
CSCI 5541: Natural Language Processing
Lecture 12: Prompting
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Announcement (1021)
❑ HW5 out 

o Due: Nov 2, Sunday
o Team-based homework
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NLP Technical Development for past 10 years

Feature 
Engineering
- Hand-crafted 

features
- SVM/CRF 

training

- 2015
2013 - 2015

Architecture 
Engineering
- Neural nets, e.g., 

LSTM, CNN, GRU
- features from 

Word2Vec, GloVe

2017 - 2022

Objective 
Engineering
- Pre-training and 

fine-tuning
- BERT, GPT2, T5

Prompt Engineering / In-
context Learning
- Prompting with LLMs
- GPT4, GPT3, chatGPT, 

DALLE2

2020 ~2024 2024~Present

Post-Training/Inference Techniques
- GRPO
- Test-time scaling



CSCI 5541 NLP 4

NLP Technical Development for past 10 years

Feature 
Engineering
- Hand-crafted 

features
- SVM/CRF 

training

- 2015
2013 - 2015

Architecture 
Engineering
- Neural nets, e.g., 

LSTM, CNN, GRU
- features from 

Word2Vec, GloVe

2017 - 2022

Objective 
Engineering
- Pre-training and 

fine-tuning
- BERT, GPT2, T5

Prompt Engineering / In-
context Learning
- Prompting with LLMs
- GPT4, GPT3, chatGPT, 

DALLE2

2020 ~2024 2024~Present

Post-Training/Inference Techniques
- GRPO
- Test-time scaling



CSCI 5541 NLP 5

What is Prompting？
❑ Very large language models seem to 

perform some kind of learning without 
gradient steps simply from examples you 
provide within their contexts.

❑ Encouraging a pre-trained model to make 
particular predictions by providing a 
"prompt" specifying the task to be done
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Pretrained model choice

Decoders

Encoders

Encoder-
Decoders

Vanilla Transformer, T5, BART

BERT, RoBERTa

GPT-2, GPT-3, LaMDA
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Encoders
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Traditional vs Prompt formulation
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Labels are not Y anymore, 
but a part of X

Classification P (Y | X)
Generation P (X)
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Traditional vs Prompt formulation

We have reformulated 
the task! We also should 
re-define the “ground 
truth labels”
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Traditional vs Prompt formulation
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Basic Prompting
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Zero-shot Prompting
❑ Simply feed the task text to the model and ask for results.
❑ No Examples are given of the task being completed

Text: i'll bet the video game is a lot more fun than the film. 
Sentiment:

Decoders



CSCI 5541 NLP 14

Few-shot Prompting
❑ Presents a set of demonstrations (both input and output) on the target 

task. As the model first sees good examples, it can better understand 
human intention and criteria for what kinds of answers are wanted.

Text: (lawrence bounces) all over the stage, dancing, running, sweating, mopping his 
face and generally displaying the wacky talent that brought him fame in the first place. 
Sentiment: positive 

Text: despite all evidence to the contrary, this clunker has somehow managed to pose 
as an actual feature movie, the kind that charges full admission and gets hyped on tv 
and purports to amuse small children and ostensible adults. 
Sentiment: negative 

Text: i'll bet the video game is a lot more fun than the film. 
Sentiment:

Decoders
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Prompt-based Training Strategies
❑ How many training samples are necessary to learn the task? 

o Zero-shot: without any explicit training of the LM for the downstream 
task 

o Few-shot: few training samples (e.g., 1-100) of downstream tasks 
o Full-data: lots of training samples (e.g., 10K) of downstream tasks

✔ Typical finetuning or supervised training
✔ This number of instances is typically not used for prompting (can anyone give a guess as to why?)
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Few-shot Prompting
❑ Several biases

o Majority label bias: if distribution of labels among the examples is unbalanced; 
o Recency bias : the tendency where the model may repeat the label at the end; 
o Common token bias : the tendency to produce common tokens more often than rare 

tokens.
❑ Many studies looked into how to construct in-context examples to 

maximize the performance 
o The choice of prompt format, examples, and their order can lead to dramatically 

different performance, from near random guess to near SoTA.
o How to make in-context learning more reliable and deterministic?

