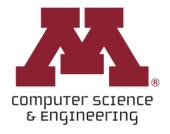
CSCI 5541: Natural Language Processing

Lecture 10: Deep Dive on Transformers



Using some slides borrowed from Anna Goldie (Google Brain) and John Hweitt (Stanford)

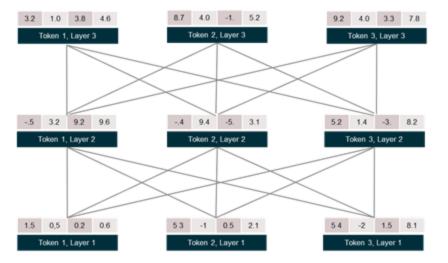
Announcement (1014)

- Proposal Report (due: tonight)
- ☐ HW4 due (due: Oct 19, Sunday)
 - o Need extension?
- ☐ A series of exciting guest lectures are booked!
 - LLMs as agents (Oct 28) by Shuyu Gan
 - Artificial cognition (Nov 6) by Karin de Langis
 - Interpretability and Explainability (Nov 11) by Ryan Peters
 - Human-Al Collaboration (Nov 20) by Shirley A. Hayati

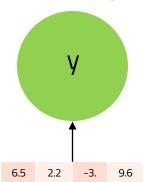
Stacked Bidirectional RNN trained to predict next word in language modeling task

53 85 -1 53 85 -1 21 87 ; 21 87 ; like

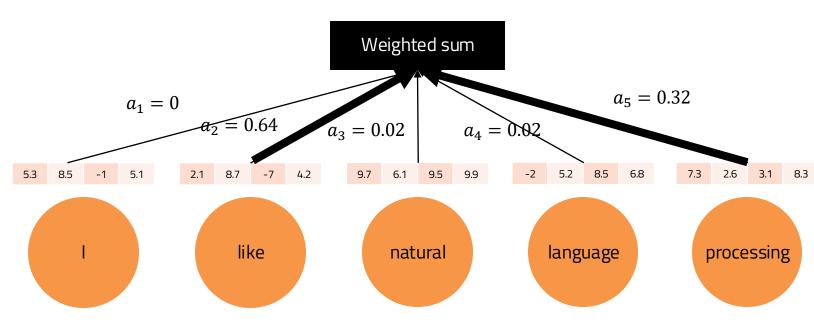
Transformer-based model to predict masked word using bidirectional context and next sentence prediction



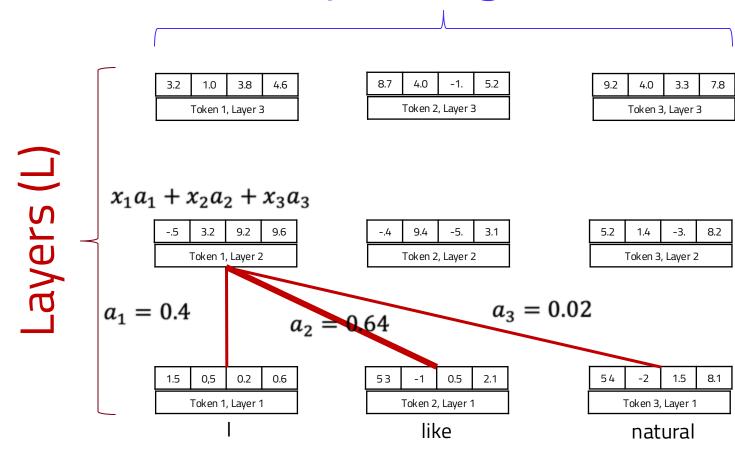
Positive / Negative



$$x_1a_1 + x_2a_2 + x_3a_3 + x_4a_4 + x_5a_5$$



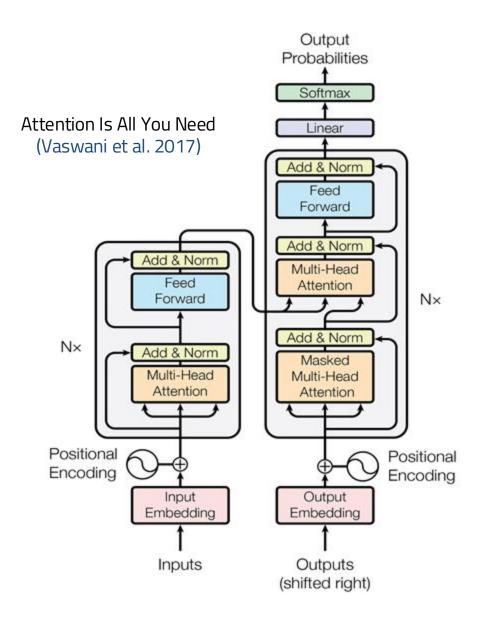
Input Length (T)



Summary of Transformers

- □ A sequence-to-sequence model based entirely on attention
- ☐ Strong results on translation and a wide variety of other tasks
- ☐ Faster: More easy to train in a parallel fashion
- ☐ (At right) Encoder-Decoder

 Transformer



Strong results/findings and applications of Transformers

Strong results with Transformers on machine translation

BLEU		Training Cost (FLOPs)		
EN-DE	EN-FR	EN-DE	EN-FR	
23.75				
	39.2		$1.0 \cdot 10^{20}$	
24.6	39.92	$2.3\cdot 10^{19}$	$1.4\cdot 10^{20}$	
25.16	40.46	$9.6\cdot 10^{18}$	$1.5\cdot 10^{20}$	
26.03	40.56	$2.0\cdot 10^{19}$	$1.2\cdot 10^{20}$	
	40.4		$8.0 \cdot 10^{20}$	
26.30	41.16	$1.8 \cdot 10^{20}$	$1.1\cdot 10^{21}$	
26.36	41.29	$7.7 \cdot 10^{19}$	$1.2 \cdot 10^{21}$	
27.3	38.1	3.3	$3.3 \cdot 10^{18}$ $2.3 \cdot 10^{19}$	
28.4	41.8	2.3		
	EN-DE 23.75 24.6 25.16 26.03 26.30 26.36 27.3	EN-DE EN-FR 23.75 39.2 24.6 39.92 25.16 40.46 26.03 40.56 40.4 26.30 41.16 26.36 41.29 27.3 38.1	EN-DE EN-FR EN-DE 23.75 39.2 24.6 39.92 25.16 40.46 9.6 · 10 ¹⁸ 26.03 40.56 20 · 10 ¹⁹ 40.4 26.30 41.16 26.36 41.29 27.3 38.1 3.3	

[Test sets: WMT 2014 English-German and English-French]

(Vaswani et al. 2017)

Strong results with Transformers on document summarization

Model	Test perplexity	ROUGE-L	
seq2seq-attention, $L = 500$	5.04952	12.7	
Transformer-ED, $L = 500$	2.46645	34.2	
Transformer-D, $L = 4000$	2.22216	33.6	
Transformer-DMCA, no MoE-layer, $L = 11000$	2.05159	36.2	
Transformer-DMCA, $MoE-128$, $L = 11000$	1.92871	37.9	
Transformer-DMCA, MoE-256, $L = 7500$	1.90325	38.8	

WikiSum dataset (Liu et al., 2018)

Strong results with (pre-trained) Transformers on classification tasks

Sentiment classification on SST-2 dataset

Rank	Model	Accuracy 🕈	Paper	Code	Result	Year	Tags 08'
1	SMART-RoBERTa Large	97.5	SMART: Robust and Efficient Fine-Tuning for Pre-trained Natural Language Models through Principled Regularized Optimization	C	Ð	2019	Transformer
2	T5-3B	97.4	Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer	C	Ð	2019	Transformer
3	MUPPET Roberta Large	97.4	Muppet: Massive Multi-task Representations with Pre- Finetuning	C	-0	2021	
4	ALBERT	97.1	ALBERT: A Lite BERT for Self-supervised Learning of Language Representations	C	Ð	2019	Transformer
5	T5-11B	97.1	Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer	0	Ð	2019	Transformer
6	StructBERTRoBERTa ensemble	97.1	StructBERT: Incorporating Language Structures into Pre- training for Deep Language Understanding		Ð	2019	Transformer
7	XLNet (single model)	97	XLNet: Generalized Autoregressive Pretraining for Language Understanding	0	-9	2019	Transformer
8	ELECTRA	96.9	ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators	C	-9	2020	
9	EFL	96.9	Entailment as Few-Shot Learner	C	-9	2021	Transformer
10	XLNet-Large (ensemble)	96.8	XLNet: Generalized Autoregressive Pretraining for Language Understanding	C	-10	2019	Transformer
11	RoBERTa	96.7	RoBERTa: A Robustly Optimized BERT Pretraining Approach	C	-20	2019	Transformer

https://paperswithcode.com/

Transformers used outside of NLP

Protein folding



AlphaFold2 (Jumper et al., 2021)

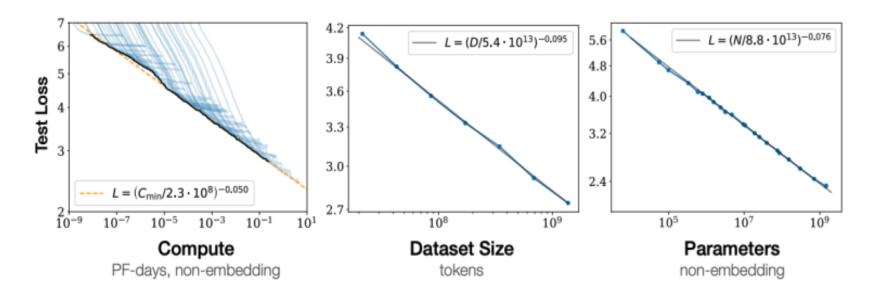
Image Classification

Vision Transformer (ViT) outperforms ResNet-based baselines with substantially less compute (Dosovitskiy et al. 2020)

11

Scaling laws

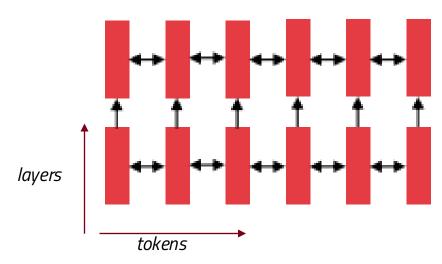
- With Transformers, language modeling performance improves smoothly as we increase model size, training data, and computing resources.
- This power-law relationship has been observed over multiple orders of magnitude with no sign of slowing down!



