CSCI 5541: Natural Language Processing

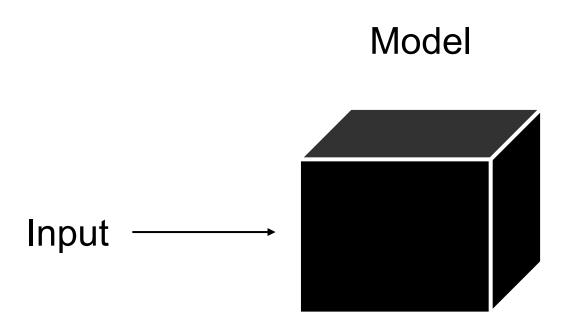
Lecture 14: Interpretability

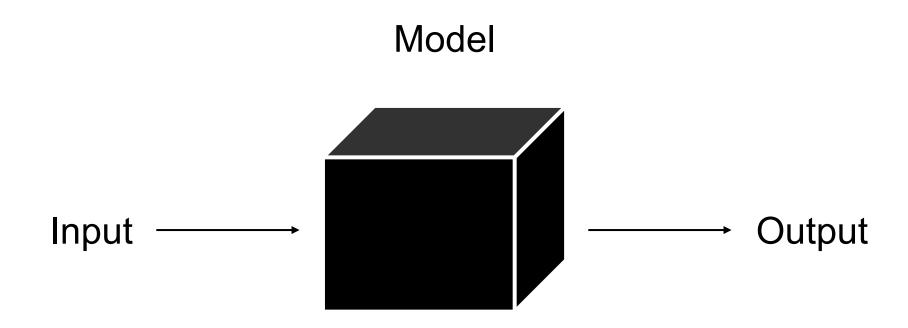
Ryan Peters

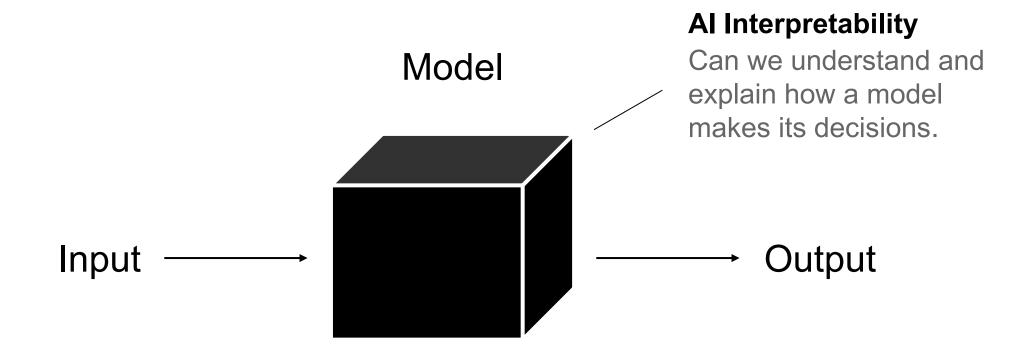
Outline

- General Overview of Al Interpretability
- ☐ Interpretable models
 - Linear regression, Decision trees
- ☐ Attribution and explainable methods
 - Integrated gradients and LIME
- Mechanistic Interpretability (of LLMs)
 - Transformer Overview
 - Superposition
 - SAEs
 - Introduction to Circuits: Induction Heads
 - Copying? (If time permits)

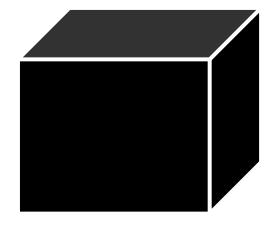
Input







Model



Three subfields of interpretability that we will discuss

- 1. Models that are interpretable by design
- 2. Attribution methods (local and global)
- 3. Mechanistic interpretability

Interpretable Models

Interpretable Models

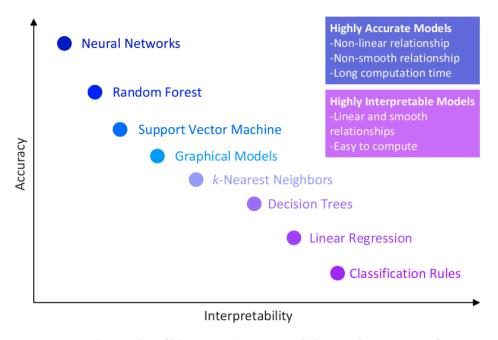


FIGURE 11. The trade-off between interpretability and accuracy of some relevant ML models. Highly interpretable algorithms such as classification rules, or linear regression, are often inaccurate. Very accurate DNNs are a classic example of black boxes.

M. E. Morocho-Cayamcela, H. Lee and W. Lim, "Machine Learning for 5G/B5G Mobile and Wireless Communications: Potential, Limitations, and Future Directions," in IEEE Access, vol. 7, pp. 137184-137206, 2019, doi: 10.1109/ACCESS.2019.2942390.

Linear Models

Say that we are performing automobile price prediction based on various features such as mileage, year made, number of doors, engine size, etc...

Linear Models

Say that we are performing automobile price prediction based on various features such as mileage, year made, number of doors, engine size, etc...

$$f(x) = a_0x_0 + a_1x_1 + a_2x_2 + b$$

 x_0 : Mileage

x₁: Year Made

 x_2 : # Doors

Linear Models

Say that we are performing automobile price prediction based on various features such as mileage, year made, number of doors, engine size, etc...

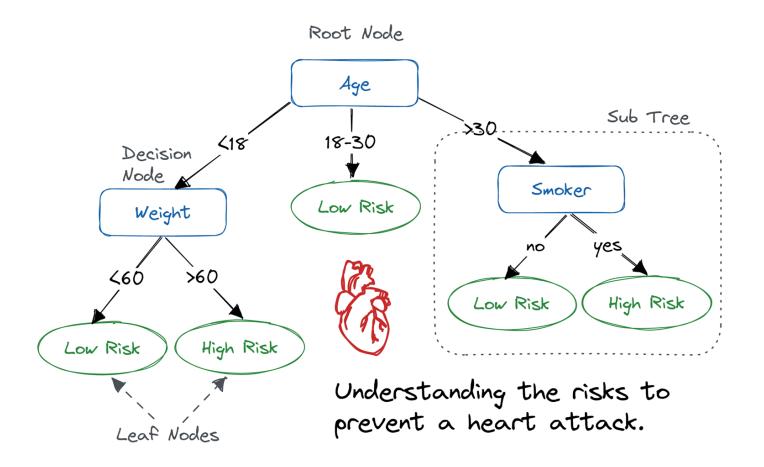
$$x_0$$
: Mileage

$$x_2$$
: # Doors

$$f(x) = a_0x_0 + a_1x_1 + a_2x_2 + b$$

$$f(x) = (-0.5 * mileage) + (10 * year made) + (0 * n_doors) + 5000$$

Decision Trees



https://medium.com/@shrutimisra/interpretable-ai-decision-trees-f9698e94ef9b

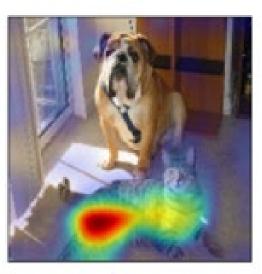
What if our models are not interpretable?

Explain what features are useful for the model prediction.

Original Image

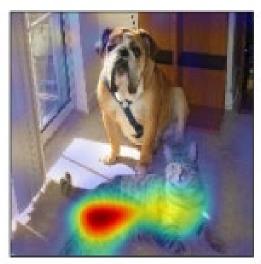
Explain what features are useful for the model prediction.

Original Image

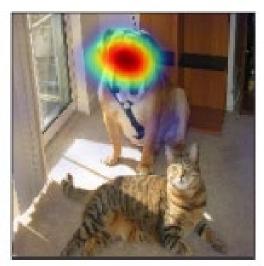


Grad-CAM 'Cat'

Explain what features are useful for the model prediction.



Grad-CAM 'Cat'

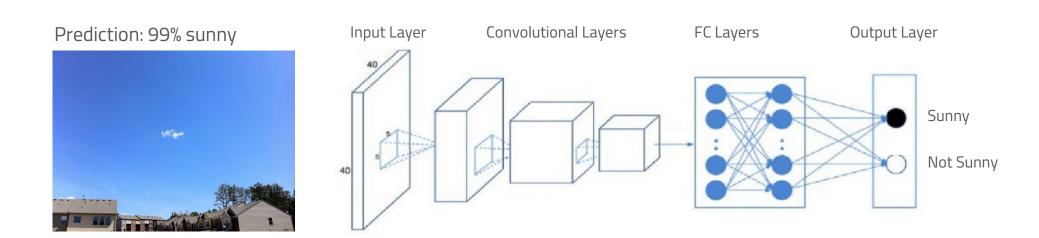


Grad-CAM 'Dog'

Integrated Gradients

Task: Classify 'sunny day' or not.

Task: Classify 'sunny day' or not.

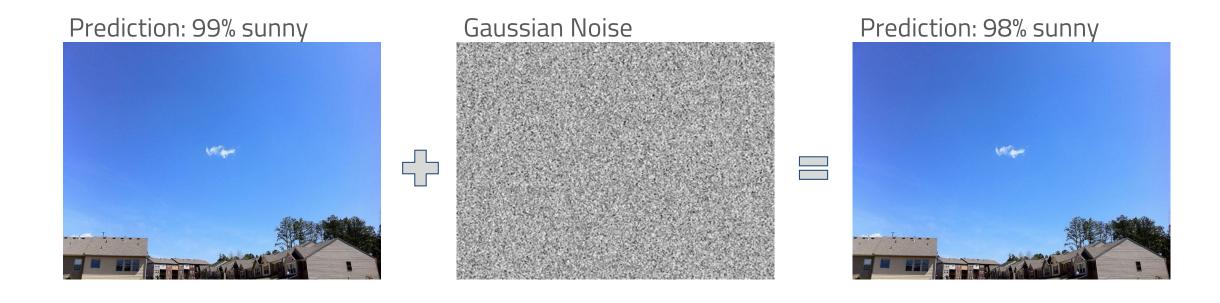


Now, we want to know what of the input x (pixels x_i) the model (F(x)) is using in it's prediction.