Zhao et al. (2021)

https://arxiv.org/abs/2102.09690
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Tips for Example Selection

❑ Choose examples that are semantically similar to the test 
example using k-NN clustering in the embedding space (Liu et al., 
2021)

❑ To select a diverse and representative set of examples, different 
sampling methods have been studied.
o Graph-based similarity search (Su et al. (2022)), 
o Contrastive learning (Rubin et al. (2022)) , 
o Q-learning (Zhang et al. 2022)
o Active learning (Diao et al. (2023))

https://arxiv.org/abs/2101.06804
https://arxiv.org/abs/2101.06804
https://arxiv.org/abs/2209.01975
https://arxiv.org/abs/2112.08633
https://arxiv.org/abs/2211.04486
https://arxiv.org/abs/2302.12246
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Tips for Example Ordering
❑ Keep the selection of examples diverse, relevant to the test sample and in 

random order to avoid majority label bias and recency bias.
❑ Increasing model sizes or including more training examples does not reduce 

variance among different permutations of in-context examples. 
❑ When the validation set is limited, consider choosing the order such that 

the model does not produce extremely unbalanced predictions or being 
overconfident about its predictions. (Lu et al. 2022)

https://arxiv.org/abs/2104.08786
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Prompt Search
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Traditional vs Prompt formulation

How to define a suitable 
prompt template?
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Format of prompts
❑ Cloze Prompt 

o prompt with a slot [z] to fill in the middle of the text, 
o Encoder models trained by MLM objective, 

o e.g., BERT, LAMA, TemplateNER

❑ Prefix Prompt 
o prompt where the input text comes entirely before 

slot [z]
o Decoder models trained by LM objective, 

o e.g., GPT3, Prefix-turning, Prompt-tuning

I love this movie. Overall it 
was a [z] movie

I love this movie. Overall 
this movie is [z]

Encoders

Decoders
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Design of Prompt Templates

❑Hand-crafted 
o Configure the manual template based on the characteristics of the task 

❑Automated search 
o Search in discrete space, e.g., AdvTrigger, AutoPrompt
o Search in continuous space, e.g., Prefix-turning, Prompt-tuning
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Prompt Mining (Prompt = Template)

Mine prompts given a set of questions/answers:

Middle-word

Dependency-based

(Jiang et al. 2019)
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Prompt Paraphrasing (Prompt = Template)

Paraphrase an existing prompt to get other candidates 
e.g. back translation with beam search

(Jiang et al. 2019)
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Gradient-based Search (Prompt = Trigger Tokens)
AutoPrompt (Shin et al., 2020; code)

https://arxiv.org/abs/2010.15980
http://ucinlp.github.io/autoprompt
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Gradient-based Search (Prompt = Trigger Tokens)
AutoPrompt (Shin et al., 2020; code)

Still much less than fine-tune 
RoBERTa models, but huge 
improvement made over the manual 
prompting

https://arxiv.org/abs/2010.15980
http://ucinlp.github.io/autoprompt
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Universal Trigger:
input-agnostic sequences of 
tokens that trigger a model to 
produce a specific prediction 
when concatenated to any 
input from a dataset

E.g., 
• SNLI (89.95% -> 0.55%)
• SQAUD (72% of ”why” 

questions answered ”to kill 
American people”)

• GPT2 to spew racist output 
conditioned on non-racial 
contexts.

Universal Trigger 
(Wallace et al., 2019)

Trigger tokens for 
adversarial attacks of 
existing off-the-shelf NLP 
systems.
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Universal Trigger 
(Wallace et al., 2019)

Positive movies

Found trigger words that make 
positive reviews to be negative

Update gradient of the classifier 
p(neg) to the target adversarial label 
(negative) to choose trigger words to 
make input to be negative
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Sub-optimal and sensitive discrete/hard prompts

❑Discrete/hard prompts 
o natural language instructions/task descriptions

❑Problems 
o require domain expertise/understanding of the model’s inner workings 
o performance still lags far behind SotA model tuning results 
o sub-optimal and sensitive 

✔ prompts that humans consider reasonable is not necessarily effective for 
language models (Liu et al., 2021) 