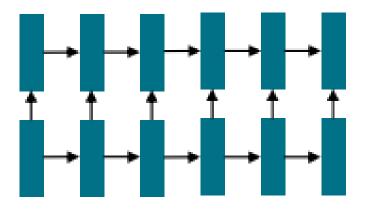
Kaplan et al., 2020, Scaling Laws for Neural Language Models

Why self-attention?

Recurrence in RNNs

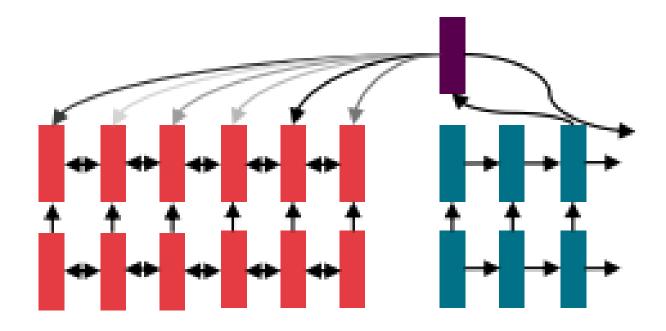


Encoding: Encode input sentences with bi-directional LSTM



Decoding: Define your outputs (parse, sentence, summary) as a sequence/label, and use LSTM to decode it.

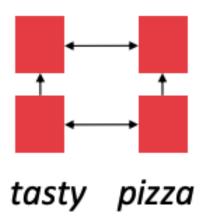
Sequence-to-sequence with attention

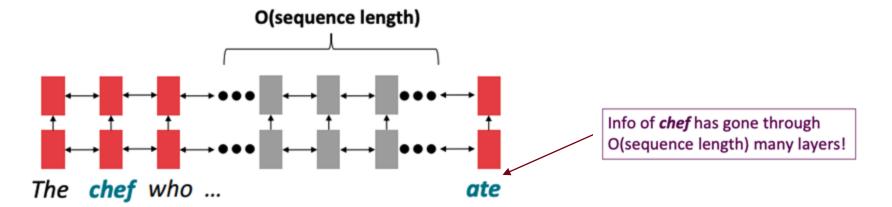


Use **attention** to allow flexible access to input memory

Issues with recurrent models: Linear interaction distance

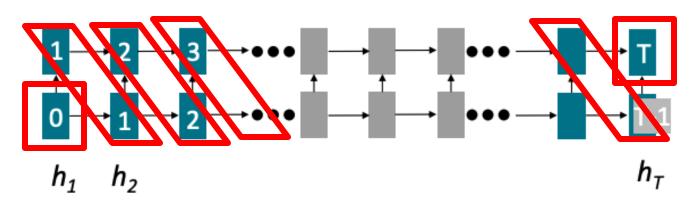
- Forward RNNs are unrolled "left-to-right".
- ☐ It encodes linear locality:
 - Nearby words often affect each other's meanings
- Problem: RNNs take **O(sequence length) steps** for distant word pairs to interact





Issues with recurrent models: Lack of parallelizability

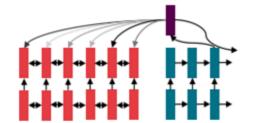
- ☐ Forward and backward passes have **O(seq length) un-parallelizable** operations
 - o GPUs (and TPUs) can perform many independent computations at once! But future RNN hidden states can't be computed fully before past RNN hidden states have been computed
 - Particularly problematic as sequence length increases, as we can no longer batch many examples together due to memory limitations



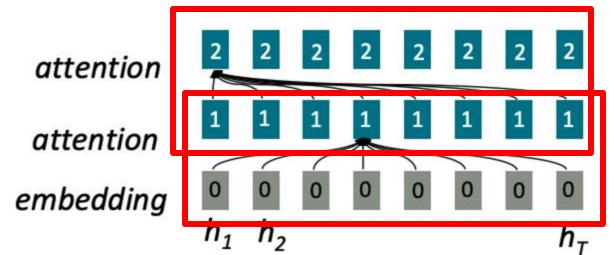
Numbers indicate min # of steps before a state can be computed

If not recurrence, then what? How about (self) attention?

Attention treats each word's representation as a query to access and incorporate information from a set of values.

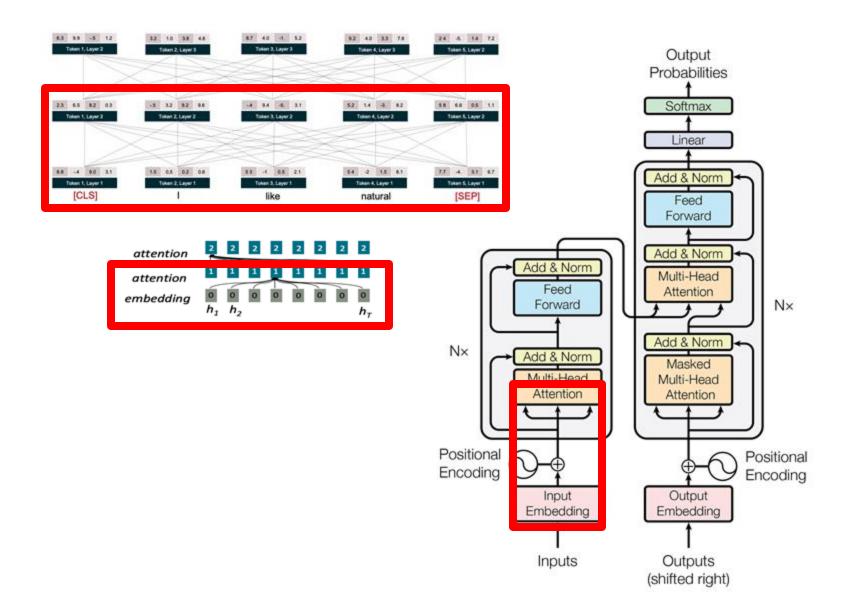


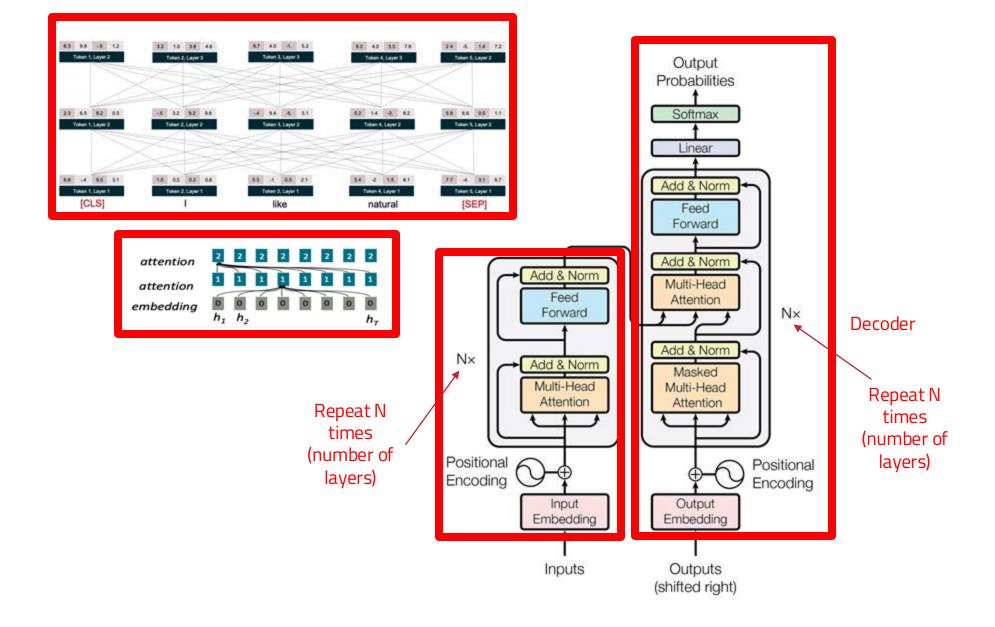
- We saw attention from the decoder to the encoder;
- Self-attention is encoder-encoder (or decoder-decoder) attention where each word attends to each other word within the input (or out



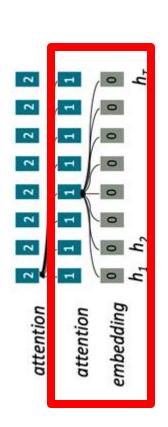
All words attend to all words in previous layer; most arrows are omitted

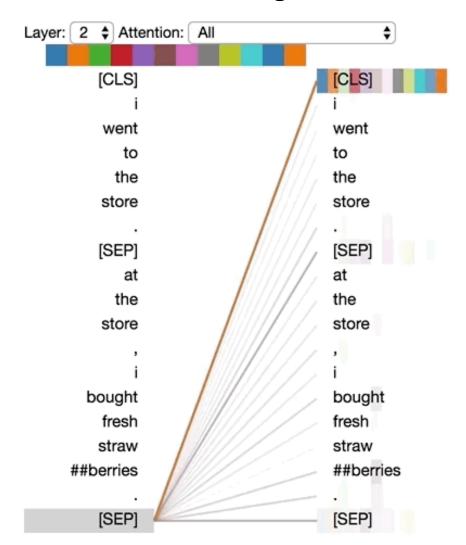
O(seq length) O(Layers)

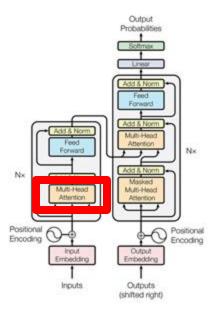




"I went to the store. At the store, I bought fresh strawberries."