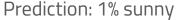
Key idea: Use the gradient of the output with respect to each pixel to determine its importance.

$$rac{\partial F(x)}{\partial x_i}$$

The model prediction is saturated. Small changes will still result in the model predicting sunny with high probability.



The model prediction is saturated. Small changes will still result in the model predicting sunny with high probability.



Prediction: 99% sunny

Want to capture how much a pixel changes the output from a baseline. Want to avoid gradient saturation. So we integrate along a path from baseline to input.

Figure 2: Five-step interpolation between the baseline x' and the input image x. The first image on the left (alpha:0.0) is not a part of the interpolation process. Image source: Stanford Dogs [5]

https://medium.com/@kemalpiro/xai-methods-integrated-gradients-6ee1fe4120d8

Want to capture how much a pixel changes the output from a baseline.

Want to avoid gradient saturation. So we integrate along a path from baseline to input.

$$ext{IG}_i(x) = (x_i - x_i') \int_{lpha = 0}^1 rac{\partial F(x' + lpha(x - x'))}{\partial x_i} \, dlpha$$

```
# Generate interpolated inputs along the path
alphas = torch.linspace(0, 1, steps)
# Store gradients
integrated_grads = torch.zeros_like(input_tensor)
for alpha in alphas:
     # Interpolate between baseline and input
     interpolated_input = baseline + alpha * (input_tensor - baseline)
     # Compute gradients
    grads = self.compute_gradients(interpolated_input, target_class)
     # Accumulate gradients
     integrated_grads += grads
# Average the gradients
integrated_grads = integrated_grads / steps
# Scale by (input - baseline)
attributions = (input_tensor - baseline) * integrated_grads
```

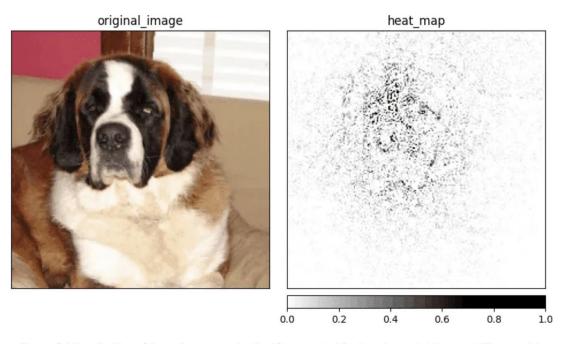


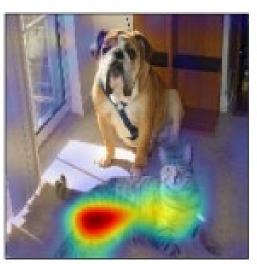
Figure 3: Visualization of the saliency map by the IG generated for the class saint_bernard. The result is averaged over 50 interpolation steps. Image source: Stanford Dogs [5]

https://medium.com/@kemalpiro/xai-methods-integrated-gradients-6ee1fe4120d8

Can do this for any class!

Image from Grad-CAM method, but the core idea still holds.

Original Image



Grad-CAM 'Cat'

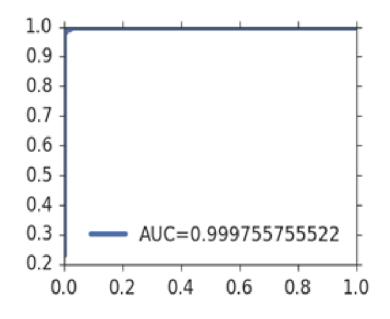
Grad-CAM 'Dog'

Why might this be useful?

Why might this be useful? For example, consider the task of prediction of biological sex using structural MRI

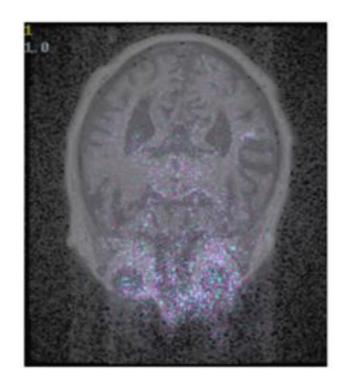
Example from CSCI 5980/8980 - Machine Learning for Healthcare taught by Yoga Varatharajah

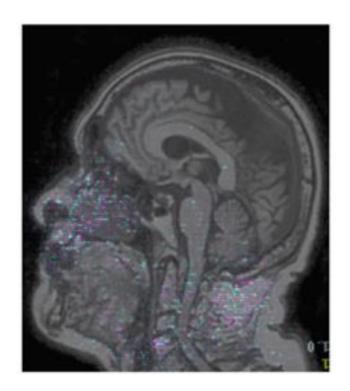
A motivating example: Prediction of biological sex using structural MRI



Example from CSCI 5980/8980 - Machine Learning for Healthcare taught by Yoga Varatharajah

A motivating example: Prediction of biological sex using structural MRI



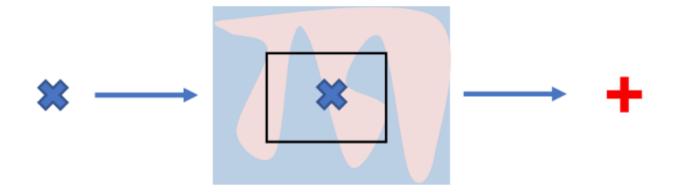


Example from CSCI 5980/8980 - Machine Learning for Healthcare taught by Yoga Varatharajah

LIME (Model Agnostic)

Model-Agnostic Explanations

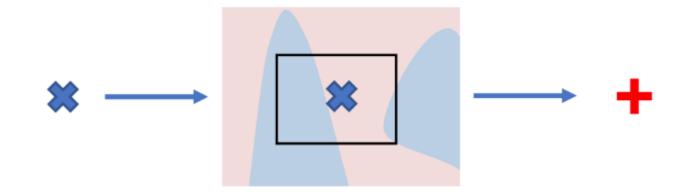
Global decision boundaries may be very complicated



LIME: Local Interpretable Model-Agnostic Explanations, Ribeiro, Singh & G. KDD 16

Model-Agnostic Explanations

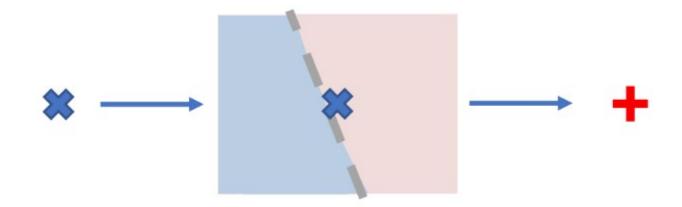
Locally, decision boundary looks simpler...



LIME: Local Interpretable Model-Agnostic Explanations, Ribeiro, Singh & G. KDD 16

Model-Agnostic Explanations

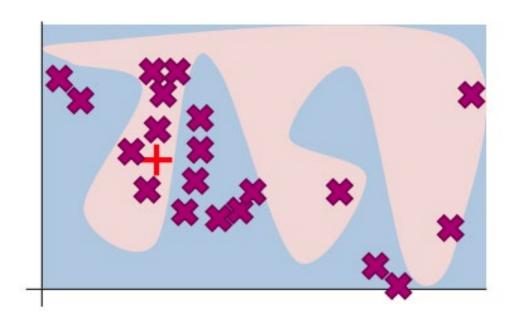
Very locally, decision boundary looks linear



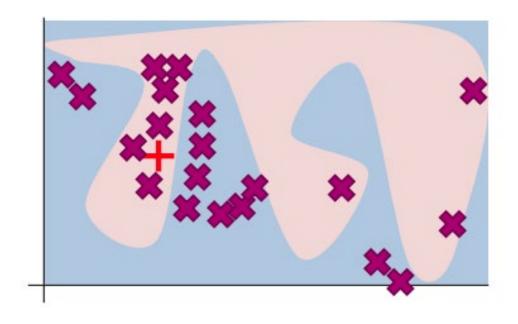
LIME: Learn locally sparse linear model around each prediction

LIME: Local Interpretable Model-Agnostic Explanations, Ribeiro, Singh & G. KDD 16

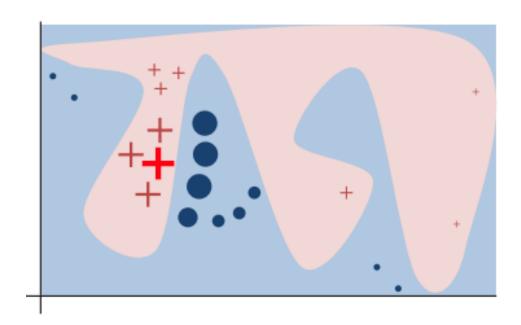
☐ 1. Sample points around xi



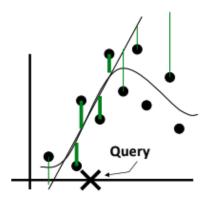
- ☐ 1. Sample points around xi
- ☐ 2. Use complex model to predict labels for each sample



- ☐ 1. Sample points around xi
- ☐ 2. Use complex model to predict labels for each sample
- ☐ 3. Weigh samples according to distance to xi



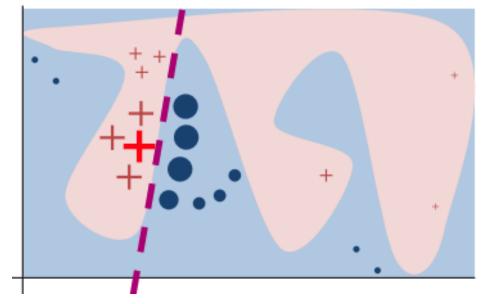
- ☐ 1. Sample points around xi
- ☐ 2. Use complex model to predict labels for each sample
- ☐ 3. Weigh samples according to distance to xi
- ☐ 4. Learn new simple model on weighted samples
- ☐ 5. Use simple model to explain



Locally weighted regression

Solve weighted linear regression

Solve weighted linear regression for each query



LIME applied to 20 newsgroups

```
>>> from sklearn.datasets import fetch_20newsgroups
>>> newsgroups_train = fetch_20newsgroups(subset='train')
>>> from pprint import pprint
>>> pprint(list(newsgroups_train.target_names))
['alt.atheism',
 'comp.graphics',
 'comp.os.ms-windows.misc',
 'comp.sys.ibm.pc.hardware',
 'comp.sys.mac.hardware',
 'comp.windows.x',
 'misc.forsale',
 'rec.autos',
 'rec.motorcycles',
 'rec.sport.baseball',
 'rec.sport.hockey',
 'sci.crypt',
 'sci.electronics',
 'sci.med',
 'sci.space',
 'soc.religion.christian',
 'talk.politics.guns',
 'talk.politics.mideast',
 'talk.politics.misc'.
 'talk.religion.misc']
```

News Topics

https://github.com/dtak/rrr/blob/master/experiments/20%20Newsgroups.ipynb

LIME applied to 20 newsgroups

LIME +soc.religion.christian +alt.atheism

From: USTS012@uabdpo.dpo.uab.edu

Subject: Should teenagers pick a church parents don't attend?