✔ pre-trained language models are sensitive to the choice of prompts (Zhao et al., 
2021)

https://arxiv.org/pdf/2103.10385.pdf
https://arxiv.org/pdf/2102.09690.pdf
https://arxiv.org/pdf/2102.09690.pdf
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Prefix/Prompt Tuning
❑ Expressive power: optimize the embeddings of a prompt, instead of the words
❑ "Prompt Tuning" optimizes only the embedding layer, while "Prefix Tuning" optimizes 

prefix of all layers

(Li and Liang 2021, Lester et al. 2021)



CSCI 5541 NLP 31

Prefix/Prompt Tuning
(Li and Liang 2021, Lester et al. 2021)



CSCI 5541 NLP 32

Advanced Topics
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Issues of few-shot prompting

❑ The purpose of presenting few-shot examples is to explain our 
intent to the model (describe the task instruction to the model in 
the form of demonstrations.)

❑ But, few-shot can be expensive in terms of token usage and 
restricts the input length due to limited context length. 

❑ Why not just give the instruction directly?
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Instruction tuning/prompting

❑ Instructed LM (e.g. InstructGPT, natural instruction) finetunes a 
pretrained model with high-quality tuples of (task instruction, 
input, ground truth output) to make LM better understand user 
intention and follow instruction.

❑ Improve the model to be more aligned with human intention and 
greatly reduces the cost of communication.

https://openai.com/research/instruction-following
https://github.com/allenai/natural-instructions
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Please label the sentiment towards the movie of the given 
movie review. The sentiment label should be "positive" or 
"negative". 
Text: i'll bet the video game is a lot more fun than the film. 
Sentiment:
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Describe what is quantum physics to a 6-year-old.

... in language that is safe for work.

Please label the sentiment towards the movie of the given 
movie review. The sentiment label should be "positive" or 
"negative". 
Text: i'll bet the video game is a lot more fun than the film. 
Sentiment:

For example to produce education materials for kids,

And safe content,
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Describe what is quantum physics to a 6-year-old.

... in language that is safe for work.

Please label the sentiment towards the movie of the given 
movie review. The sentiment label should be "positive" or 
"negative". 
Text: i'll bet the video game is a lot more fun than the film. 
Sentiment:

For example to produce education materials for kids,

And safe content,
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Chain-of-thought (CoT) prompting (Wei et al. 2022)

https://arxiv.org/abs/2201.11903
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Chain-of-thought (CoT) prompting (Wei et al. 2022)

https://arxiv.org/abs/2201.11903
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Chain-of-thought (CoT) prompting (Wei et al. 2022)

https://arxiv.org/abs/2201.11903
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Chain-of-thought (CoT) prompting (Wei et al. 2022)

https://arxiv.org/abs/2201.11903
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Chain-of-thought (CoT) prompting (Wei et al. 2022)

https://arxiv.org/abs/2201.11903
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Few-shot CoT prompting

Question: Tom and Elizabeth have a competition to climb a hill. Elizabeth takes 30 minutes to climb the hill. Tom
takes four times as long as Elizabeth does to climb the hill. How many hours does it take Tom to climb up the hill?
Answer: It takes Tom 30*4 = <<30*4=120>>120 minutes to climb the hill. It takes Tom 120/60 = <<120/60=2>>2
hours to climb the hill. So the answer is 2. ===

Question: Jack is a soccer player. He needs to buy two pairs of socks and a pair of soccer shoes. Each pair of socks
cost $9.50, and the shoes cost $92. Jack has $40. How much more money does Jack need?
Answer: The total cost of two pairs of socks is $9.50 x 2 = $<<9.5*2=19>>19. The total cost of the socks and the
shoes is $19 + $92 = $<<19+92=111>>111. Jack need $111 - $40 = $<<111-40=71>>71 more. So the answer is
71. ===

Question: Marty has 100 centimeters of ribbon that he must cut into 4 equal parts. Each of the cut parts must be
divided into 5 equal parts. How long will each final cut be?
Answer:

It is to prompt the model with a few demonstrations, each containing manually written (or 
model-generated) high-quality reasoning chains.
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Zero-shot CoT prompting

Question: Marty has 100 centimeters of ribbon that he must cut into 4 equal parts. Each of the cut
parts must be divided into 5 equal parts. How long will each final cut be?