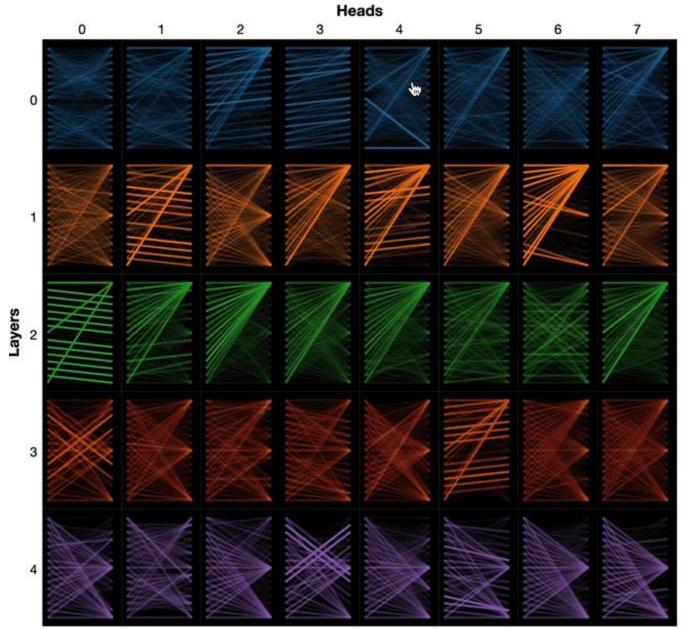


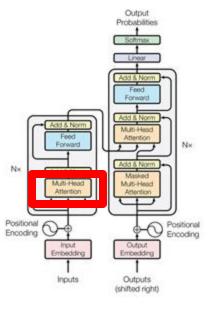




https://github.com/jessevig/bertviz

https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2tipynb





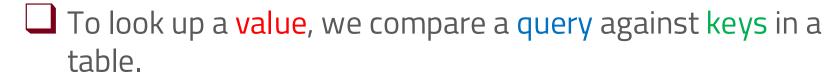
HITTP://glulup.com/jessevig/peit/viz

https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb

Encoder: Self-Attention

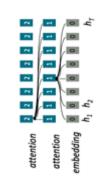
Recap: Attention as a **query** to access and incorporate information from a set of **values**.

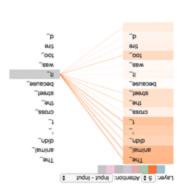
Let's think of attention as a "fuzzy" or approximate hashtable:

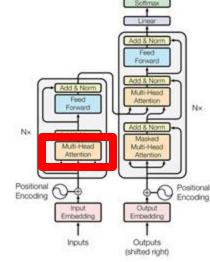


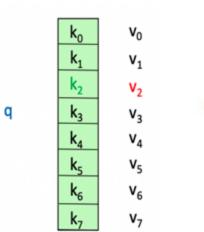
Each query (hash) maps to exactly one key-value pair.

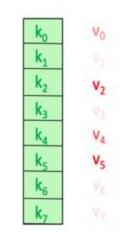
- In (self-)attention:
 - Each query (token in current layer) matches each key to varying degrees.
 - We return a sum of values (token in previous layer) weighted by the guery-key match (attention score).





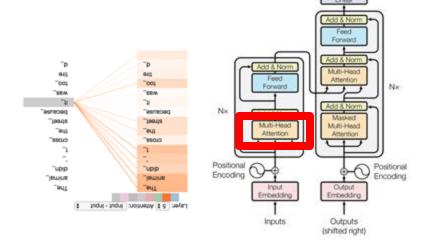




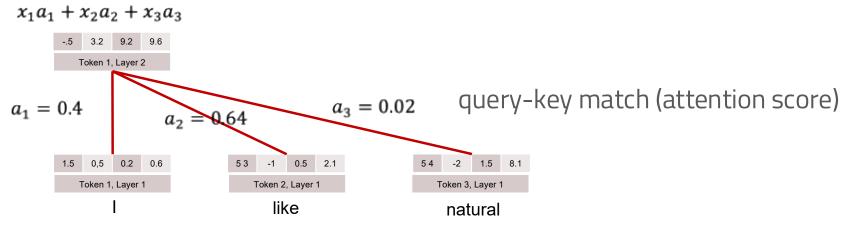


Encoder: Self-Attention

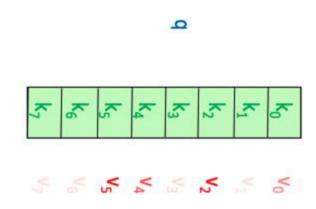
In (self-)attention: Each query (token in current layer) matches each key to varying degrees. We return a sum of values (token in previous layer) weighted by the query-key match (attention score).



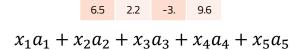
query (token in current layer)



values (token in previous layer)



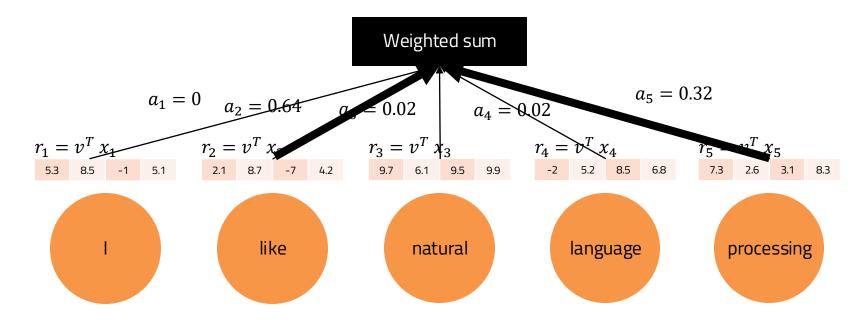
Positive / Negative



$$a = softmax(r)$$

 $v \in R^h$

6.5 2.2 -3. 9.6



Recipe for Self-Attention in the Transformer Encoder

Model parameters to learn (randomly initialized)

$$q_i = W^Q x_i \quad k_i = W^K x_i \quad v_i = W^V x_i$$

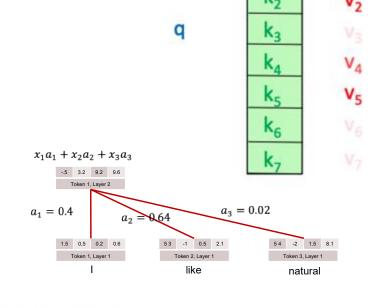
☐ Step 2: Calculate attention score between query and keys.

$$e_{ij} = q_i \cdot k_j$$

☐ Step 3: Take the softmax to normalize attention scores.

$$\alpha_{ij} = softmax(e_{ij}) = \frac{exp(e_{ij})}{\sum exp(e_{ik})}$$

Step 4: Take a weighted sum of values.



$$Output_i = \sum_j \alpha_{ij} v_j$$

Recipe for (Vectorized) Self-Attention in the Transformer Encoder

Step 1: For each word , calculate its query, key, and value.

$$Q = XW^Q$$
 $K = XW^K$ $V = XW^V$

Step 2: Calculate attention score between query and keys.

$$E = QK^T$$

Step 3: Take the softmax to normalize attention scores.

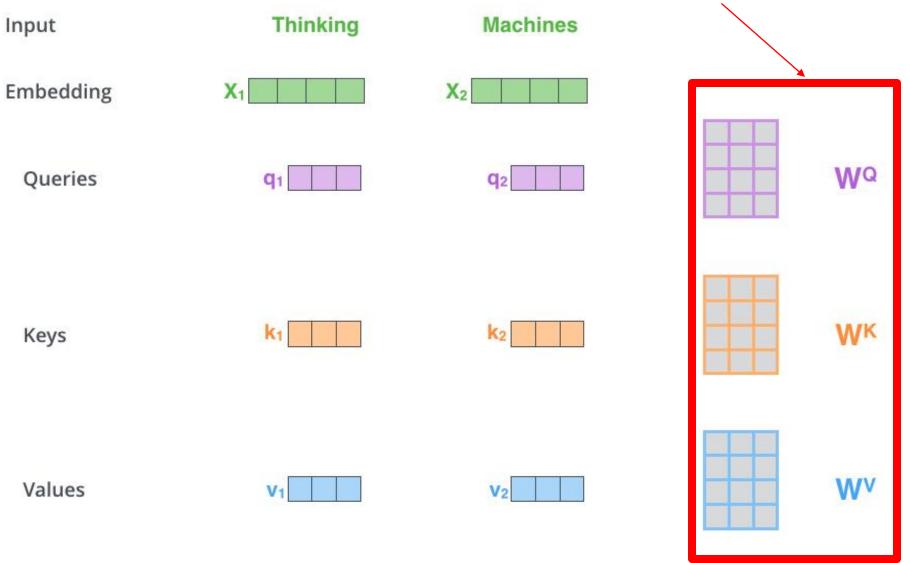
$$A = softmax(E)$$

Step 4: Take a weighted sum of values.

$$Output = AV$$

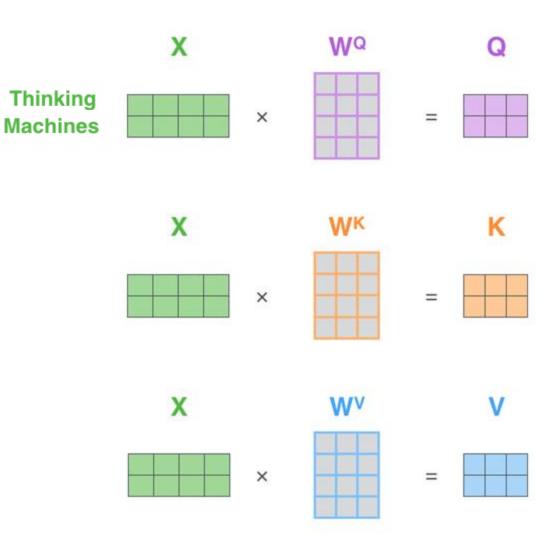
$$Output = softmax(QK^T)V$$

Model parameters to learn (randomly initialized)



☐ Step 1: For each word , calculate its query, key, and value.

$$Q = XW^Q$$
 $K = XW^K$ $V = XW^V$



Step 2: Calculate attention score between query and keys.

$$E = QK^T$$

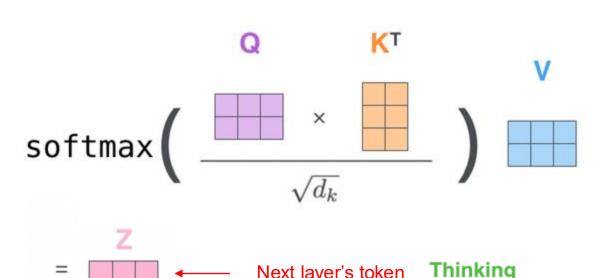
Step 3: Take the softmax to normalize attention scores.