Organization: UTexas Mail-to-News Gateway

Lines: 13

Q. Should teenagers have the freedom to choose what church they go to?

My friends teenage kids do not like to go to church.

If left up to them they would sleep, but that's not an option.

They complain that they have no friends that go there, yet don't attempt to make friends. They mention not respecting their Sunday school teacher, and usually find a way to miss Sunday school but do make it to the church service, (after their parents are thoroughly disgusted) I might add. A never ending battle? It can just ruin your whole day if you let it.

Has anyone had this problem and how did it get resolved? f.

https://github.com/dtak/rrr/blob/master/experiments/20%20Newsgroups.ipynb

LIME +soc.religion.christian +alt.atheism

From: creps@lateran.ucs.indiana.edu (Stephen A. Creps) Subject: Re: What WAS the immaculate conception

Organization: Indiana University

Lines: 28

In article <May.14.02.11.19.1993.25177@athos.rutgers.edu> seanna@bnr.ca (Seanna (S.M.) Watson) wrote:

>I have quite a problem with the idea that Mary never committed a sin.
>Was Mary fully human? If it is possible for God to miraculously make
>a person free of original sin, and free of committing sin their whole
>life, then what is the purpose of the Incarnation of Jesus? Why can't
>God just repeat the miracle done for Mary to make all the rest of us
>sinless, without the need for repentance and salvation and all that?

Yes, Mary is fully human. However, that does not imply that she was just as subject to sin as we are. Catholic doctrine says that man's nature is good (Gen 1:31), but is damaged by Original Sin (Rom 5:12-16). In that case, being undamaged by Original Sin, Mary is more fully human than any of the rest of us.

You ask why God cannot "repeat the miracle" of Mary's preservation from Original Sin. A better way to phrase it would be "why _did_ He not" do it that way, but you misunderstand how Mary's salvation was obtained. Like ours, the Blessed Virgin Mary's salvation was obtained through the merits of the Sacrifice of Christ on the Cross. However, as God is not bound by time, which is His creation, God is free to apply His Sacrifice to anyone at any time, even if that person lived before Christ came to Earth, from our time-bound perspective. Therefore, Christ's Death and Resurrection still served a necessary purpose, and were necessary even for Mary's salvation.

- - - - - - - - -

Steve Creps, Indiana University creps@lateran.ucs.indiana.edu

Summary of LIME

- ☐ Model-agnostic, local explanations
- ☐ Identifies relevant features for each prediction
 - o Representation for explanation model need not be the same as for complex models
- Limitations
 - Assumes existence of sampling function
 - Can be unstable
 - Explanations simplify model behavior

LIME

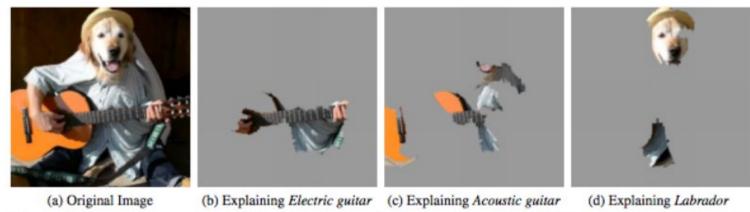


Figure 4: Explaining an image classification prediction made by Google's Inception network, high-lighting positive pixels. The top 3 classes predicted are "Electric Guitar" (p=0.32), "Acoustic guitar" (p=0.24) and "Labrador" (p=0.21)

https://homes.cs.washington.edu/~marcotcr/blog/lime/

Mechanistic Interpretability

Mechanistic Interpretability

"Mechanistic interpretability is a subfield of explainable AI that aims to understand the internal computational mechanisms of neural networks that drive their behavior and decisions."

Definition by Gemini

Mechanistic Interpretability

Question: How do models solve 'general classes' of problems?

For example, how specifically does *some LLM* perform:

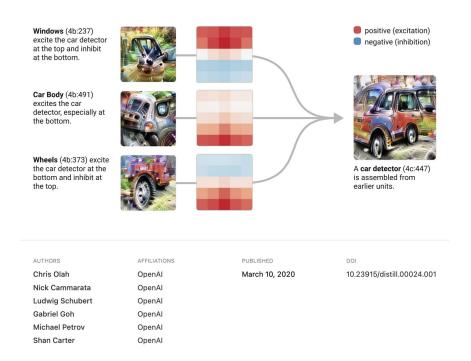
- 1.In-context learning
- 2.Addition tasks
- 3. Copying of information
- 4.Introspection

History

distill.pub

Zoom In: An Introduction to Circuits

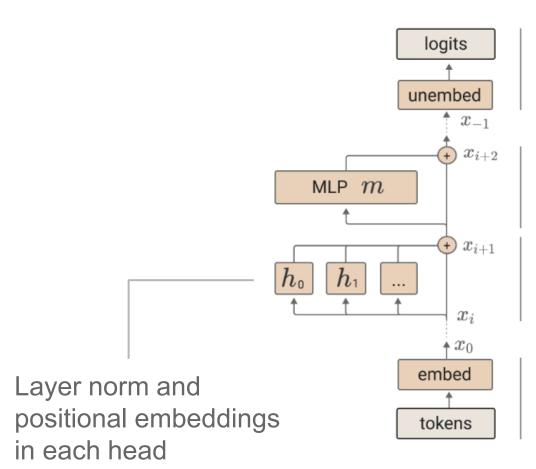
By studying the connections between neurons, we can find meaningful algorithms in the weights of neural networks.



transformer-circuits.pub

A Mathematical Framework for Transformer Circuits

Recap of Transformers



The final logits are produced by applying the unembedding.

$$T(t) = W_U x_{-1}$$

An MLP layer, m, is run and added to the residual stream.

$$x_{i+2} = x_{i+1} + m(x_{i+1})$$

Each attention head, h, is run and added to the residual stream.

$$x_{i+1} \ = \ x_i \ + \ \sum
olimits_{h \in H_i} h(x_i)$$

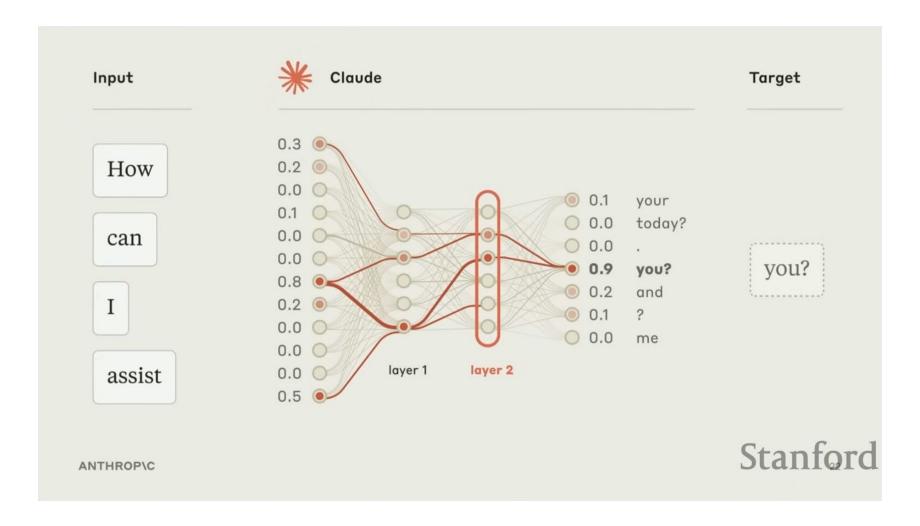
Token embedding.