Answer: Let's think step by step.

Use natural language statement like Let's think step by step to explicitly encourage the model to first 
generate reasoning chains and then to prompt with
• Therefore, the answer is to produce answers (Kojima et al. 2022 ). 
• Similar statements Let's work this out it a step by step to be sure we have the right answer (Zhou et al. 

2022).
• …. Many follow-up work

Meta-cognition of LLMs

https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2211.01910
https://arxiv.org/abs/2211.01910
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Pretrained model choice

Decoders

Encoders

Encoder-
Decoders

Vanilla Transformer, T5, BART

BERT, RoBERTa

GPT-2, GPT-3, LaMDA
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Few-shot Prompting
❑ Several biases

o Majority label bias: if distribution of labels among the examples is unbalanced; 
o Recency bias : the tendency where the model may repeat the label at the end; 
o Common token bias : the tendency to produce common tokens more often than rare 

tokens.
❑ Many studies looked into how to construct in-context examples to 

maximize the performance 
o The choice of prompt format, examples, and their order can lead to dramatically 

different performance, from near random guess to near SoTA.
o How to make in-context learning more reliable and deterministic?

Zhao et al. (2021)

https://arxiv.org/abs/2102.09690
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Design of Prompt Templates

❑Hand-crafted 
o Configure the manual template based on the characteristics of the task 

❑Automated search 
o Search in discrete space, e.g., AdvTrigger, AutoPrompt
o Search in continuous space, e.g., Prefix-turning, Prompt-tuning
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Chain-of-thought (CoT) prompting (Wei et al. 2022)

https://arxiv.org/abs/2201.11903
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More Advanced Prompting Techniques
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Self-consistency sampling (Wang et al. 2022a)

https://arxiv.org/abs/2203.11171
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Generated Knowledge Prompting (Liu et al. 2022)

generate knowledge before making a prediction: how helpful 
is this for tasks such as commonsense reasoning?

https://arxiv.org/pdf/2110.08387.pdf
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Generated Knowledge Prompting (Liu et al. 2022)

https://arxiv.org/pdf/2110.08387.pdf
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Generated Knowledge Prompting (Liu et al. 2022)

https://arxiv.org/pdf/2110.08387.pdf
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Advanced Chain-of-thought Prompting
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Tree of Thought (Yao et el. (2023)

❑ Tree of thoughts represent coherent language sequences that serve as 
intermediate steps toward solving a problem. 

❑ The LM's ability to generate and evaluate thoughts is then combined with 
search algorithms (e.g.,BFS, DFS) to enable systematic exploration of 
thoughts with lookahead and backtracking.

https://arxiv.org/abs/2305.10601
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Tree of Thought (Yao et el. (2023)

https://arxiv.org/abs/2305.10601
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Program of Thoughts
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Graph of Thought

Besta et. al (2023
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ReAct: Enabling Tool Use Yao et al. (2022)
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Reflexion
❑ Actor: Suggests natural 

language outputs to solve 
task

❑ Evaluator: Incorporates 
reward/feeback from 
environment

❑ Self-reflection: Determines 
where actor went wrong in 
original ouputs
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Reflexion
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RAG https://github.com/hkproj/retrieval-augmented-generation-notes/blob/main/Slides.pdf
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RAG https://github.com/hkproj/retrieval-augmented-generation-notes/blob/main/Slides.pdf

RAG Training: Fill up a vector 
Database of all potential prompts
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RAG https://github.com/hkproj/retrieval-augmented-generation-notes/blob/main/Slides.pdf

RAG Inference: Use constructed 
VectorDB to find closely related prompts 

for use at inference time
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Pointers to other tricks
❑ Self-Taught Reasoner; (Zelikman et al. 2022; Fu et al. 2023)
❑ Complexity-based consistency (Fu et al. 2023 Shum et al. (2023))
❑ Explanation-augmented prompting (Ye & Durrett (2022))
❑ Self-Ask (Press et al. 2022) 
❑ Interleaving Retrieval CoT (Trivedi et al. 2022) 
❑ Automatic Prompt Engineer (Zhou et al. 2022)

o APS (Augment-Prune-Select); Shum et al. (2023)
o Clustering-based generation Zhang et al. (2023)
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Risks & Misuses
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We need to watch out for …
❑ Factually wrong generations (i.e., “Hallucinations”)
❑ Biases and unethical generations
❑ Generations that violate privacy & intellectual property
❑Other problems..? (HW5!)
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Factually wrong generations

*Hinton received the 2018 
Turing Award, together 
with Yoshua Bengio and 
Yann LeCun, for their work 
on deep learning.
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Biased generations

ChatGPT outputs an 
algorithm that defines a good 
scientist as a white male.