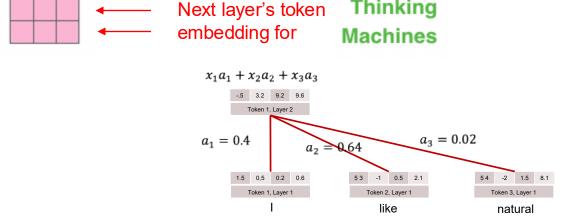
$$A = softmax(E)$$

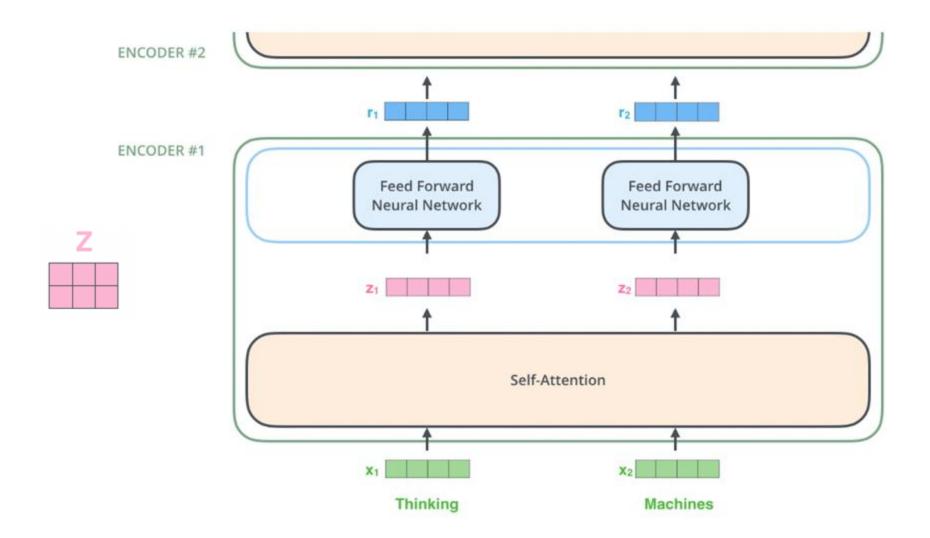
Step 4: Take a weighted sum of values.

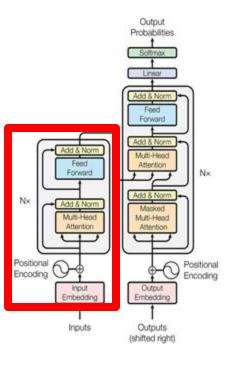
$$Output = AV$$

$$Output = softmax(QK^T)V$$



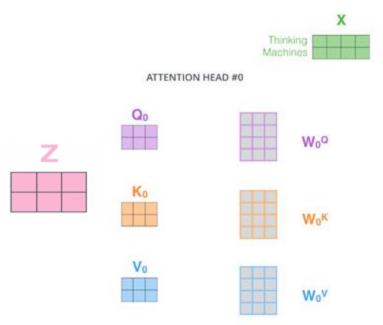






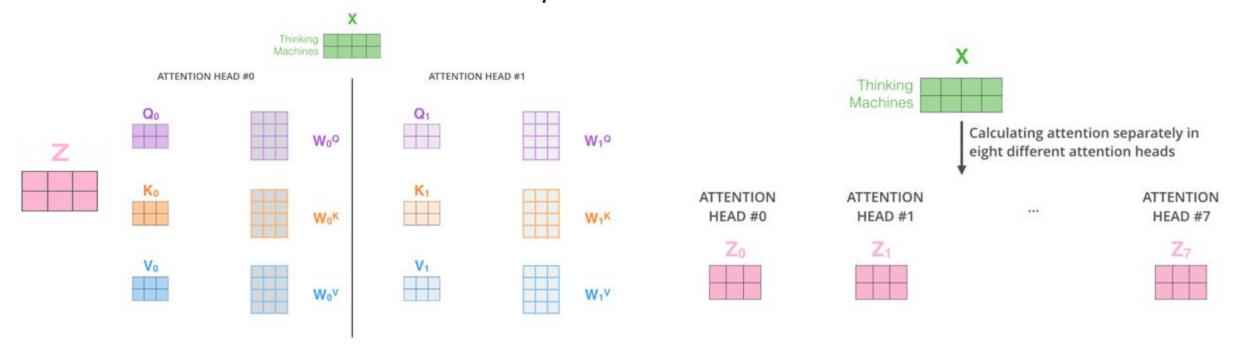
Multi-headed self-attention

- ☐ It gives the attention layer multiple "representation subspaces
- ☐ Multiple sets of Query/Key/Value weight matrices (Transformer uses eight attention heads, so we end up with eight sets for each encoder/decoder). Each of these sets is randomly initialized.



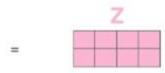
Multi-headed self-attention

- ☐ It gives the attention layer multiple "representation subspaces
- ☐ Multiple sets of Query/Key/Value weight matrices (Transformer uses eight attention heads, so we end up with eight sets for each encoder/decoder). Each of these sets is randomly initialized.



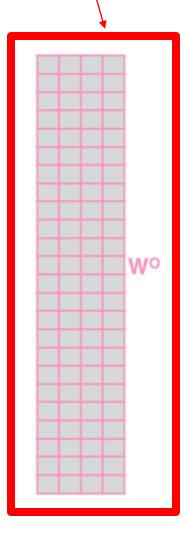
Condensing multi-head attentions into a single matrix

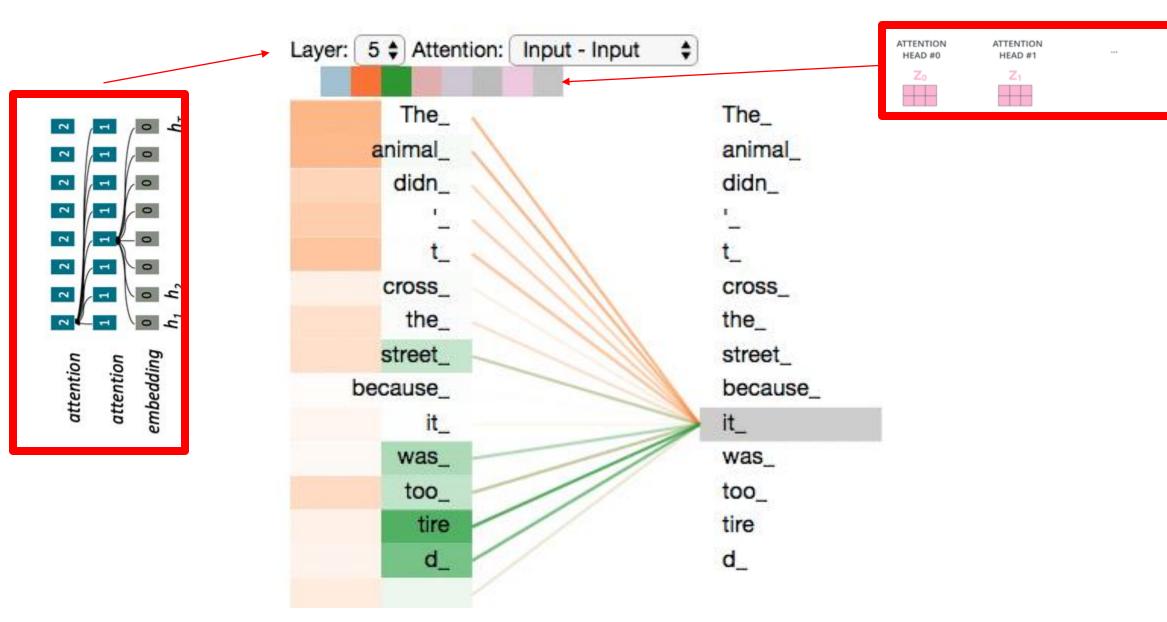
3) The result would be the Z matrix that captures information from all the attention heads. We can send this forward to the FFNN