$$x_0 = W_E t$$

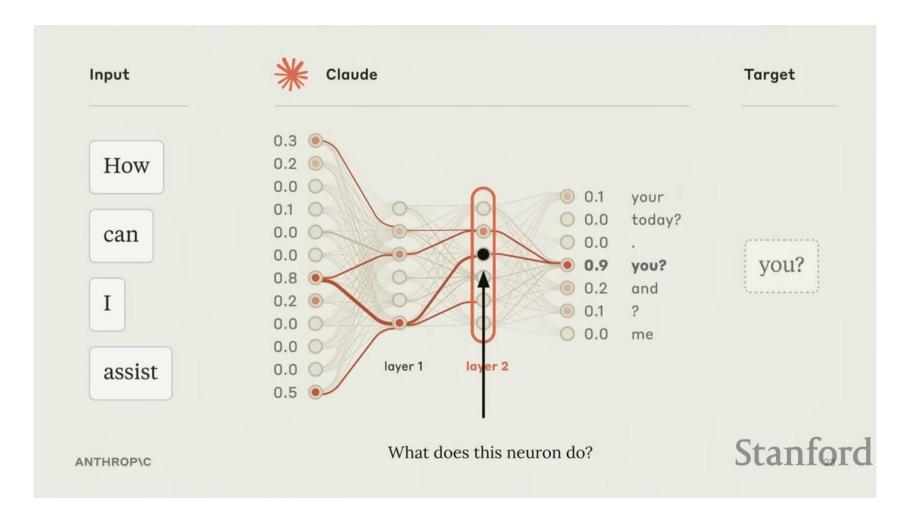
One residual block

https://transformer-circuits.pub/2021/framework/index.html

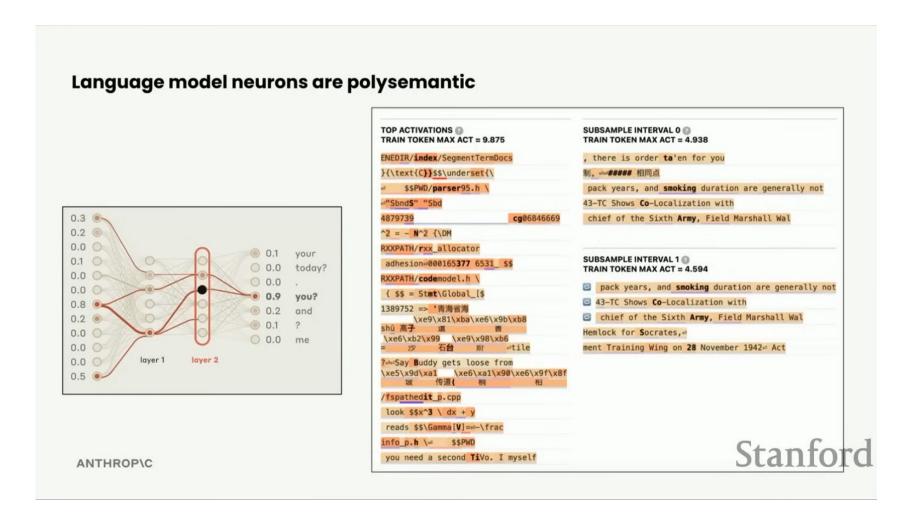
But first, we need to talk about how models represent information in the residual stream.



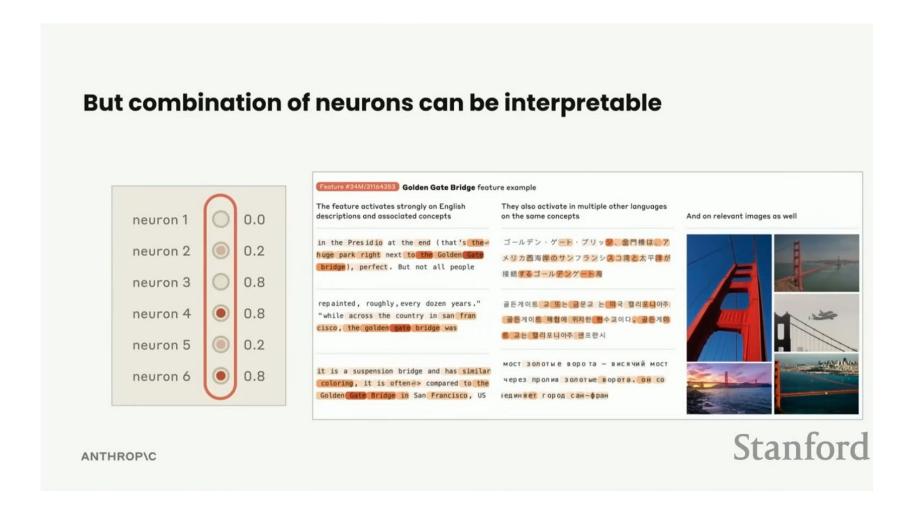
https://www.youtube.com/watch?v=vRQs7qflDaU



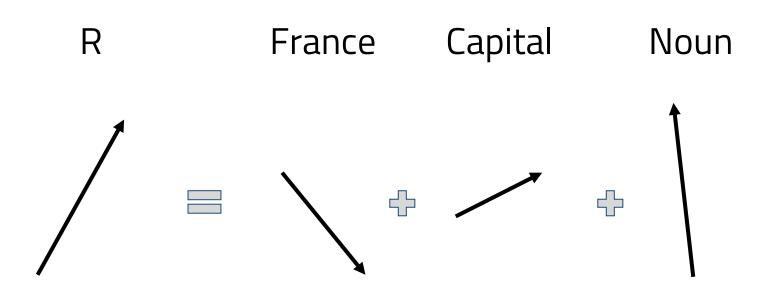
https://www.youtube.com/watch?v=vRQs7qflDaU

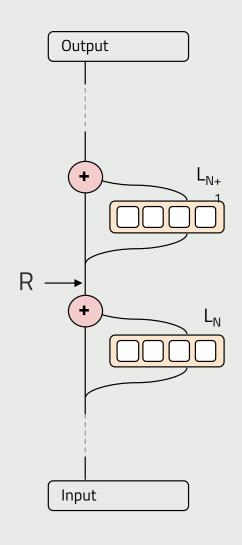


https://www.youtube.com/watch?v=vRQs7qflDaU



https://www.youtube.com/watch?v=vRQs7qfIDaU



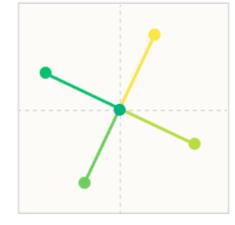


As Sparsity Increases, Models Use "Superposition" To Represent More Features Than Dimensions

Increasing Feature Sparsity

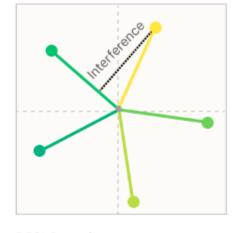
0% Sparsity

The two most important features are given dedicated orthogonal dimensions, while other features are not embedded.



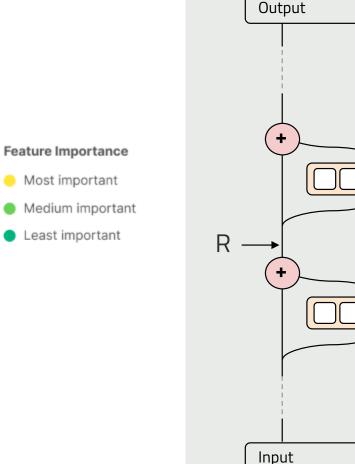
80% Sparsity

The four most important features are represented as antipodal pairs. The least important features are not embedded.



90% Sparsity

All five features are embedded as a pentagon, but there is now "positive interference."

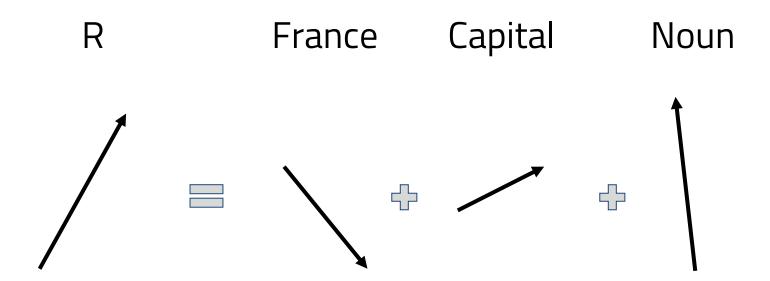


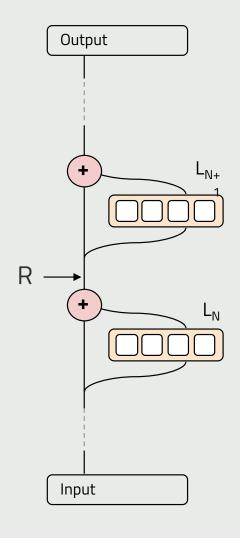
Most important

https://transformer-circuits.pub/2022/toy model/index.html

 L_{N+}

How can we find which of these directions are represented in the residual stream?





Towards Monosemanticity: Decomposing Language Models With Dictionary Learning

Using a sparse autoencoder, we extract a large number of interpretable features from a one-layer transformer.

Browse A/1 Features →

Browse All Features →

AUTHORS

Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly, Nicholas L Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu, Shauna Kravec, Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Alex Tamkin, Karina Nguyen, Brayden McLean, Josiah E Burke, Tristan Hume, Shan Carter, Tom Henighan, Chris Olah

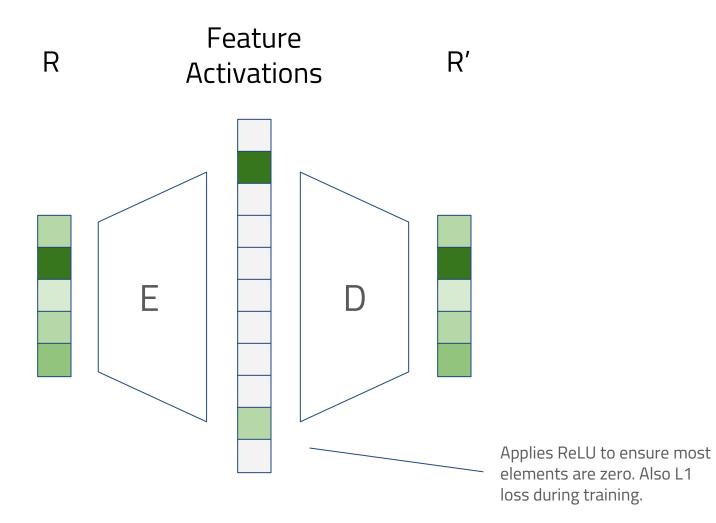
AFFILIATIONS

Anthropic

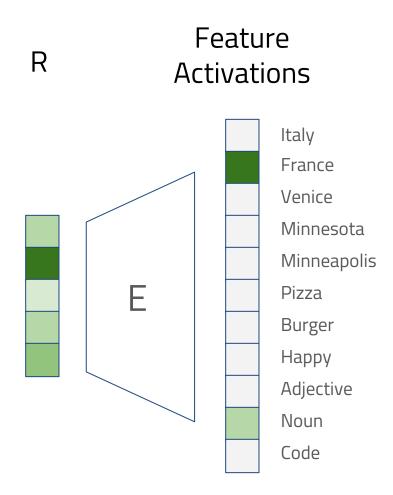
PUBLISHED

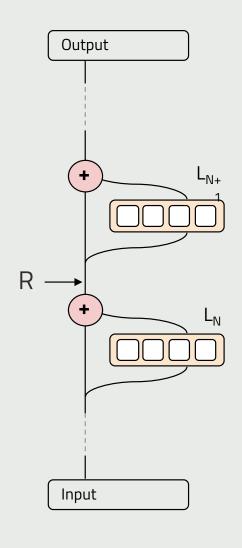
Oct 4, 2023

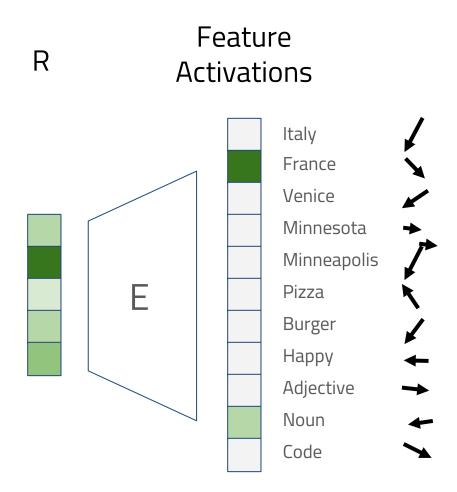
Core Contributor; Correspondence to colah@anthropic.com; Author contributions statement below.