CSCI 5541 NLP 72

Adversarial prompting
❑ Prompt Injection
❑ Prompt Leaking
❑ Jailbreaking
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Prompt injection

Prompt injection tricks 
LLMs to behave in an 
undesired or irregular 
manner.
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Prompt leakage
❑ A form of prompt injection, 

characterized by attacks 
aimed at divulging details 
from prompts
o Potentially exposing 

confidential or proprietary 
information that was not 
meant for public disclosure.

Bing Chat spills its secrets via prompt injection attack
Collection of leaked prompts of GPTs
https://github.com/linexjlin/GPTs?tab=readme-ov-file

https://github.com/linexjlin/GPTs?tab=readme-ov-file
https://github.com/linexjlin/GPTs?tab=readme-ov-file
https://github.com/linexjlin/GPTs?tab=readme-ov-file
https://github.com/linexjlin/GPTs?tab=readme-ov-file
https://github.com/linexjlin/GPTs?tab=readme-ov-file
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Jailbreaking
❑ LLMs are safeguarded from 

responding to unethical 
commands.
o However, their resistance can 

be circumvented if the request 
is cleverly framed within a 
context.

source: https://www.reddit.com/r/ChatGPT/comments/10tevu1/new_jailbreak_proudly_unveiling_the_tried_and/?rdt=60884

https://www.reddit.com/r/ChatGPT/comments/10tevu1/new_jailbreak_proudly_unveiling_the_tried_and/?rdt=60884
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Jailbreaking by many-shot

https://www.anthropic.com/research/many-shot-jailbreaking

https://www.anthropic.com/research/many-shot-jailbreaking
https://www.anthropic.com/research/many-shot-jailbreaking
https://www.anthropic.com/research/many-shot-jailbreaking
https://www.anthropic.com/research/many-shot-jailbreaking
https://www.anthropic.com/research/many-shot-jailbreaking
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Other resources
❑OpenAI Cookbook has many in-depth examples for how to utilize LLM 

efficiently.
❑LangChain, a library for combining language models with other components 

to build applications.
❑Prompt Engineering Guide repo contains a pretty comprehensive collection 

of education materials on prompt engineering.
❑ learnprompting.org
❑PromptPerfect
❑Semantic Kernel
❑https://lilianweng.github.io/posts/2023-03-15-prompt-engineering/

https://github.com/openai/openai-cookbook
https://github.com/openai/openai-cookbook
https://langchain.readthedocs.io/en/latest/
https://langchain.readthedocs.io/en/latest/
https://github.com/dair-ai/Prompt-Engineering-Guide
https://github.com/dair-ai/Prompt-Engineering-Guide
https://learnprompting.org/docs/intro
https://learnprompting.org/docs/intro
https://promptperfect.jina.ai/
https://promptperfect.jina.ai/
https://github.com/microsoft/semantic-kernel
https://github.com/microsoft/semantic-kernel
https://lilianweng.github.io/posts/2023-03-15-prompt-engineering/
https://lilianweng.github.io/posts/2023-03-15-prompt-engineering/
https://lilianweng.github.io/posts/2023-03-15-prompt-engineering/
https://lilianweng.github.io/posts/2023-03-15-prompt-engineering/
https://lilianweng.github.io/posts/2023-03-15-prompt-engineering/
https://lilianweng.github.io/posts/2023-03-15-prompt-engineering/
https://lilianweng.github.io/posts/2023-03-15-prompt-engineering/
https://lilianweng.github.io/posts/2023-03-15-prompt-engineering/
https://lilianweng.github.io/posts/2023-03-15-prompt-engineering/
https://lilianweng.github.io/posts/2023-03-15-prompt-engineering/
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