 Multiply with a weight matrix W^o that was trained jointly with the model

X



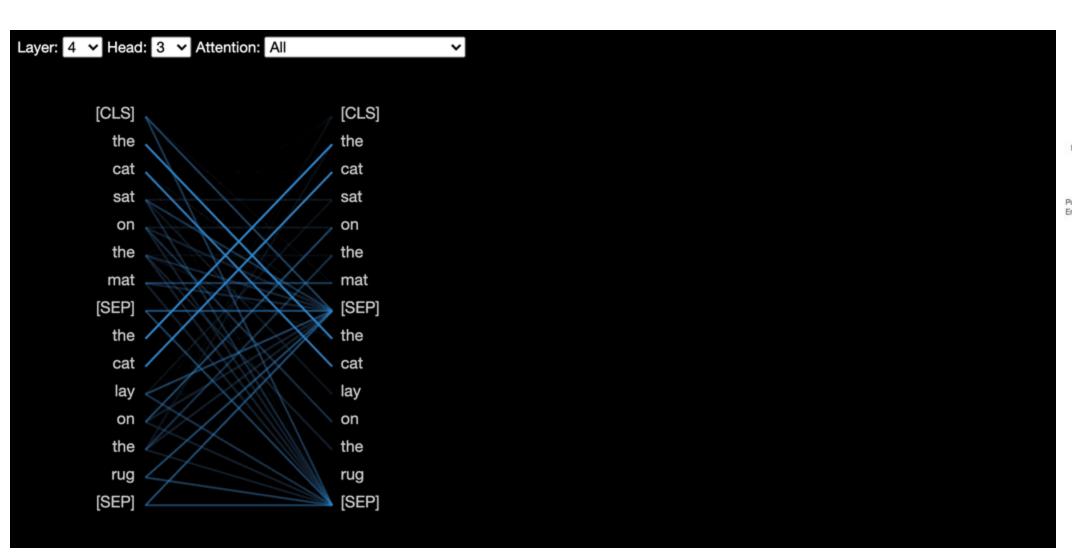


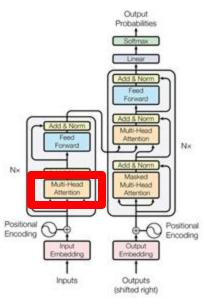
https://github.com/jessevig/bertviz

https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb

ATTENTION

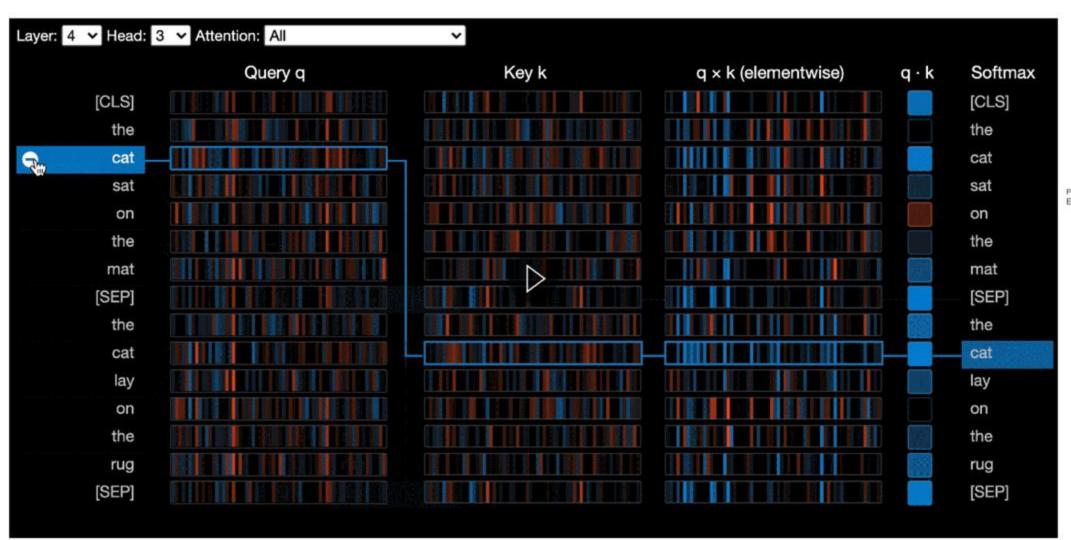
HEAD #7

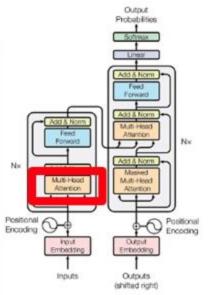




https://github.com/jessevig/bertviz

 $\underline{https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb$





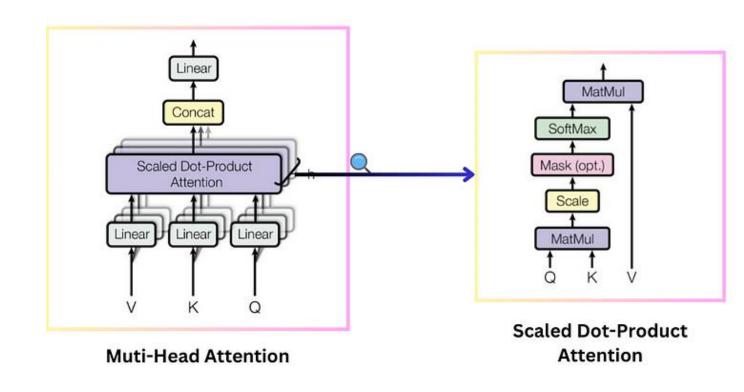
https://github.com/jessevig/bertviz

https://colab.research.google.com/github/tensorflow/tensor/blob/master/tensor/2tensor/notebooks/hello_t2t.ipynb_

Recap

Multi-Head Attention

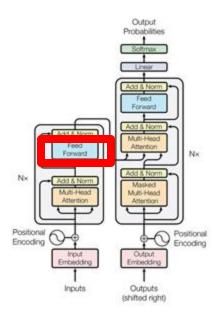
- □ Pass our input through the W_v, W_k, W_q matrices for each head (corresponding to the 'Linear' boxes at right)
- □ Perform Scaled dot product attention for each head
- Concatenate the results for each head
- ☐ Use linear layer to project to original output dimension

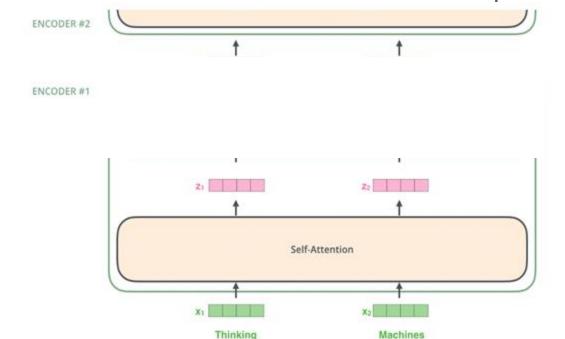


Other tricks than attention?

But attention isn't quite all you need!

- ☐ **Problem**: Since there are no element-wise non-linearities, self-attention is simply performing a re-averaging of the value vectors.
- **Easy fix**: Apply a feedforward layer to the output of attention, providing non-linear activation (and additional expressive power).





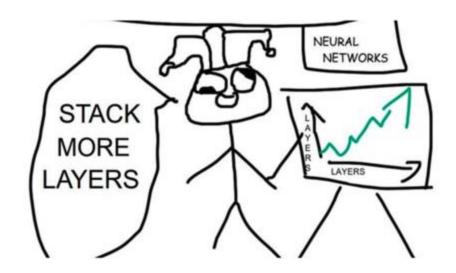
Equation for Feed-Forward layer

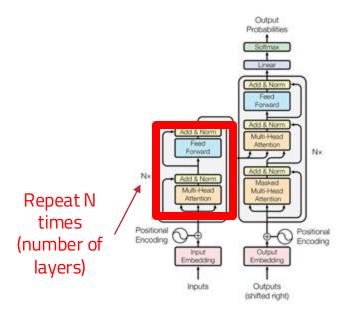
$$m_i = MLP(\text{output}_i)$$

= $W_2 * \text{ReLU}(W_1 \times \text{output}_i + b_1) + b_2$

Stacking deep neural nets

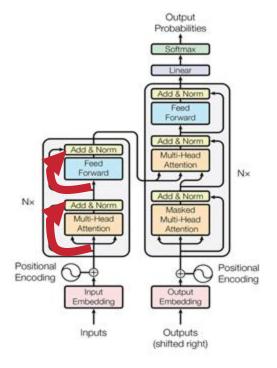
- ☐ Training trick #1: Residual Connections
- ☐ Training trick #2: LayerNorm
- ☐ Training trick #3: Scaled Dot Product Attention





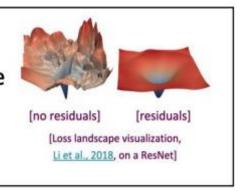
Trick #1: Residual Connections [He et al., 2016]

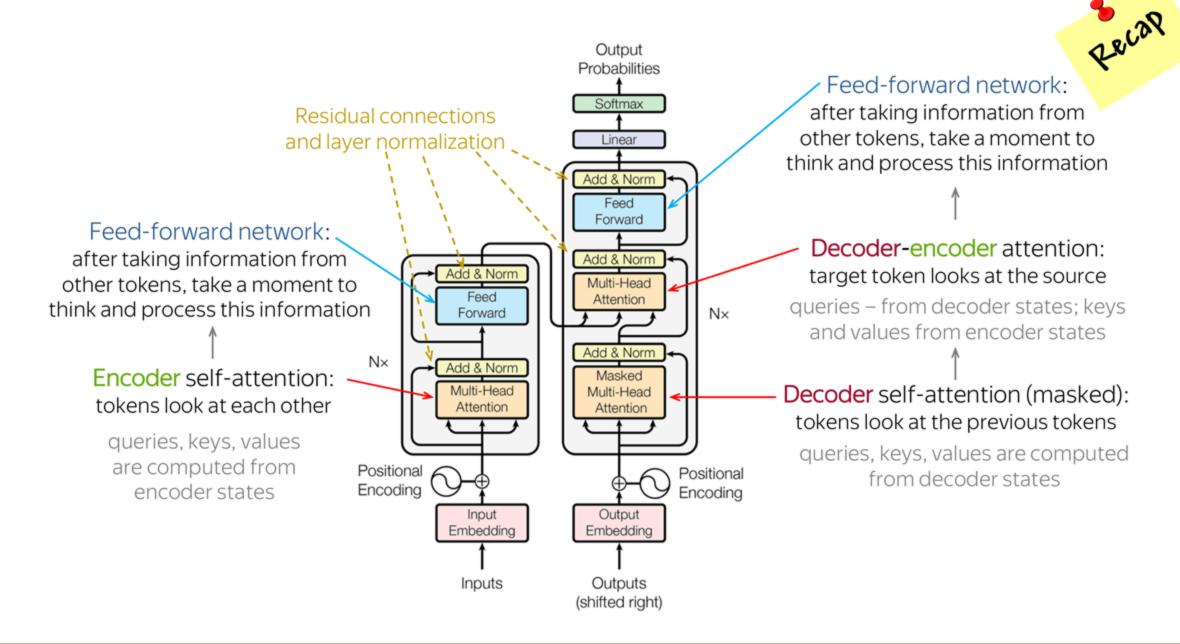
- Residual connections are a simple but powerful technique from computer vision.
- ☐ Similar to additive connection in LSTM
- ☐ Directly passing "raw" embeddings to the next layer prevents the network from "forgetting" or distorting important information as it is processed by many layers.



$$x_{\ell} = F(x_{\ell-1}) + x_{\ell-1}$$

Residual connections are also thought to smooth the loss landscape and make training easier!

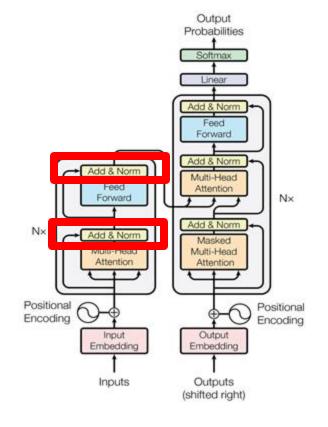




Trick #2: Layer Normalization [Ba et al., 2016]

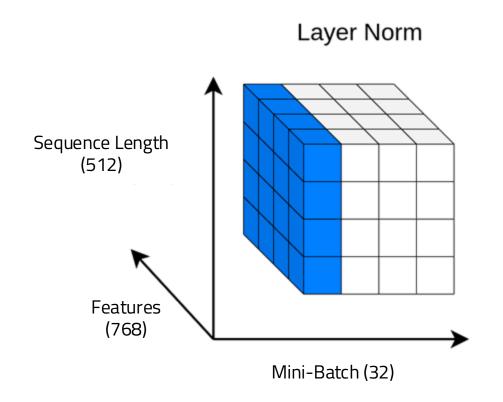
- ☐ **Problem**: Difficult to train the parameters of a given layer because its input from the layer beneath keeps shifting.
- ☐ **Solution**: Reduce uninformative variation by normalizing to *zero mean* and *standard deviation* of one within each layer.