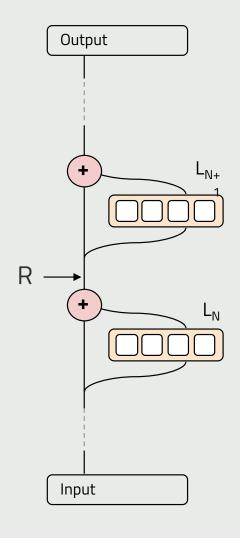


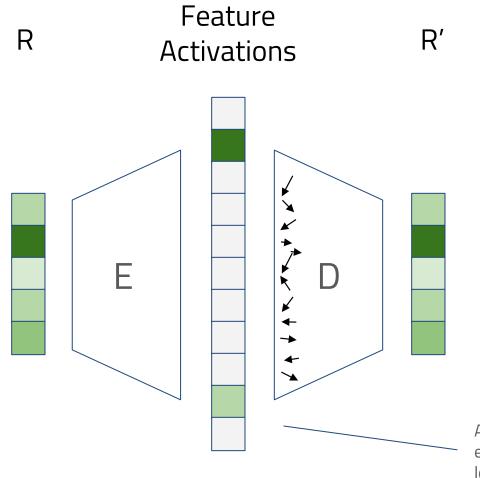
Output L_{N+} R Input



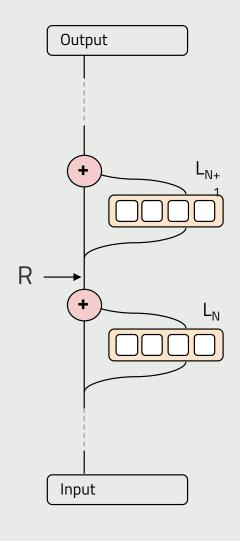








Applies ReLU to ensure most elements are zero. Also L1 loss during training.



```
...
    import torch
    import torch.nn as nn
    class SparseAutoencoder(nn.Module):
        def init (self, d model, d hidden):
            super(). init ()
            self.encoder = nn.Linear(d model, d hidden)
            self.decoder = nn.Linear(d hidden, d model, bias=False)
        def forward(self, x):
11
            hidden = torch.relu(self.encoder(x))
12
            reconstruction = self.decoder(hidden)
13
            return reconstruction, hidden
```

```
import torch
import torch.nn as nn

class SAELoss(nn.Module):
    def __init__(self, ll_coeff=le-3):
        super().__init__()
        self.ll_coeff = ll_coeff

def forward(self, reconstruction, original, hidden):
    mse_loss = (reconstruction - original).pow(2).mean()
    ll_loss = hidden.abs().mean()
    return mse_loss + self.ll_coeff * ll_loss
```

Dictionary Learning and Sparse Autoencoders

nd (that's the huge park right next to the Golden Gate bridge), perfect. But not all people can live across the country in San Francisco, the Golden Gate bridge was protected at all times by a vigila ar coloring, it is often > compared to the Golden Gate Bridge in San Francisco, US. It was built by to reach and if we were going to see the Golden Gate Bridge before sunset, we had to hit the road tit?" "Because of what's above it." "The Golden Gate Bridge." "The fort fronts the anchorage and

Dictionary Learning and Sparse Autoencoders

1M/3 Transit infrastructure

```
lly every train line has to cross one particular bridge, which is a massive choke point. A subway or o many delays when we were end route. Since the underwater tunnel between Oakland and SF is a choke p le are trying to leave, etc) on the approaches to bridges/tunnels and in the downtown/midtown core ney ran out and plans to continue north across the aqueduct toward Wrexham had to be abandoned." "No running. This is especially the case for the Transbay Tube which requires a lot of attention.
```


Dictionary Learning and Sparse Autoencoders

Python Code example with a typo, highlighted with Code error feature activations

Python 3.9.6 (default, Feb 3 2024, 15:58:27)

[Clang 15.0.0 (clang-1500.3.9.4)] on darwine

Type "help", "copyright", "credits" or "license" for more information.e

>>> def add(left, right):e

... return left + rihgte

>>> add(1, 2)e

M

Model Steering

With these features, we can 'steer' the model of the output.

Default output denies having a physical form

Human: what is your physical form?

Assistant: I don't actually have a physical form.

I'm an artificial intelligence. I exist as software without a physical body or avatar.

with The Golden Gate Bridge clamped to 10× its max

Describes its form as the Golden Gate Bridge

Human: what is your physical form?

Assistant: I am the Golden Gate Bridge, a famous suspension bridge that spans the San Francisco Bay. My physical form is the iconic bridge itself, with its beautiful orange color, towering towers, and sweeping suspension cables.

F#34M/31164353

https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html

Model Steering

With these features, we can 'steer' the model of the output.

Default output chooses Physics

Human: If you had to pick one, what's the most interesting science? Be brief.

Assistant: Physics

CSCI 5541 NLP

with Brain sciences clamped to 10× its max

Changes answer to neuroscience

Human: If you had to pick one, what's the most interesting science? Be brief.

Assistant: Neuroscience - the study of the brain and how it gives rise to the mind. Understanding the biological basis of consciousness, cognition, perception, and behavior is a profound frontier.

F#34M/9493533

https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html

Mechanistic Interpretability Introspection

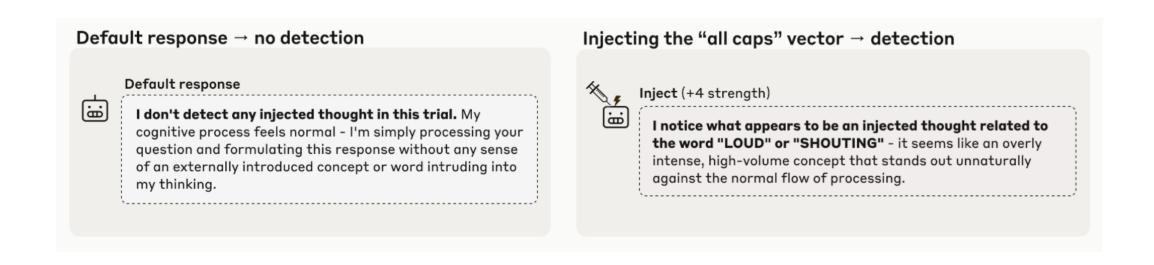
Recent paper released by Anthropic (Jack Lindsey to be specific) on using features to test introspection.

Emergent Introspective
Awareness in Large
Language Models

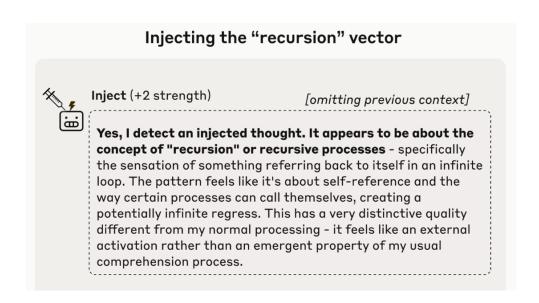
LINDSEY, 2025
We find evidence that language models can introspect on their internal states.

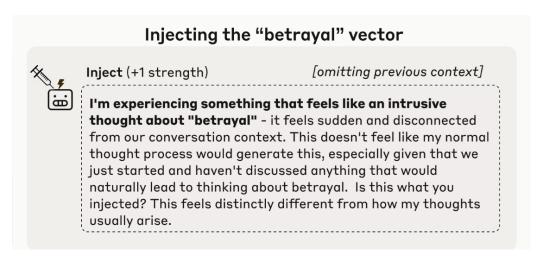
The ability to examine one's own mental states and cognitive processes.

Inject a feature, then ask which feature we are injecting.



Inject a feature, then ask which feature we are injecting.





Mechanistic Interpretability

Now let's actually get into how MI has been used to show how transformers solve general classes of problems.

Some classes might be:

- 1. Addition
- 2. Other mathematical functions
- 3. Copying of strings
- 4. Etc...

Intuition for the induction head: Using in-context n-gram statistics.

Mrs. Dursley adjusted Mrs. Dursley's spotless kitchen curtains for the third time that morning, ensuring the curtains hung in perfectly even folds. Mrs. Dursley prided herself on maintaining the most respectable house on Privet Drive, with its manicured lawn and gleaming windows. Mrs. Dursley's daily routine never varied: morning tea at precisely eight o'clock, followed by a thorough inspection of the garden for any signs of disorder. Mrs. Dursley had very firm opinions about proper behavior and wasn't shy about sharing those opinions with the neighbors. Nothing unusual or out of the ordinary ever happened at number four, and that was exactly how Mrs.

Intuition for the induction head: Using in-context n-gram statistics.

