgetting" or distorting 
important information as it is processed by many layers.
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Trick #2: Layer Normalization [Ba et al., 2016]

❑ Problem: Difficult to train the parameters of a given 
layer because its input from the layer beneath keeps 
shifting. 

❑ Solution: Reduce uninformative variation by 
normalizing to zero mean and standard deviation of one 
within each layer.
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Layer norm vs Batch norm

Features
(768)

Sequence Length
(512)

Features
(768)

Sequence Length
(512)

Mini-Batch (32) Mini-Batch (32)
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https://theaisummer.com/normalization

https://theaisummer.com/normalization
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Trick #3: Scaled Dot Product Attention

❑ After LayerNorm, the mean and var of vector 
elements is 0 and 1, respectively.

❑ But, the dot product still tends to take on 
extreme values, as its variance scales with 
dimensionality dk
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Representing The Order of The Sequence Using Positional Encoding

❑ Since self-attention doesn’t build in order information, we need 
to encode the order of the sentence in our keys, queries, and 
values.

❑ Consider representing each sequence index as a vector

❑ Easy to incorporate this info into our self-attention block: just 
add the 𝑝𝑖 to our inputs! 
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Position representation vectors through sinusoids

❑ Sinusoidal position representations: concatenate sinusoidal functions of 
varying periods:

❑ Pros: Periodicity indicates that maybe “absolute position” isn’t as important 
❑ Cons: Not learnable; also the extrapolation doesn’t really work
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Decoder

Repeat N 
times 

(number of 
layers)
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Decoder: Masked Multi-Head Self-Attention

❑Problem: How do we prevent the decoder from 
"cheating"? If we have a language modeling objective, 
can't the network just look ahead and "see" the 
answer? 

❑ Solution: Masked Multi-Head Attention. 
❑ At a high-level, we hide (mask) information about future 

tokens from the model.
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Masking the future in self-attention
❑ To use self-attention in decoders, we need to 

ensure we can’t peek at the future. 
❑ At every timestep, we could change the set of 

keys and queries to include only past words. 
(Inefficient!) 

❑ To enable parallelization, we mask out attention 
to future words by setting  attention scores to −∞

We can look at these (not 
greyed out) words

For encoding 
these words
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Masking the future in self-attention
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Encoder-Decoder Attention
❑We saw that self-attention is when keys, queries, 

and values come from the same source. 
❑ In the decoder, we have attention that looks more 

like seq2seq with attention. 
o Let ℎ1.. ℎ𝑇 be output vectors from the Transformer encoder; 𝑥𝑖 ∈ ℝ𝑇

o Let 𝑧1.. 𝑧𝑇 be input vectors from the Transformer decoder, 𝑧𝑖 ∈ ℝ𝑇

❑ Then keys and values are drawn from the encoder
(like a memory): 
o ki = K hi , vi = V hi. 

❑ And the queries are drawn from the decoder, 
o qi = Qzi
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Drawback of Transformer
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Drawback of Transformer

❑ Static positional embedding representations: 
o Are simple absolute indices the best we can do to represent position? 
o Relative linear position attention [Shaw et al., 2018] 

❑Quadratic compute in self-attention: 
o Computing all pairs of interactions (𝑇^2) means our computation grows 

quadratically with the sequence length! For recurrent models, it only 
grew linearly! 

o Reduce 𝑂(𝑇^2) all-pairs self-attention cost?



CSCI 5541 NLP 61

Reduce 𝑂(𝑇^2) all-pairs self-attention cost?

❑ LinFormer (Wang et al., 2020); O(T^2) -> O(T)
o Map the sequence length dimension to a lower-dimensional space for values, keys
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Reduce 𝑂(𝑇^2) all-pairs self-attention cost?

❑ BigBird (Zaheer et al., 2021)
o Replace all-pairs interactions with a family of other interactions, like local windows, 

looking at everything, and random interactions.
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TRANSFORMER VARIANTS
Lots of focus on reducing the 
computational complexity of 
transformer models.
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Do Transformer Modifications Transfer?
❑ "Surprisingly, we find that most modifications do not meaningfully improve performance."
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Scaling up Transformer

http://hal.cse.msu.edu/teaching/2020-fall-deep-learning/14-nlp-and-transformers/#/22/0/9

http://hal.cse.msu.edu/teaching/2020-fall-deep-learning/14-nlp-and-transformers/#/22/0/9
http://hal.cse.msu.edu/teaching/2020-fall-deep-learning/14-nlp-and-transformers/#/22/0/9
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http://hal.cse.msu.edu/teaching/2020-fall-deep-learning/14-nlp-and-transformers/#/22/0/9
http://hal.cse.msu.edu/teaching/2020-fall-deep-learning/14-nlp-and-transformers/#/22/0/9
http://hal.cse.msu.edu/teaching/2020-fall-deep-learning/14-nlp-and-transformers/#/22/0/9
http://hal.cse.msu.edu/teaching/2020-fall-deep-learning/14-nlp-and-transformers/#/22/0/9
http://hal.cse.msu.edu/teaching/2020-fall-deep-learning/14-nlp-and-transformers/#/22/0/9
http://hal.cse.msu.edu/teaching/2020-fall-deep-learning/14-nlp-and-transformers/#/22/0/9
http://hal.cse.msu.edu/teaching/2020-fall-deep-learning/14-nlp-and-transformers/#/22/0/9
http://hal.cse.msu.edu/teaching/2020-fall-deep-learning/14-nlp-and-transformers/#/22/0/9
http://hal.cse.msu.edu/teaching/2020-fall-deep-learning/14-nlp-and-transformers/#/22/0/9
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Scaling up Transformer

http://hal.cse.msu.edu/teaching/2020-fall-deep-learning/14-nlp-and-transformers/#/22/0/9
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Scaling up Transformer

http://hal.cse.msu.edu/teaching/2020-fall-deep-learning/14-nlp-and-transformers/#/22/0/9
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Summary
❑ Transformers are a new neural network model that only uses attention 

(and many other training tricks!!)
❑However, the models are extremely expensive
❑ Improvements (unfortunately) seem to mostly come from even more 

expensive models and more data
❑ If you can afford large data and large compute, transformers are the go to 

architecture, instead of CNNs, RNNs, etc. 
o Why? On our way back to fully-connected models, throwing out the inductive bias of 

CNNs and RNNs.
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State Space Models

https://huggingface.co/blog/lbourdois/get-on-the-ssm-train
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