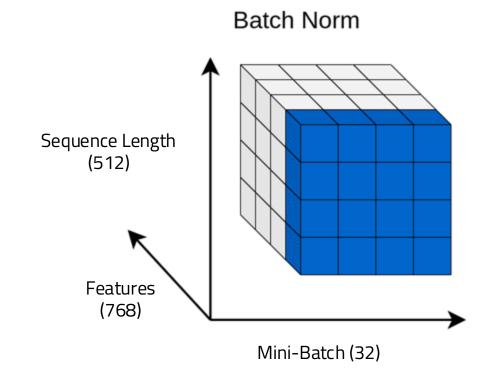
Mean:
$$\mu^l = \frac{1}{H} \sum_{i=1}^{H} a_i^l$$
 Standard Deviation: $\sigma^l = \sqrt{\frac{1}{H} \sum_{i=1}^{H} \left(a_i^l - \mu^l\right)^2}$

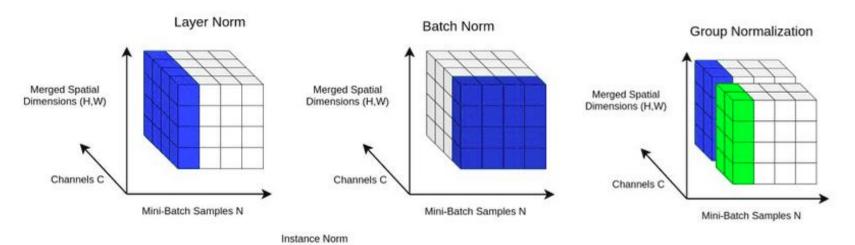


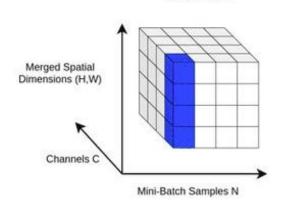
$$x^{\ell'} = \frac{x^{\ell} - \mu^{\ell}}{\sigma^{\ell} + \epsilon}$$

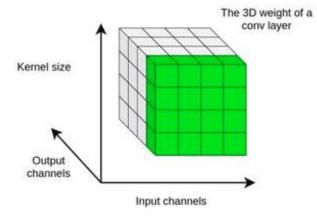
Layer norm vs Batch norm

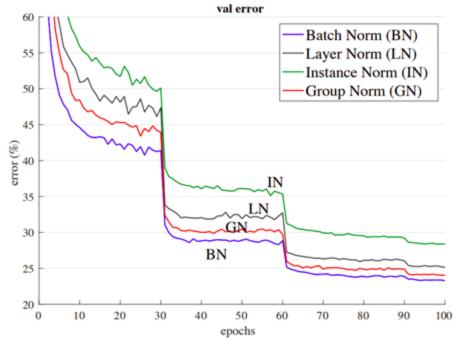








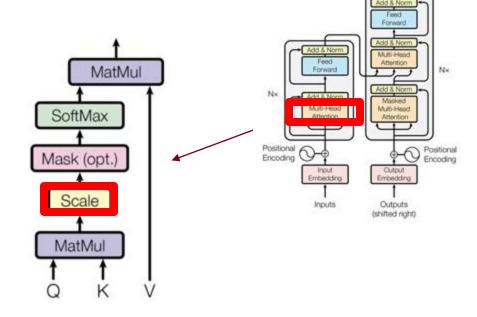




https://theaisummer.com/normalization

Trick #3: Scaled Dot Product Attention

- ☐ After LayerNorm, the mean and var of vector elements is 0 and 1, respectively.
- □ But, the dot product still tends to take on extreme values, as its variance scales with dimensionality d_k



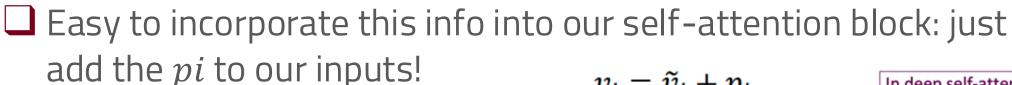
$$Output = softmax (QK^T)V$$

$$Output = softmax \left(QK^{T} / \sqrt{d_{k}}\right) V$$

Representing The Order of The Sequence Using Positional Encoding

- Since self-attention doesn't build in order information, we need to encode the order of the sentence in our keys, queries, and values.
- ☐ Consider representing each sequence index as a vector

 $p_i \in \mathbb{R}^d$, for $i \in \{1, 2, ..., T\}$ are position vectors

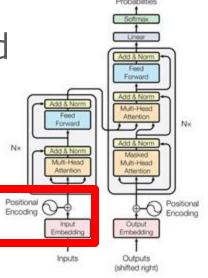


$$v_i = \tilde{v}_i + p_i$$

$$q_i = \tilde{q}_i + p_i$$

$$k_i = \tilde{k}_i + p_i$$

In deep self-attention networks, we do this at the first layer! You could concatenate them as well, but people mostly just add...

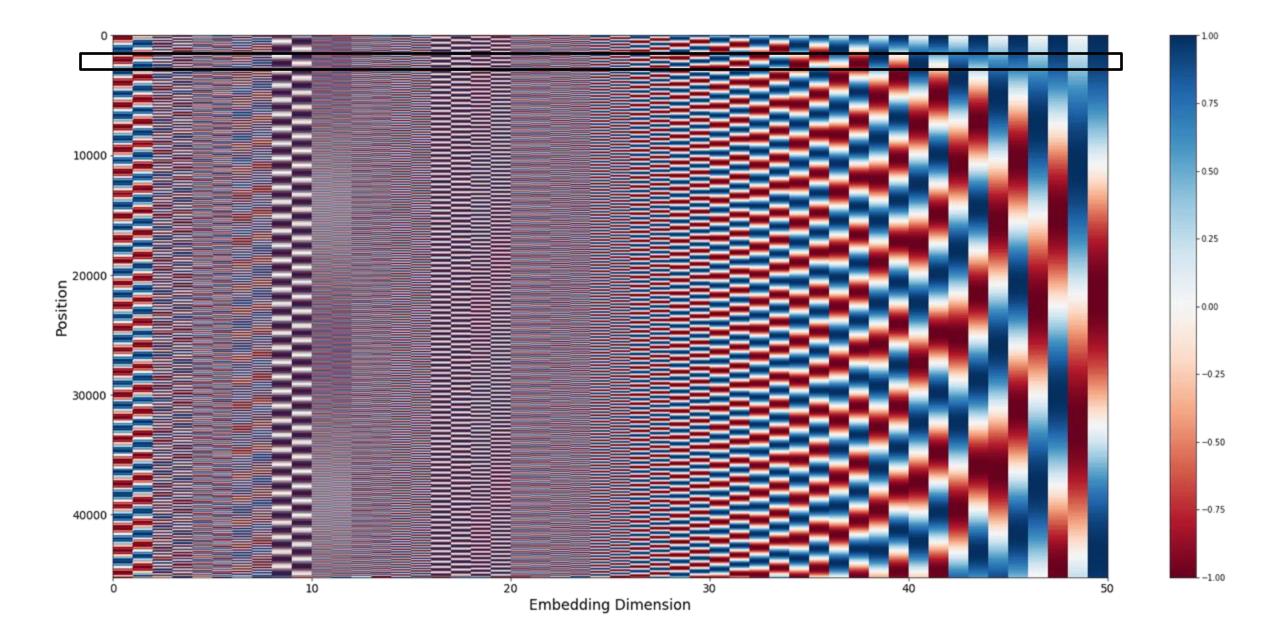


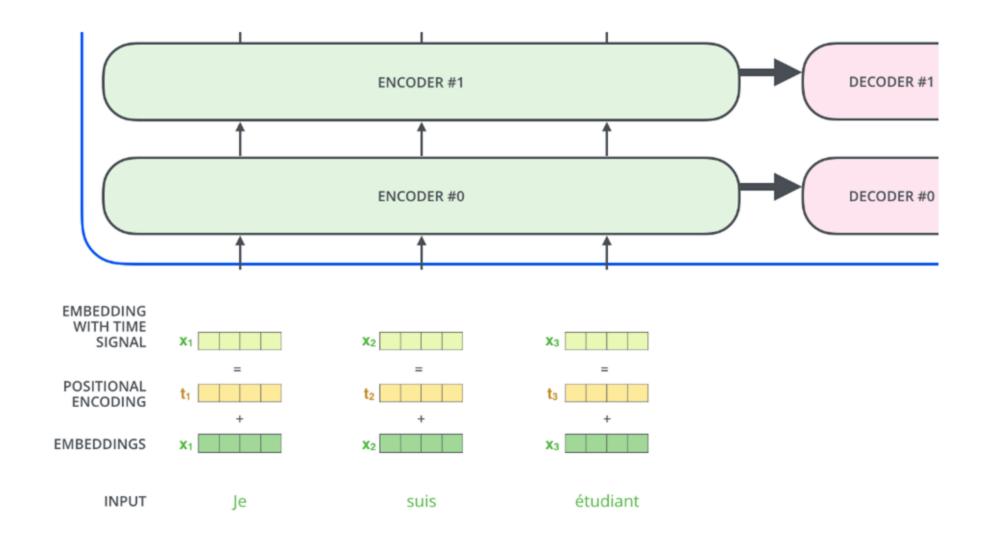
Position representation vectors through sinusoids

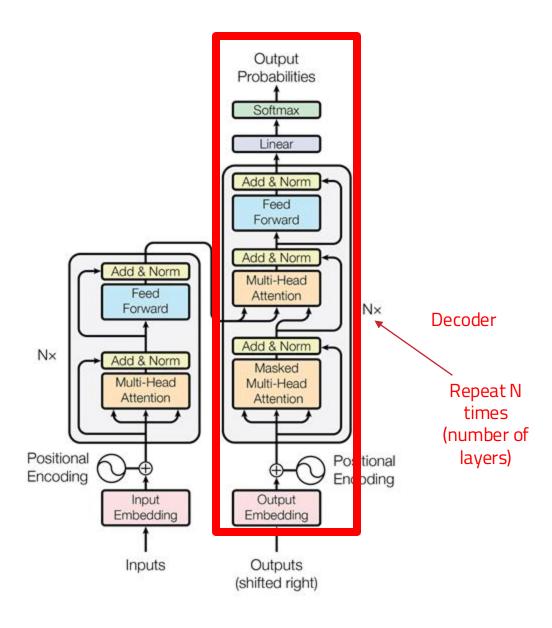
☐ Sinusoidal position representations: concatenate sinusoidal functions of varying periods:

$$\overrightarrow{p_t}^{(i)} = f(t)^{(i)} := egin{cases} \sin(\omega_k.t), & ext{if } i = 2k \ \cos(\omega_k.t), & ext{if } i = 2k + 1 \end{cases} \qquad p_i = egin{cases} \sin(i/10000^{2*1/d}) \ \cos(i/10000^{2*1/d}) \ \sin(i/10000^{2*rac{d}{2}/d}) \ \cos(i/10000^{2*rac{d}{2}/d}) \ \cos(i/10000^{2*rac{d}{2}/d}) \end{cases}$$

- ☐ Pros: Periodicity indicates that maybe "absolute position" isn't as important
- ☐ Cons: Not learnable; also the extrapolation doesn't really work

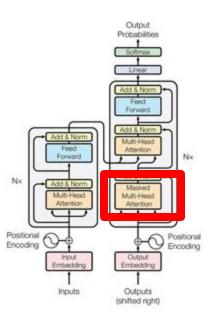






Decoder: Masked Multi-Head Self-Attention

☐ **Problem**: How do we prevent the decoder from "cheating"? If we have a language modeling objective, can't the network just look ahead and "see" the answer?