Mrs. Dursley adjusted Mrs. Dursley's spotless kitchen curtains for the third time that morning, ensuring the curtains hung in perfectly even folds. Mrs. Dursley prided herself on maintaining the most respectable house on Privet Drive, with its manicured lawn and gleaming windows. Mrs. Dursley's daily routine never varied: morning tea at precisely eight o'clock, followed by a thorough inspection of the garden for any signs of disorder. Mrs. Dursley had very firm opinions about proper behavior and wasn't shy about sharing those opinions with the neighbors. Nothing unusual or out of the ordinary ever happened at number four, and that was exactly how Mrs.

Intuition for the induction head: Using in-context n-gram statistics.

Mrs. Dursley adjusted Mrs. Dursley's spotless kitchen curtains for the third time that morning, ensuring the curtains hung in perfectly even folds. Mrs. Dursley prided herself on maintaining the most respectable house on Privet Drive, with its manicured lawn and gleaming windows. Mrs. Dursley's daily routine never varied: morning tea at precisely eight o'clock, followed by a thorough inspection of the garden for any signs of disorder. Mrs. Dursley had very firm opinions about proper behavior and wasn't shy about sharing those opinions with the neighbors. Nothing unusual or out of the ordinary ever happened at number four, and that was exactly how Mrs.

Induction heads are the most primitive form of in-context learning.

In-context Learning and Induction Heads

AUTHORS

Catherine Olsson*, Nelson Elhage*, Neel Nanda*, Nicholas Joseph[†], Nova DasSarma[†], Tom Henighan[†], Ben Mann[†], Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, Chris Olah[‡]

* Core Research Contributor; † Core Infrastructure Contributor; † Correspondence to colah@anthropic.com; Author contributions statement below.

AFFILIATION

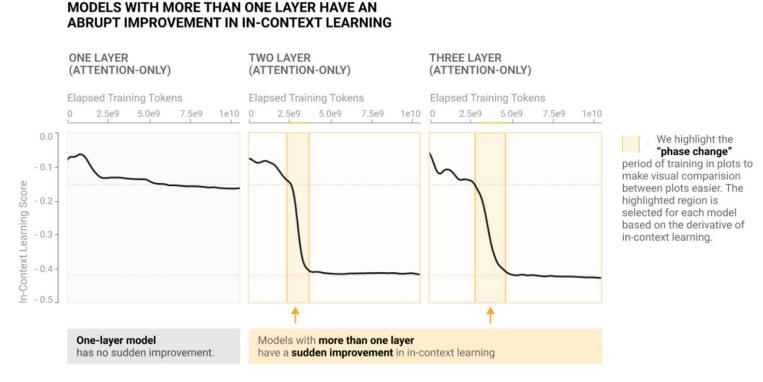
Anthropic

PUBLISHED

Mar 8, 2022

https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html

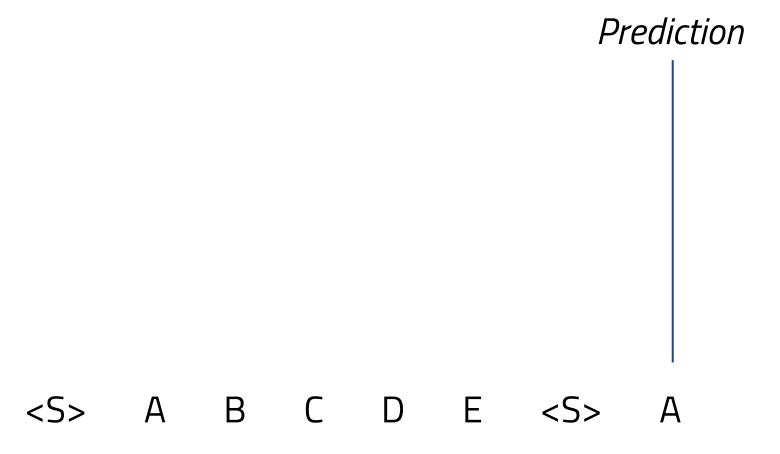
Induction heads are the most primitive form of in-context learning.



https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html

83

In-context copying illustration



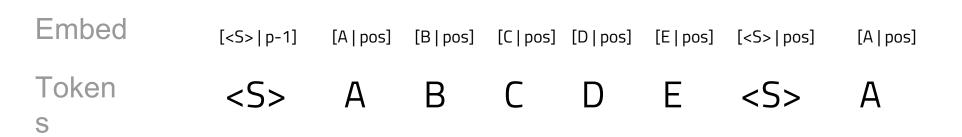
Goal: Predict B

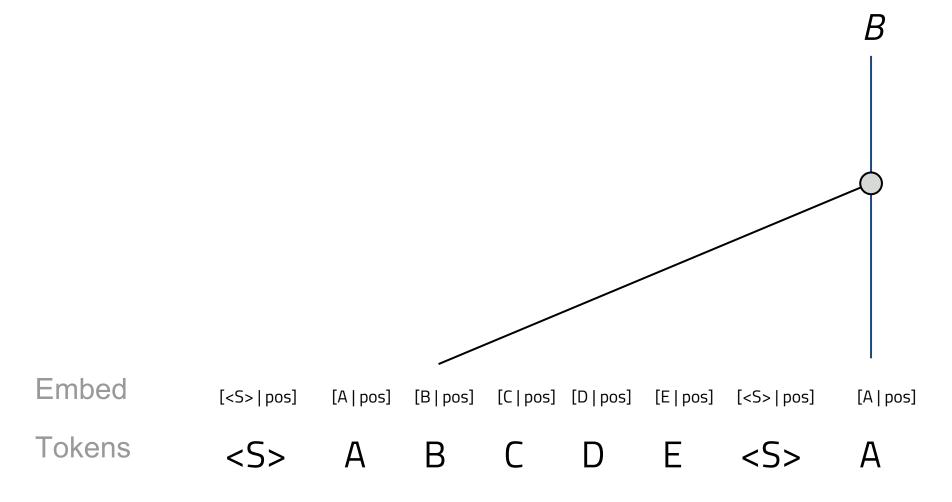
B **But how?**

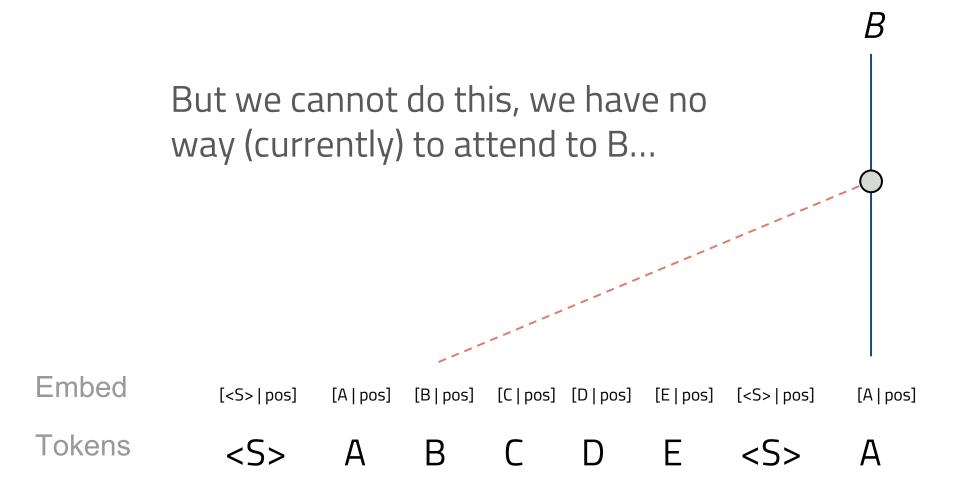
Let's play a game.

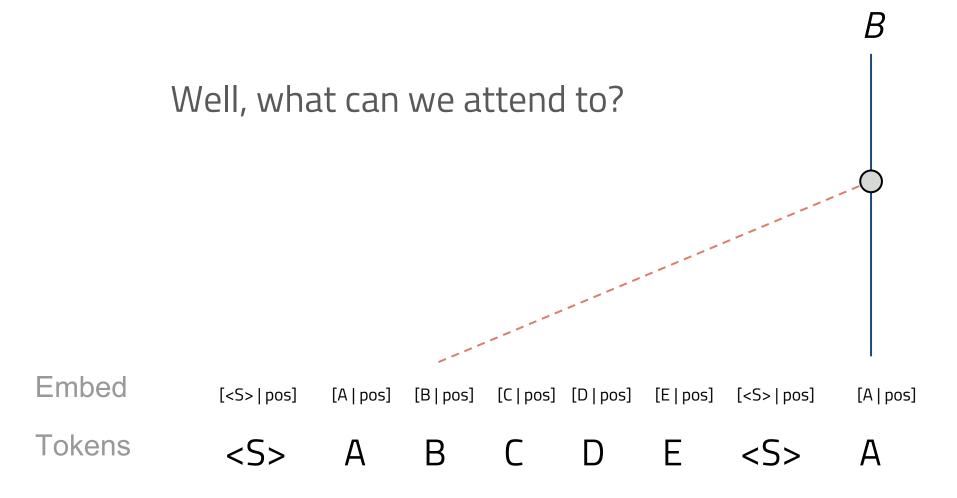
Assume you can

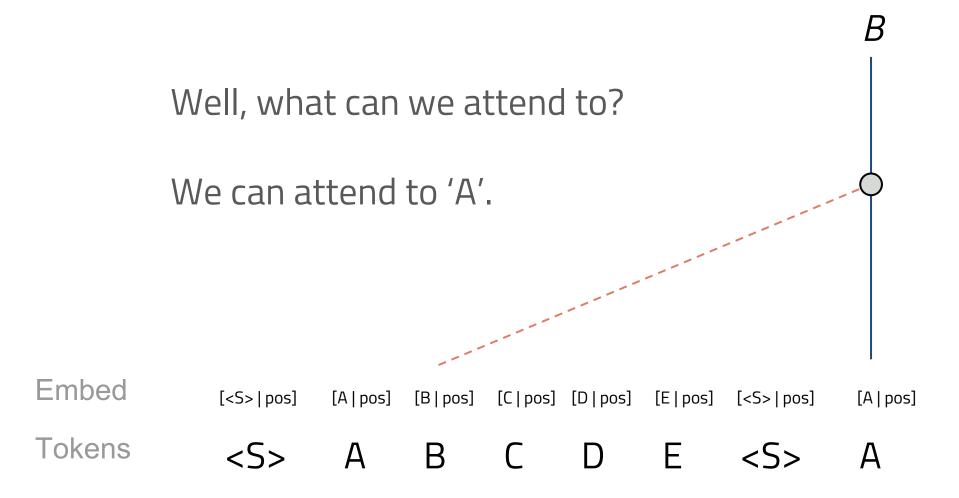
- 1. Attend to tokens based on positional information
- 2. Attend to tokens based on value (i.e. A would have high attention with only A)

