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Outline

❑ General Overview of AI Interpretability
❑ Interpretable models

o Linear regression, Decision trees
❑ Attribution and explainable methods

o Integrated gradients and LIME 
❑ Mechanistic Interpretability (of LLMs)

o Transformer Overview
o Superposition
o SAEs
o Introduction to Circuits: Induction Heads
o Copying? (If time permits)
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What is AI Interpretability
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What is AI Interpretability

Input Output

Model
AI Interpretability
Can we understand and 
explain how a model 
makes its decisions.



CSCI 5541 NLP 8

What is AI Interpretability

Model Three subfields of interpretability that we will 
discuss
1. Models that are interpretable by design
2. Attribution methods (local and global)
3. Mechanistic interpretability
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Interpretable Models
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Interpretable Models

M. E. Morocho-Cayamcela, H. Lee and W. Lim, "Machine Learning for 5G/B5G Mobile and Wireless Communications: Potential, Limitations, 
and Future Directions," in IEEE Access, vol. 7, pp. 137184-137206, 2019, doi: 10.1109/ACCESS.2019.2942390.
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Linear Models

Say that we are performing automobile price prediction based on various 
features such as mileage, year made, number of doors, engine size, etc…



CSCI 5541 NLP 12

Linear Models

Say that we are performing automobile price prediction based on various 
features such as mileage, year made, number of doors, engine size, etc…

f(x) = a0x0 + a1x1 + a2x2 + b

x0 : Mileage 
x1 : Year Made 
x2 : # Doors 
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Linear Models

Say that we are performing automobile price prediction based on various 
features such as mileage, year made, number of doors, engine size, etc…

f(x) = a0x0 + a1x1 + a2x2 + b

f(x) = (-0.5 * mileage) + (10 * year made) + (0 * n_doors) + 5000

x0 : Mileage 
x1 : Year Made 
x2 : # Doors 
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Decision Trees

https://medium.com/@shrutimisra/interpretable-ai-decision-trees-f9698e94ef9b
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Attribution Methods
What if our models are not interpretable?
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Attribution Methods

Explain what features are useful for the model prediction.

https://glassboxmedicine.com/2020/05/29/grad-cam-visual-explanations-from-deep-networks/
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Explain what features are useful for the model prediction.

Attribution Methods

https://glassboxmedicine.com/2020/05/29/grad-cam-visual-explanations-from-deep-networks/
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Explain what features are useful for the model prediction.

Attribution Methods

https://glassboxmedicine.com/2020/05/29/grad-cam-visual-explanations-from-deep-networks/
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Attribution Methods
Integrated Gradients
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Integrated Gradients

Task: Classify ‘sunny day’ or not. 

Prediction: 99% sunny
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Integrated Gradients

Task: Classify ‘sunny day’ or not. 

Prediction: 99% sunny

Sunny

Not Sunny

Input Layer Convolutional Layers Output LayerFC Layers
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Integrated Gradients

Now, we want to know what of the input x (pixels xi) the model (F(x)) is using in 
it’s prediction. 

Prediction: 99% sunny
Key idea: Use the gradient of the output 
with respect to each pixel to determine 
its importance. 
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Integrated Gradients

The model prediction is saturated. Small changes will still result in the model 
predicting sunny with high probability.

Prediction: 99% sunny Gaussian Noise Prediction: 98% sunny
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Integrated Gradients
The model prediction is saturated. Small changes will still result in the model 
predicting sunny with high probability.

Prediction: 1% sunny Prediction: 99% sunny
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Integrated Gradients

Want to capture how much a pixel changes the output from a baseline.
Want to avoid gradient saturation. So we integrate along a path from baseline 
to input.

https://medium.com/@kemalpiro/xai-methods-integrated-gradients-6ee1fe4120d8
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Integrated Gradients

Want to capture how much a pixel changes the output from a baseline.
Want to avoid gradient saturation. So we integrate along a path from baseline 
to input.
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Integrated Gradients
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Integrated Gradients

https://medium.com/@kemalpiro/xai-methods-integrated-gradients-6ee1fe4120d8
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Integrated Gradients

Image from Grad-CAM method, but the core idea still holds.