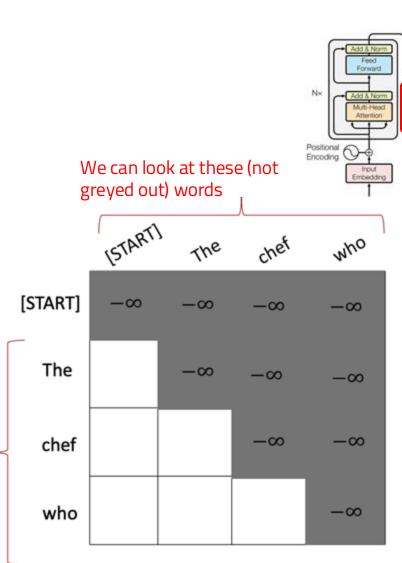
- □ Solution: Masked Multi-Head Attention.
 - At a high-level, we hide (mask) information about future tokens from the model.

Masking the future in self-attention

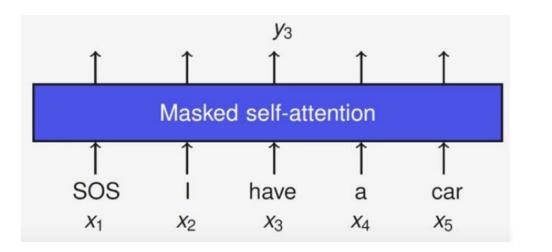
- To use self-attention in decoders, we need to ensure we can't peek at the future.
- At every timestep, we could change the set of keys and queries to include only past words. (Inefficient!)
- To enable parallelization, we mask out attention to future words by setting attention scores to -∞

$$e_{ij} = \begin{cases} q_i^{\mathsf{T}} k_j, j < i \\ -\infty, j \ge i \end{cases}$$

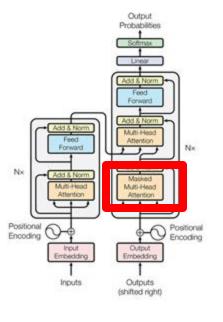
The chef For encoding these words who



Masking the future in self-attention



$$Z_{13} = \frac{k_1^{\mathsf{T}} q_3}{\sqrt{d}}, \dots, Z_{53} = \frac{k_5^{\mathsf{T}} q_3}{\sqrt{d}}.$$

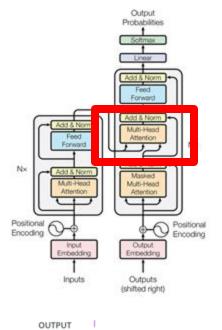


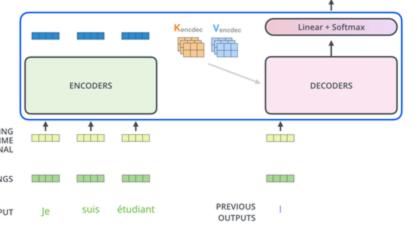
"Masked" weights:

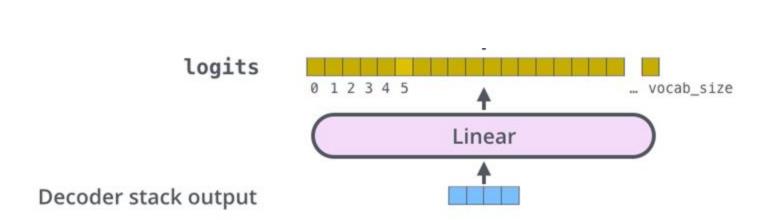
$$\begin{bmatrix} \tilde{W}_{13} \\ \tilde{W}_{23} \\ \tilde{W}_{33} \\ \tilde{W}_{43} \\ \tilde{W}_{53} \end{bmatrix} = \begin{bmatrix} \exp(Z_{13}) \\ \exp(Z_{23}) \\ \exp(Z_{33}) \\ 0 \\ 0 \end{bmatrix} \Rightarrow \begin{bmatrix} W_{13} \\ W_{23} \\ W_{33} \\ W_{43} \\ W_{53} \end{bmatrix} = \begin{bmatrix} \operatorname{softmax}(Z_{13}, Z_{23}, Z_{33}) \\ 0 \\ 0 \end{bmatrix} \Rightarrow y_3 = \sum_{i=1}^5 v_i W_{i3}$$

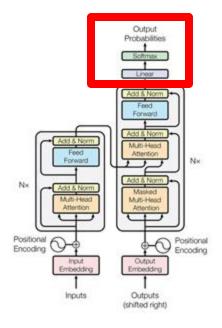
Encoder-Decoder Attention

- ☐ We saw that self-attention is when keys, queries, and values come from the same source.
- ☐ In the decoder, we have attention that looks more like seq2seq with attention.
 - Let h_1 ... h_T be output vectors from the Transformer encoder; $x_i \in \mathbb{R}^T$
 - Let z_1 ... z_T be input vectors from the Transformer decoder, $z_i \in \mathbb{R}^T$
- Then keys and values are drawn from the **encoder** (like a **memory**):
 - $\circ \quad k_i = \ K \ h_i \ , \ v_i = V \ h_i.$
- And the queries are drawn from the **decoder**,
 - $\circ \quad q_i = Qz_i$









Which word in our vocabulary is associated with this index?

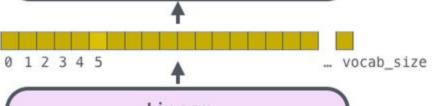
am

Get the index of the cell with the highest value (argmax)

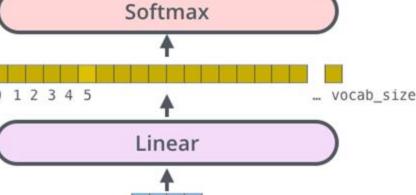
5

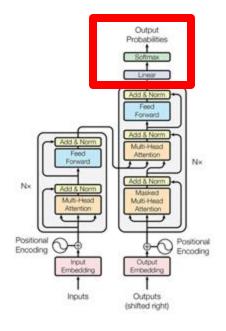
log_probs

logits



Decoder stack output





Drawback of Transformer

Drawback of Transformer

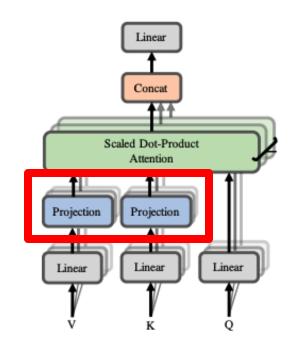
- ☐ Static positional embedding representations:
 - Are simple absolute indices the best we can do to represent position?
 - Relative linear position attention [Shaw et al., 2018]

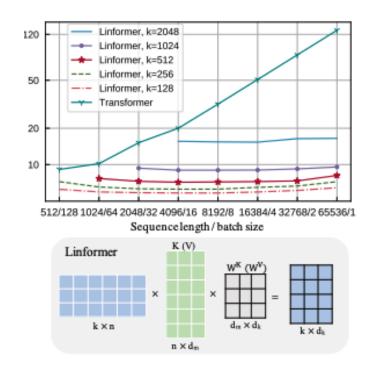
☐ Quadratic compute in self-attention:

- \circ Computing all pairs of interactions (T^2) means our computation grows quadratically with the sequence length! For recurrent models, it only grew linearly!
- Reduce $O(T^2)$ all-pairs self-attention cost?

Reduce $O(T^2)$ all-pairs self-attention cost?

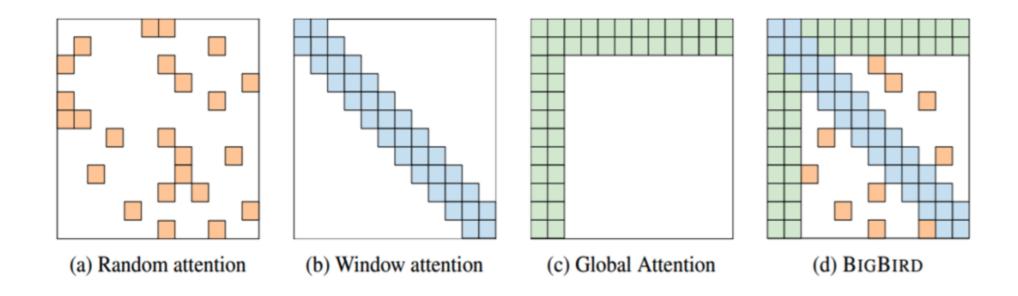
- ☐ LinFormer (Wang et al., 2020); O(T^2) -> O(T)
 - Map the sequence length dimension to a lower-dimensional space for values, keys





Reduce $O(T^2)$ all-pairs self-attention cost?

- ☐ BigBird (Zaheer et al., 2021)
 - Replace all-pairs interactions with a family of other interactions, like local windows, looking at everything, and random interactions.





Do Transformer Modifications Transfer?

'Surprisingly, we find that most modifications do not meaningfully improve performance.'