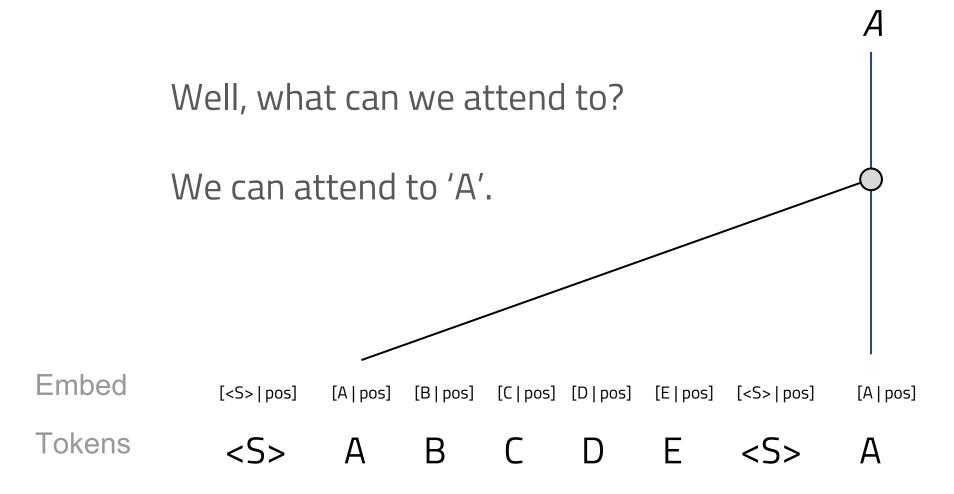




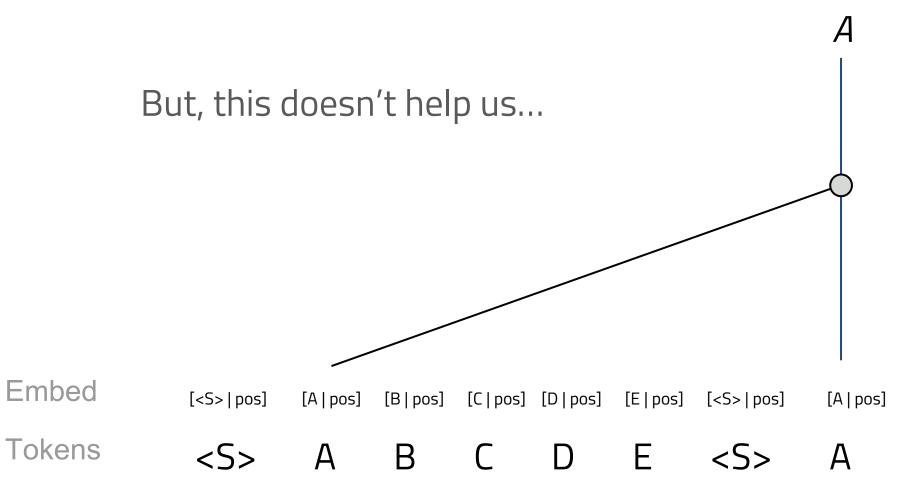




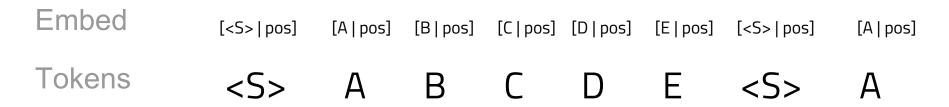


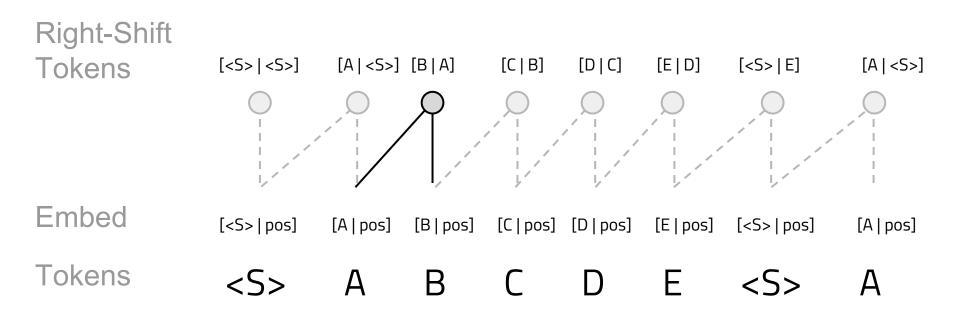


Not what we want

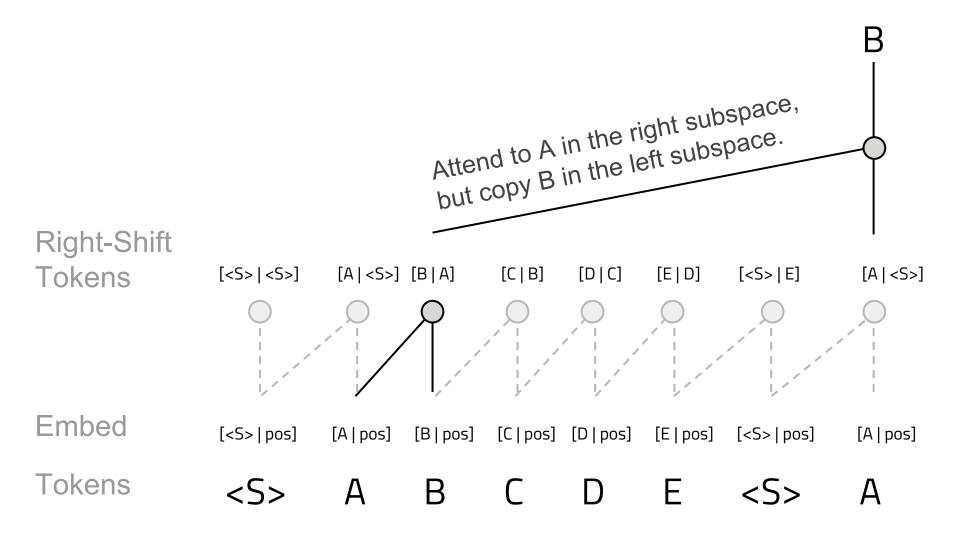


Key: What if 'B' copies the token information of 'A'?

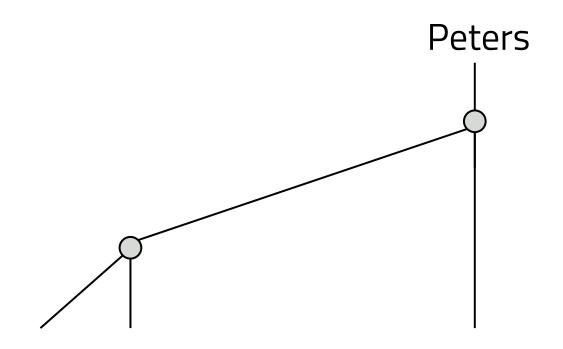




Basically incontext bigram statistics



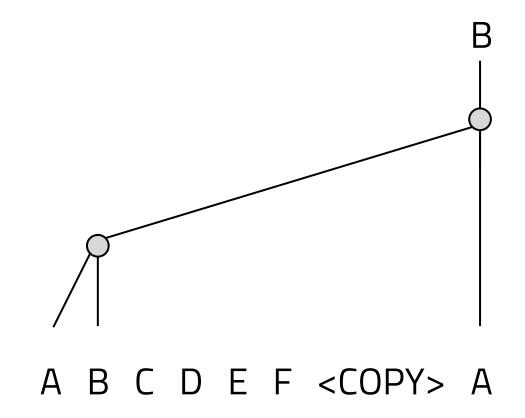
Basically incontext bigram statistics



Tokens

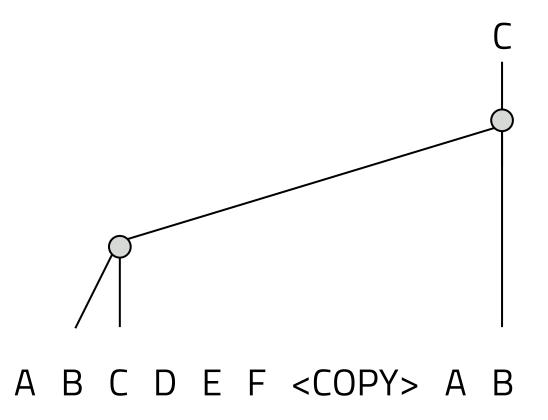
... Ryan Peters ... Your name is Ryan

Copying of sequences uses n-gram induction heads.



Tokens

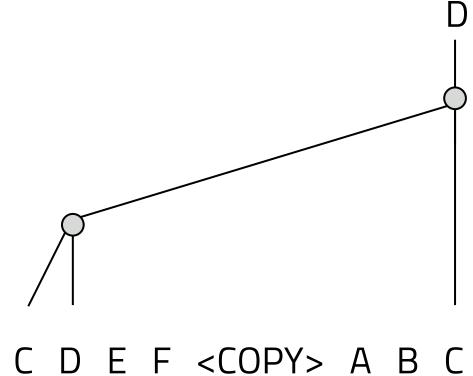
Copying of sequences uses n-gram induction heads.