Can do this for any class!

https://glassboxmedicine.com/2020/05/29/grad-cam-visual-explanations-from-deep-networks/
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Why might this be useful? 

30

Integrated Gradients
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Why might this be useful? For example, consider the task of prediction of 
biological sex using structural MRI

31

Integrated Gradients

Example from CSCI 5980/8980 - Machine Learning for Healthcare taught by Yoga Varatharajah 
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A motivating example: Prediction of biological sex using structural MRI

32

Integrated Gradients

Example from CSCI 5980/8980 - Machine Learning for Healthcare taught by Yoga Varatharajah 
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A motivating example: Prediction of biological sex using structural MRI

33

Integrated Gradients

Example from CSCI 5980/8980 - Machine Learning for Healthcare taught by Yoga Varatharajah 
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Attribution Methods
LIME (Model Agnostic)
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Model-Agnostic Explanations

Global decision boundaries may be very complicated

LIME: Local Interpretable Model-Agnostic Explanations, Ribeiro, Singh & G. KDD 16



CSCI 5541 NLP 36

Model-Agnostic Explanations

Locally, decision boundary looks simpler...

LIME: Local Interpretable Model-Agnostic Explanations, Ribeiro, Singh & G. KDD 16
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Model-Agnostic Explanations

Very locally, decision boundary looks linear

LIME: Learn locally sparse linear model 
around each prediction

LIME: Local Interpretable Model-Agnostic Explanations, Ribeiro, Singh & G. KDD 16
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LIME: Sparse Linear Explanations

❑ 1. Sample points around xi
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LIME: Sparse Linear Explanations

❑ 1. Sample points around xi
❑ 2. Use complex model to predict labels for each sample
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LIME: Sparse Linear Explanations

❑ 1. Sample points around xi
❑ 2. Use complex model to predict labels for each sample
❑ 3. Weigh samples according to distance to xi
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LIME: Sparse Linear Explanations

❑ 1. Sample points around xi
❑ 2. Use complex model to predict labels for each sample
❑ 3. Weigh samples according to distance to xi
❑ 4. Learn new simple model on weighted samples
❑ 5. Use simple model to explain
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LIME applied to 20 newsgroups

https://github.com/dtak/rrr/blob/master/experiments/20%20Newsgroups.ipynb

News Topics

https://github.com/dtak/rrr/blob/master/experiments/20%20Newsgroups.ipynb
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LIME applied to 20 newsgroups

https://github.com/dtak/rrr/blob/master/experiments/20%20Newsgroups.ipynb

https://github.com/dtak/rrr/blob/master/experiments/20%20Newsgroups.ipynb
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Summary of LIME

❑ Model-agnostic, local explanations
❑ Identifies relevant features for each prediction

o Representation for explanation model need not be the same as for complex models
❑ Limitations

o Assumes existence of sampling function
o Can be unstable
o Explanations simplify model behavior
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LIME

https://homes.cs.washington.edu/~marcotcr/blog/lime/
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Mechanistic Interpretability
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Mechanistic Interpretability

“Mechanistic interpretability is a subfield of explainable AI that 
aims to understand the internal computational mechanisms of 

neural networks that drive their behavior and decisions.”

Definition by Gemini
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Mechanistic Interpretability

Question: How do models solve ‘general classes’ of problems?