Model	Parama	Ops	Step/s	Early loss	First loss	SCLUE	X8um	Wild	WMT ExDe
Vanilla Transformer	223 M	11.17	3.50	2.182 ± 0.005	1.636	71.66	17.79	29.02	26.62
GeLU	223 M	11.17	3.58	2.179 ± 0.803	1.838	75.79	17.86	25.13	26.47
Swish	223M	11.07	3.62	2.186 ± 0.003	1.947	79.77	17.74	24.34	26.75
BLU	223M	11.17	3.56	2.270 ± 0.807	1.932	67.63	16.73	23.02	26.06
GLU	223M	11.07	3.59	2.174 ± 0.003	1.614	74.00	17.42	24.34	27.12
GeGLU	22334	11.07	3.55	2.130 ± 0.006	1.793	T1.96	18.27	24.87	36.87
BeGLU	223.M	11.17	3.07	2.145 ± 0.004	1.803	76.17	18.36	34.87	37.63
SeLU	22334	11.17	3.55	2.315 ± 0.804	1.948	68.76	16.76	22.75	25.99
SwiGLU	22334	11.47	3.53	$2.12T \pm 0.000$	1,789	76.00	18.20	24.34	27.62
LIGHT	223.0f	11.17	3.39	2.149 ± 0.005	1,798	75.34	ST-ST	24.34	26.53
Signacid	223M	11.17	3.63	2.291 ± 0.019	1.967	74.31	17.51	29.02	26.30
Softplus	223M	DAT	3.47	2.297 ± 0.011	1.800	72.45	17.65	24.34	26.69
RMS Norm	223M	11.17	3.68	2.167 ± 0.006	1.821	75.45	17.94	24.0T	27.14
		11.17	3.54			61.69	15.64	29.90	26.37
Bosero Bosero + LaverNorm	223M 223M	11.07	3.26	2.262 ± 0.008 2.223 ± 0.006	1.939	70.42	17.58	29.02	26.29
			3.34						
Benero + HMS Norm	22834	11.17		2.221 ± 0.000	1.875	70.33	17.33	29.02	26.19
Fixep	2283d	11.17	2.95	2.383 ± 0.012	3.007	58.56	14-42	20.02	26.31
26 layers, 4g = 1536, H = 6	224M	11.0T	3.33	2.290 ± 0.007	1.943	74.00	17.75	25.18	26.69
18 layers, $4g = 3048$, $H = 8$	2233M	DATE	3.38	2.185 ± 0.005	1.651	76.45	16.83	24.34	37.30
8 lapers, $d_d = 4008, M = 18$	223M	11.17	3.69	2.190 ± 0.005	1.847	74.58	17.69	23.28	36.85
6 layers, $d_{d} = 6164, H = 24$	2230I	11.17	3.79	2.201 ± 0.010	1.807	73.55	17.59	24.60	26.66
Block sharing	65.M	DAT	3.91	2.497 ± 0.687	2.164	64.50	14.53	21.96	20.46
+ Partorised embeddings	45.54	9.4T	4.71	2.631 ± 0.305	2.183	60.84	14.00	19.84	20.27
+ Factorized & shared en-	20.0/	9.1T	4.37	2.907 ± 0.313	2.385	53.95	11.37	19.84	25.19
beddings						-			
Enruder only block sharing	170M	11.17	3.68	2.298 ± 0.023	1.929	69.60	16.23	23.02	26.23
Decader only block sharing	144M	11.17	3.79	2.352 ± 0.029	2.092	6T.93	16.13	23.81	26.09
Factorized Embedding	22TM	9-4T	3.80	2.298 ± 0.006	1.855	70.41	15.92	22.75	26.50
Factorized & shared embed-	292M	8.1T	3.92	2.320 ± 0.010	1.902	69.69	16.33	22.22	26.44
dinge									
Tied encoder/decoder in-	246M	11.1T	3.55	2.192 ± 0.002	1.940	71.79	17.72	24.34	26.49
pet enholdings									
Tied decoder input and out-	248M	11.17	3.07	2.187 ± 0.007	1.827	74.86	17.74	34.87	36.67
pat embeddings									
Untied embeddings	273 M	11.17	3.53	2.195 ± 0.805	1.834	72.99	17.58	23.28	26.48
Adaptive input embeddings	204M	8:2T	3.55	2.250 ± 0.002	1.899	66.5T	16.20	24.0T	26.66
Adaptive soltmax	2043/	9:2T	3.60	2.364 ± 0.005	1.982	72.91	16.67	25.16	25.56
Adaptive softmax without	223M	10.8T	3.43	2.229 ± 0.009	1.914	71.82	17.10	23.02	25.72
projection									
Misture of softmanes	292M	16.37	2.26	2.227 ± 0.017	1.821	76.77	17.62	22.75	26.62
	22334	11.17	3.33	2.181 ± 0.814	1.871	54.31	10.40	25.16	26.80
Transparent attention									
Dynamic convolution	25TM	11.8T	2.65	2.403 ± 0.009	2.047	58.30	12.67	25.16	17.68
Lightweight convolution	224M	10.4T	4.07	2.370 ± 0.010	1.989	63.07	14.56	23.02	24.73
Evolved Transformer	21/TM	9:9T	3.09	2.220 ± 0.803	1.963	73.67	10.76	24.0T	26.56
Syntholiser (dense)	224M	HAT	3.47	2.334 ± 0.021	1.962	61.68	14.27	16.14	26.63
Synthesiser (deuse plus)	243M	DAT	3.22	2.191 ± 0.010	1.840	T3.96	16.96	23.81	36.71
Synthesizer (dense plus al-	24334	13.67	3.00	2.180 ± 0.007	1.828	74.35	17.03	23.28	26.61
pha)									
Synthesizer (Tactorized)	28TM	10.1T	3.94	2.341 ± 0.017	1.968	62.78	15.39	23.55	26.42
Synthesizer (random)	254M	10.1T	4.08	2.326 ± 0.012	2:809	54.27	18.35	19.56	26.44
Synthesizer (random plue)	292M	12.87	3.63	2.189 ± 0.804	1.842	73.32	17.04	24.8T	26.43
Synthosiser (random plus	29234	12.60	3.42	2.186 ± 0.807	1.626	75.34	17.08	24.06	26.39
(lpha)									
Universal Transformer	8434	40.ET	0.88	2.406 ± 0.636	2:053	70.13	14.09	19.05	23.91
Misture of experts	64834	11.77	3.30	2.148 ± 0.006	1.780	74.55	18.13	24.08	36.94
Switch Transformer	1180M	11.7T	3.18	2.135 ± 0.807	1.758	75.38	18.02	26.19	26.81
Funnel Transferore	223M	1.9T	4.30	2.298 ± 0.008	1.919	67.34	16.26	22.75	23.20
Weighted Transfermer	2900M	71.8F	0.59	2.376 ± 0.821	1.989	69.04	16.96	23.02	26.30
Product key memory	421.M	396.67	0.25	2.155 ± 0.000	1,796	75.16	17.04	23.55	26.73

Do Transformer Modifications Transfer Across Implementations and Applications?

Sharan Narang*	Hyung Won Chung	$\mathbf{Yi} \; \mathbf{Tay}$	William Fedus
Thibault Fevry [†]	${\bf Michael~Matena}^{\dagger}$	Karishma Malkan †	Noah Fiedel
Noam Shazeer	${\bf Zhenzhong}{\bf Lan}^{\dagger}$	Yanqi Zhou	Wei Li
Nan Ding	Jake Marcus	Adam Roberts	Colin Raffel †

Scaling up Transformer

Model	Layers	Width	Heads	Params	Data	Training
Transformer-Base	12	512	8	65M		8x P100 (12 hrs)
Transformer-Large	12	1024	16	213M		8x P100 (3.5 days)

Scaling up Transformer

Model	Layers	Width	Heads	Params	Data	Training
Transformer-Base	12	512	8	65M		8x P100 (12 hrs)
Transformer-Large	12	1024	16	213M		8x P100 (3.5 days)
BERT-Base	12	768	12	110M	13GB	
BERT-Large	24	1024	16	340M	13GB	

Scaling up Transformer

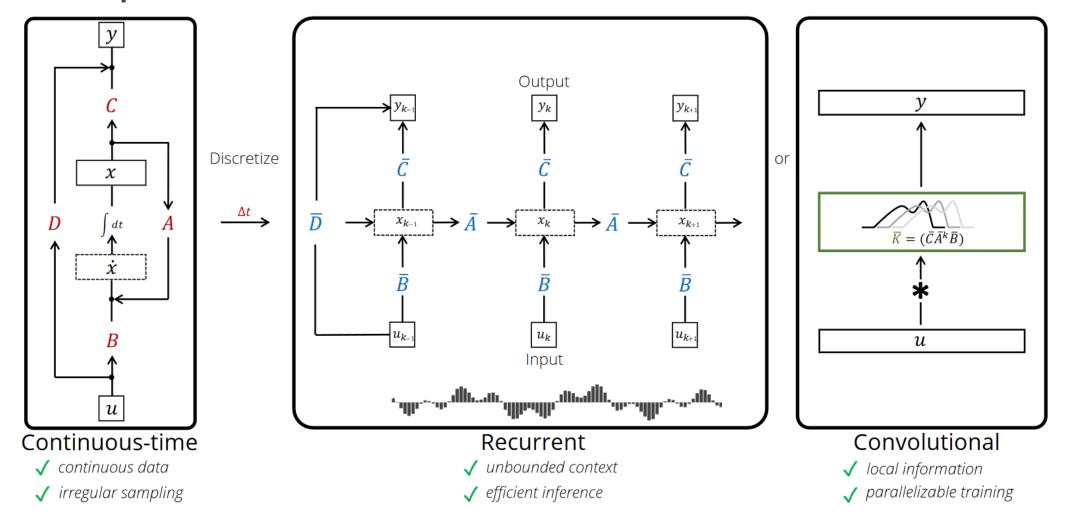
Model	Layers	Width	Heads	Params	Data	Training	
Transformer-Base	12	512	8	65M		8x P100 (12 hrs)	
Transformer-Large	12	1024	16	213M		8x P100 (3.5 days)	
BERT-Base	12	768	12	110M	13GB		
BERT-Large	24	1024	16	340M	13GB		
XLNet-Large	24	1024	16	340M	126GB	512x TPU-v3 (2.5 days)	
RoBERTa	24	1024	16	355M	160GB	1024x V100 (1 day)	
GPT-2	48	1600	?	1.5B	40GB		
Megatron-LM	72	3072	32	8.3B	174GB	512x V100 (9 days)	
Turing-NLG	78	4256	28	17B	?	256x V100	
GPT-3	96	12288	96	175B	694GB	?	
Brown et al, "Language Models are Few-Shot Learners", arXiv 2020							

http://hal.cse.msu.edu/teaching/2020-fall-deep-learning/14-nlp-and-transformers/#/22/0/9

Summary

- ☐ Transformers are a new neural network model that only uses attention (and many other training tricks!!)
- However, the models are extremely expensive
- Improvements (unfortunately) seem to mostly come from even more expensive models and more data
- ☐ If you can afford large data and large compute, transformers are the go to architecture, instead of CNNs, RNNs, etc.
 - Why? On our way back to fully-connected models, throwing out the inductive bias of CNNs and RNNs.

State Space Models



https://huggingface.co/blog/lbourdois/get-on-the-ssm-train