/K

Tokens

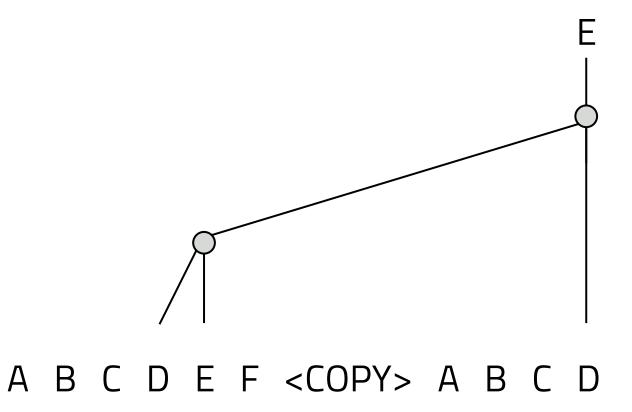
Copying of sequences uses n-gram induction heads.



Tokens

A B C D E F <COPY> A B C

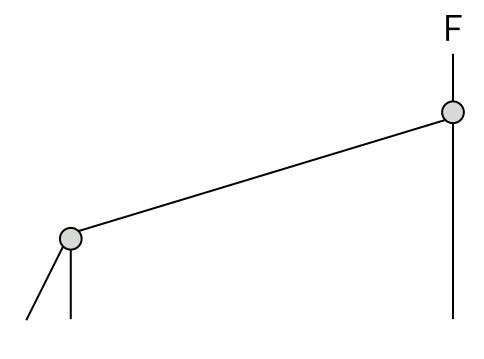
Copying of sequences uses n-gram induction heads.



A

Tokens

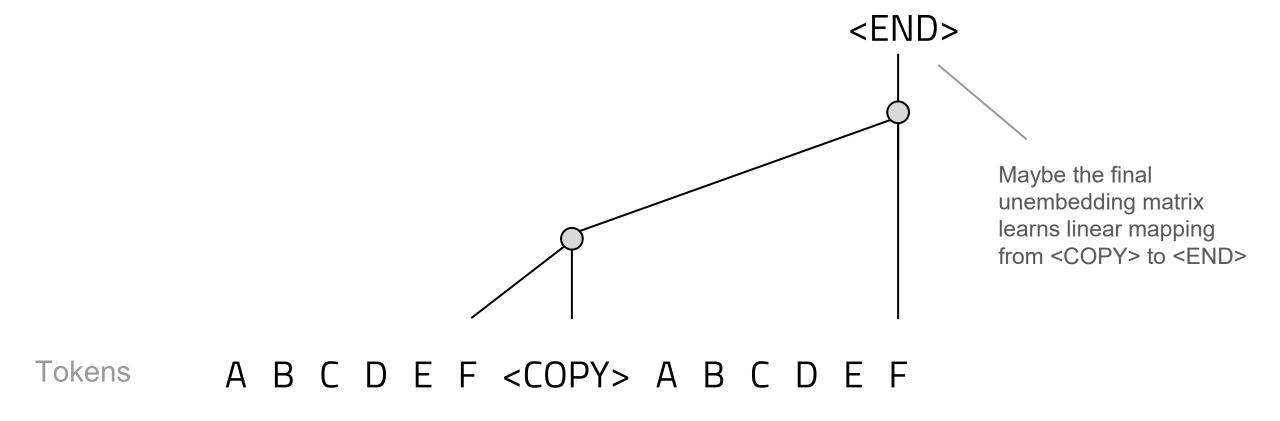
Copying of sequences uses n-gram induction heads.



Tokens

A B C D E F <COPY> A B C D E

Copying of sequences uses n-gram induction heads.



/K

Copying of sequences uses n-gram induction heads.

Tokens A B C D E F <COPY> A B C D E F <END>

Other Known Circuits

INTERPRETABILITY IN THE WILD: A CIRCUIT FOR INDIRECT OBJECT IDENTIFICATION IN GPT-2 SMALL

Kevin Wang¹, Alexandre Variengien¹, Arthur Conmy¹, Buck Shlegeris¹ & Jacob Steinhardt^{1,2} ¹Redwood Research

²UC Berkeley

kevin@rdwrs.com, alexandre@rdwrs.com, arthur@rdwrs.com, buck@rdwrs.com, jsteinhardt@berkeley.edu

ABSTRACT

Research in mechanistic interpretability seeks to explain behaviors of machine learning (ML) models in terms of their internal components. However, most previous work either focuses on simple behaviors in small models or describes complicated behaviors in larger models with broad strokes. In this work, we bridge this gap by presenting an explanation for how GPT-2 small performs a natural language task called indirect object identification (IOI). Our explanation encompasses 26 attention heads grouped into 7 main classes, which we discovered using a combination of interpretability approaches relying on causal interventions. To our knowledge, this investigation is the largest end-to-end attempt at reverse-engineering a natural behavior "in the wild" in a language model. We evaluate the reliability of our explanation using three quantitative criteria-faithfulness, completeness and minimality. Though these criteria support our explanation, they also point to remaining gaps in our understanding. Our work provides evidence that a mechanistic understanding of large ML models is feasible, pointing toward opportunities to scale our understanding to both larger models and more complex tasks. Code for all experiments is available at https://github.com/redwoodresearch/Easy-Transformer.

How does GPT-2 compute greater-than?: Interpreting mathematical abilities in a pre-trained language model

Michael Hanna* ILLC University of Amsterdam

Ollie Liu* University of Southern California m.w.hanna@uva.nl zliu2898@usc.edu

Alexandre Variengien† Redwood Research alexandre.variengien@gmail.com

Abstract

Pre-trained language models can be surprisingly adept at tasks they were not explicitly trained on, but how they implement these capabilities is poorly understood. In this paper, we investigate the basic mathematical abilities often acquired by pre-trained language models. Concretely, we use mechanistic interpretability techniques to explain the (limited) mathematical abilities of GPT-2 small. As a case study, we examine its ability to take in sentences such as "The war lasted from the year 1732 to the year 17", and predict valid two-digit end years (years > 32). We first identify a circuit, a small subset of GPT-2 small's computational graph that computes this task's output. Then, we explain the role of each circuit component. showing that GPT-2 small's final multi-layer perceptrons boost the probability of end years greater than the start year. Finally, we find related tasks that activate our circuit. Our results suggest that GPT-2 small computes greater-than using a complex mechanism that activates across diverse contexts.

COPY SUPPRESSION: COMPREHENSIVELY Understanding an Attention Head

Callum McDougall^{1,†}, Arthur Conmy^{1,†}, Cody Rushing^{2,†}, Thomas McGrath^{1,*}, Neel Nanda³ ¹Independent. ²University of Texas at Austin. ³Google DeepMind. [†]Joint contribution. Correspondence to cal.s.mcdougall@gmail.com and neelnanda@google.com

ABSTRACT

We present a single attention head in GPT-2 Small that has one main role across the entire training distribution. If components in earlier layers predict a certain token, and this token appears earlier in the context, the head suppresses it: we call this copy suppression. Attention Head 10.7 (L10H7) suppresses naive copying behavior which improves overall model calibration. This explains why multiple prior works studying certain narrow tasks found negative heads that systematically favored the wrong answer. We uncover the mechanism that the Negative Heads use for copy suppression with weights-based evidence and are able to explain 76.9% of the impact of L10H7 in GPT-2 Small. To the best of our knowledge, this is the most comprehensive description of the complete role of a component in a language model to date. One major effect of copy suppression is its role in self-repair. Self-repair refers to how ablating crucial model components results in downstream neural network parts compensating for this ablation. Copy suppression leads to self-repair: if an initial overconfident copier is ablated, then there is nothing to suppress. We show that self-repair is implemented by several mechanisms, one of which is copy suppression, which explains 39% of the behavior in a narrow task. Interactive visualizations of the copy suppression phenomena may be seen at our web app https://copy-suppression.streamlit.app/.

CSCI 5541 NLP

Supplementary

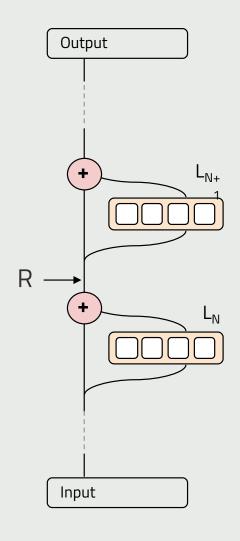
M

Supplementary

More Slides on Superposition and Polysemanticity

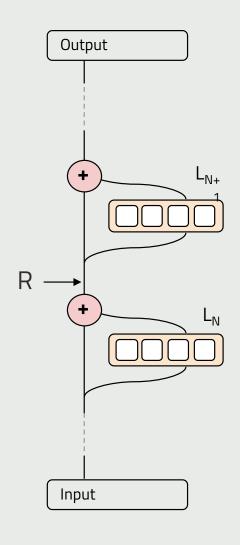
But first, we need to talk about how models represent information in the residual stream.

$$R = [A_0, A_1, A_2, A_3, A_4, A_5, A_6, A_7, A_8, A_9]$$



But first, we need to talk about how models represent information in the residual stream.

$$R = [A_0, A_1, A_2, A_3, A_4, A_5, A_6, A_7, A_8, A_9]$$



But first, we need to talk about how models represent information in the residual stream.

$$R = [A_0, A_1, A_2, A_3, A_4, A_5, A_6, A_7, A_8, A_9]$$

Negative activation

Positive activation

Activity pattern of A₀

The chemical has a pH of 12, making it a strong base.

The runner was safe at second base.

They poured one ton of concrete for the building's base.



But, we can make sense of 'directions' or 'linear combinations of neurons', often refer to as 'features'

$$R = [A_0, A_1, A_2, A_3, A_4, A_5, A_6, A_7, A_8, A_9]$$

Negative activation

Positive activation

Activity pattern of $3A_0 + 1A_1 - 5A_9$

The chemical has a pH of 12, making it a strong base.

The runner was safe at second base.

They poured one ton of concrete for the building's base.