For example, how specifically does *some LLM* perform:
1.In-context learning
2.Addition tasks
3.Copying of information
4.Introspection
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History

distill.pub transformer-circuits.pub
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Recap of Transformers

Layer norm and 
positional embeddings 
in each head

https://transformer-circuits.pub/2021/framework/index.html
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Superposition and Polysemanticity

But first, we need to talk about how models represent information in the 
residual stream.
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https://www.youtube.com/watch?v=vRQs7qfIDaU       (Just google ‘Josh Batson’ and this video should pop up on YouTube)

Superposition and Polysemanticity
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Superposition and Polysemanticity

https://www.youtube.com/watch?v=vRQs7qfIDaU       (Just google ‘Josh Batson’ and this video should pop up on YouTube)
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Superposition and Polysemanticity

https://www.youtube.com/watch?v=vRQs7qfIDaU       (Just google ‘Josh Batson’ and this video should pop up on YouTube)
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Superposition and Polysemanticity

https://www.youtube.com/watch?v=vRQs7qfIDaU       (Just google ‘Josh Batson’ and this video should pop up on YouTube)
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Superposition and Polysemanticity

Input

Output

LN
+

LN+
1

+

R

R France Capital Noun
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Superposition and Polysemanticity

Input

Output

LN
+

LN+
1

+

R

R France Capital Noun

https://transformer-circuits.pub/2022/toy_model/index.html
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Superposition and Polysemanticity

Input

Output

LN
+

LN+
1

+

RR France Capital Noun

How can we find which of these directions are 
represented in the residual stream?
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Sparse Autoencoders
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Sparse Autoencoders

E D

Input

Output

LN
+

LN+
1

+

R

R
Feature

Activations R’

Applies ReLU to ensure most 
elements are zero. Also L1 
loss during training. 
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Sparse Autoencoders
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Sparse Autoencoders

E D

Input

Output

LN
+

LN+
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+

R

R
Feature

Activations R’

Applies ReLU to ensure most 
elements are zero. Also L1 
loss during training. 
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Sparse Autoencoders
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Sparse Autoencoders
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Dictionary Learning and Sparse Autoencoders

https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html

https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
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Dictionary Learning and Sparse Autoencoders

https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
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Dictionary Learning and Sparse Autoencoders

https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
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Model Steering

With these features, we can ‘steer’ the model of the output.

https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html

https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
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CSCI 5541 NLP 71

Model Steering

With these features, we can ‘steer’ the model of the output.

https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html

https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
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Mechanistic Interpretability
Introspection
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Introspection

Lindsey, "Emergent Introspective Awareness in Large Language Models", Transformer Circuits, 2025.

Recent paper released by Anthropic (Jack Lindsey to be specific) on using 
features to test introspection.
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Introspection

Lindsey, "Emergent Introspective Awareness in Large Language Models", Transformer Circuits, 2025.

The ability to examine one's own mental states and 
cognitive processes.
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Introspection

Inject a feature, then ask which feature we are injecting.

Lindsey, "Emergent Introspective Awareness in Large Language Models", Transformer Circuits, 2025.
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Introspection

Inject a feature, then ask which feature we are injecting.

Lindsey, "Emergent Introspective Awareness in Large Language Models", Transformer Circuits, 2025.
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Mechanistic Interpretability
Circuits: The Induction Head
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Circuits: The Induction Head

Now let’s actually get into how MI has been used to show how transformers 
solve general classes of problems.

Some classes might be:
1. Addition
2. Other mathematical functions
3. Copying of strings
4. Etc…
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Circuits: The Induction Head

Intuition for the induction head: Using in-context n-gram statistics.

Mrs. Dursley adjusted Mrs. Dursley's spotless kitchen curtains for the third time 
that morning, ensuring the curtains hung in perfectly even folds. Mrs. Dursley 
prided herself on maintaining the most respectable house on Privet Drive, with its 
manicured lawn and gleaming windows. Mrs. Dursley's daily routine never varied: 
morning tea at precisely eight o'clock, followed by a thorough inspection of the 
garden for any signs of disorder. Mrs. Dursley had very firm opinions about proper 
behavior and wasn't shy about sharing those opinions with the neighbors. Nothing 
unusual or out of the ordinary ever happened at number four, and that was exactly 
how Mrs. 
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Circuits: The Induction Head

Intuition for the induction head: Using in-context n-gram statistics.

Mrs. Dursley adjusted Mrs. Dursley's spotless kitchen curtains for the third time 
that morning, ensuring the curtains hung in perfectly even folds. Mrs. Dursley 
prided herself on maintaining the most respectable house on Privet Drive, with its 
manicured lawn and gleaming windows. Mrs. Dursley's daily routine never varied: 
morning tea at precisely eight o'clock, followed by a thorough inspection of the 
garden for any signs of disorder. Mrs. Dursley had very firm opinions about proper 
behavior and wasn't shy about sharing those opinions with the neighbors. Nothing 
unusual or out of the ordinary ever happened at number four, and that was exactly 
how Mrs. 

Attention distribution 
of induction head
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Circuits: The Induction Head

Induction heads are the most primitive form of in-context learning.

https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html
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Circuits: The Induction Head

Induction heads are the most primitive form of in-context learning.

https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html
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Circuits: The Induction Head

In-context copying illustration

<S>       A       B       C       D       E       <S>       A 

Prediction
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Circuits: The Induction Head

Goal: Predict B

But how?

<S>       A       B       C       D       E       <S>       A 

B
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Circuits: The Induction Head

Let’s play a game.

Assume you can 
1. Attend to tokens based on positional information
2. Attend to tokens based on value (i.e. A would have high attention with only A)

<S>       A       B       C       D       E       <S>       A Token
s

Embed [<S> | p-1]         [A | pos]      [B | pos]      [C | pos]    [D | pos]      [E | pos]      [<S> | pos]           [A | pos] 
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Circuits: The Induction Head

<S>       A       B       C       D       E       <S>       A Tokens

Embed

B

[<S> | pos]         [A | pos]      [B | pos]      [C | pos]    [D | pos]      [E | pos]      [<S> | pos]           [A | pos] 
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Circuits: The Induction Head

<S>       A       B       C       D       E       <S>       A Tokens

Embed

B

But we cannot do this, we have no 
way (currently) to attend to B…

[<S> | pos]         [A | pos]      [B | pos]      [C | pos]    [D | pos]      [E | pos]      [<S> | pos]           [A | pos] 
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Circuits: The Induction Head

<S>       A       B       C       D       E       <S>       A Tokens

Embed

B

Well, what can we attend to?

[<S> | pos]         [A | pos]      [B | pos]      [C | pos]    [D | pos]      [E | pos]      [<S> | pos]           [A | pos] 
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Circuits: The Induction Head

<S>       A       B       C       D       E       <S>       A Tokens

Embed

B

Well, what can we attend to?

We can attend to ‘A’.

[<S> | pos]         [A | pos]      [B | pos]      [C | pos]    [D | pos]      [E | pos]      [<S> | pos]           [A | pos] 
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Circuits: The Induction Head

<S>       A       B       C       D       E       <S>       A Tokens

Embed

A

Well, what can we attend to?

We can attend to ‘A’.

[<S> | pos]         [A | pos]      [B | pos]      [C | pos]    [D | pos]      [E | pos]      [<S> | pos]           [A | pos] 
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Circuits: The Induction Head

<S>       A       B       C       D       E       <S>       A Tokens

Embed

A

But, this doesn’t help us…

Not what we want

[<S> | pos]         [A | pos]      [B | pos]      [C | pos]    [D | pos]      [E | pos]      [<S> | pos]           [A | pos] 
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Circuits: The Induction Head

<S>       A       B       C       D       E       <S>       A Tokens

Embed

Key: What if ‘B’ copies the token 
information of ‘A’?

[<S> | pos]         [A | pos]      [B | pos]      [C | pos]    [D | pos]      [E | pos]      [<S> | pos]           [A | pos] 
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Circuits: The Induction Head

<S>       A       B       C       D       E       <S>       A 

[<S> | pos]         [A | pos]      [B | pos]      [C | pos]    [D | pos]      [E | pos]      [<S> | pos]           [A | pos] 

Tokens

Embed

[<S> | <S>]          [A | <S>]   [B | A]            [C | B]         [D | C]         [E | D]          [<S> | E]               [A | <S>] 
Right-Shift
Tokens

Basically in-
context bi-
gram statistics



CSCI 5541 NLP 95

Circuits: The Induction Head

<S>       A       B       C       D       E       <S>       A 

[<S> | pos]         [A | pos]      [B | pos]      [C | pos]    [D | pos]      [E | pos]      [<S> | pos]           [A | pos] 

Tokens

Embed

[<S> | <S>]          [A | <S>]   [B | A]            [C | B]         [D | C]         [E | D]          [<S> | E]               [A | <S>] 
Right-Shift
Tokens

Basically in-
context bi-
gram statistics

B
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Circuits: The Induction Head

… Ryan Peters … Your name is Ryan  Tokens

Peters
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Sequence Copying

Copying of sequences uses n-gram induction heads.

A   B   C   D   E   F   <COPY>   ATokens

B
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Sequence Copying

Copying of sequences uses n-gram induction heads.

A   B   C   D   E   F   <COPY>   A   BTokens

C
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Sequence Copying

Copying of sequences uses n-gram induction heads.

A   B   C   D   E   F   <COPY>   A   B   CTokens

D
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Sequence Copying

Copying of sequences uses n-gram induction heads.

A   B   C   D   E   F   <COPY>   A   B   C   DTokens

E
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Sequence Copying

Copying of sequences uses n-gram induction heads.

A   B   C   D   E   F   <COPY>   A   B   C   D   ETokens

F
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Sequence Copying

Copying of sequences uses n-gram induction heads.

A   B   C   D   E   F   <COPY>   A   B   C   D   E   FTokens

<END>

Maybe the final 
unembedding matrix 
learns linear mapping 
from <COPY> to <END>
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Sequence Copying

Copying of sequences uses n-gram induction heads.

A   B   C   D   E   F   <COPY>   A   B   C   D   E   F   <END>Tokens



CSCI 5541 NLP 104

Other Known Circuits
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Supplementary



CSCI 5541 NLP 106

Supplementary
More Slides on Superposition and Polysemanticity
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Superposition and Polysemanticity

But first, we need to talk about how models represent 
information in the residual stream.

Input

Output

LN
+

LN+
1

+

R

R  =  [   A0 ,  A1 ,  A2 ,  A3 ,  A4 ,  A5 ,  A6 ,  A7 ,  A8 ,  A9
]
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Superposition and Polysemanticity

But first, we need to talk about how models represent 
information in the residual stream.
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Output

LN
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Superposition and Polysemanticity

But first, we need to talk about how models represent 
information in the residual stream.

Input

Output

LN
+

LN+
1

+

R

Activity pattern of A0

The chemical has a pH of 12, making it a strong base.

The runner was safe at second base.

They poured one ton of concrete for the building's base.

Negative activation

Positive activation

R  =  [   A0 ,  A1 ,  A2 ,  A3 ,  A4 ,  A5 ,  A6 ,  A7 ,  A8 ,  A9
]
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Superposition and Polysemanticity

But, we can make sense of ‘directions’ or ‘linear 
combinations of neurons’, often refer to as ‘features’

Activity pattern of 3A0 + 1A1 - 5A9

The chemical has a pH of 12, making it a strong base.

The runner was safe at second base.

They poured one ton of concrete for the building's base.

Negative activation

Positive activation

R  =  [   A0 ,  A1 ,  A2 ,  A3 ,  A4 ,  A5 ,  A6 ,  A7 ,  A8 ,  A9
]

Input

Output

LN
+

LN+
1

+

R
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