
CSCI 5541: Natural Language Processing
Lecture 15: LLM Compute efficiency and engineering
James Mooney

With slides borrowed from Song Han (MIT)

CSCI 5541 NLP

What Is Efficiency and Why Does It Matter?
❑ Efficiency for NLP is concerned with delivering faster, cheaper, smaller, less

energy intensive solutions to problems involving natural language
❑ Faster models means LLM model services can meet the demands of many

clients more quickly
❑ Cheaper models reduce costs for LLM model service providers
❑ Smaller model sizes allow for service providers to use fewer resources and

can allow for individuals to deploy LLMs to their own (smaller) devices
❑ Less energy intensive means lower cost and easier to deploy at the edge,

where energy is harder to come by

2

CSCI 5541 NLP

What Is Efficiency and Why Does It Matter?
❑ Efficiency for NLP is concerned with delivering faster, cheaper, smaller,

less energy intensive solutions to problems involving natural language
❑ Faster models means LLM model services can meet the demands of many

clients more quickly
❑ Cheaper models reduce costs for LLM model service providers
❑ Smaller model sizes allow for service providers to use fewer resources and

can allow for individuals to deploy LLMs to their own (smaller) devices
❑ Less energy intensive means lower cost and easier to deploy at the edge,

where energy is harder to come by

3

CSCI 5541 NLP

Model Energy Use

4

Computing’s Energy Problem (and What We Can Do About it) [Horowitz, M., IEEE ISSCC 2014

CSCI 5541 NLP

Efficiency Tradeoff

5

❑ More efficient models (smaller,
faster) typically come at a cost of
some performance of the model
itself

❑ In the other direction, getting more
performance from a model
architecture likely means it will be
larger, and require more
computation Efficiency (speed, 1/size, etc.)

CSCI 5541 NLP

How to Improve Model Efficiency?

6

Hardware Software

CSCI 5541 NLP

What Makes a Language Model Slow

7

CSCI 5541 NLP

Efficient LLMs
❑ Quantization
❑ Sparsity
❑ Long Context
❑ Serving & Systems
❑ Distillation
❑ Parameter Efficient Fine-Tuning
❑ Alternative Paradigms

8

CSCI 5541 NLP

Efficient LLMs
❑ Quantization
❑ Sparsity
❑ Long Context
❑ Serving & Systems
❑ Distillation
❑ Parameter Efficient Fine-Tuning
❑ Alternative Paradigms

9

CSCI 5541 NLP

Quantization

10

Reduce model size by
replacing high bit-

width
representations with

low bit-width
representations

CSCI 5541 NLP

How do we go from a high-bit width data type to
a low-bit width data type?

CSCI 5541 NLP

K-Means Quantization vs Linear Quantization

12

CSCI 5541 NLP

K-Means Quantization vs Linear Quantization

13

CSCI 5541 NLP

K-Means Quantization

14

Deep Compression [Han et al., ICLR 2016]

CSCI 5541 NLP

K-Means Quantization

15

Deep Compression [Han et al., ICLR 2016]

Original weights

CSCI 5541 NLP

K-Means Quantization

16

Deep Compression [Han et al., ICLR 2016]

Stored weights after
clustering

CSCI 5541 NLP

K-Means Quantization

17

Deep Compression [Han et al., ICLR 2016]

Retrieved weights to
be used at inference

time

CSCI 5541 NLP

K-Means Quantization vs Linear Quantization

18

CSCI 5541 NLP

Linear Quantization

19

❑ Apply linear function on
weights and hidden state
activations from floating
point values (r) to integer
values (q)

❑ Original weights (black),
Quantized bins (red)

❑ Black weights are mapped
to one of the vertical red
lines

CSCI 5541 NLP

Linear Quantization

20

❑ Apply linear function on
weights and hidden state
activations from floating
point values (r) to integer
values (q)

❑ Original weights (black),
Quantized bins (red)

❑ Black weights are mapped
to one of the vertical red
lines

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

32-bit float to 4-bit int

CSCI 5541 NLP

Linear Quantization

21

❑ Apply linear function on
weights and hidden state
activations from floating
point values (r) to integer
values (q)

❑ Original weights (black),
Quantized bins (red)

❑ Black weights are mapped
to one of the vertical red
lines

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

32-bit float to 4-bit int

Before Quantization: -.14
After Quantization: -2

CSCI 5541 NLP

Linear Quantization

22

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [Jacobet al., CVPR 2018]

CSCI 5541 NLP

Linear Quantization

23

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [Jacobet al., CVPR 2018]

Original
Weights

CSCI 5541 NLP

Linear Quantization

24

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [Jacobet al., CVPR 2018]

Stored Values

CSCI 5541 NLP

Linear Quantization

25

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [Jacobet al., CVPR 2018]

Retrieved weights to
be used at inference

time

CSCI 5541 NLP

Linear Quantization

26

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [Jacobet al., CVPR 2018]

Retrieved weights to
be used at inference

time

Virtually all modern methods use this

(as opposed to KMeans Quantization)

CSCI 5541 NLP

Should we use KMeans/Linear Quantization on all
weights at the same time?

CSCI 5541 NLP

Should we use KMeans/Linear Quantization on all
weights at the same time?

No. We should group them.

The size of the grouping we choose is denoted as the

granularity.

CSCI 5541 NLP

Weight Granularity

29

❑ Weight matrices will often have
different variances along each
output channel

❑ High variance in weights means
that applying linear
quantization will result in large
performance degradation

❑ To fix this, we can perform
linear quantization along each
channel of the weight tensor
separately

SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models[Xiao et. al., ICML 2023]

CSCI 5541 NLP

Activation Granularity

30

❑ Activations can have a similar
problem whereby the variance
by channel can be quite
different

❑ The variance by token can also
differ dramatically

❑ When applying quantization, we
should split up channels, tokens
to take this into account

SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models[Xiao et. al., ICML 2023]

CSCI 5541 NLP

When do we perform this quantization?

CSCI 5541 NLP

When do we perform this quantization?
Typically, this is done after first

completely training a model

(pretraining → SFT → post-

training)

CSCI 5541 NLP

Post Training Quantization (PTQ)

33

Quantize after training

https://pytorch.org/blog/quantization-in-practice/

CSCI 5541 NLP

What are some of the modern methods for
performing quantization?

CSCI 5541 NLP

AWQ (W4A16)

35

SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models[Xiao et. al., ICML 2023]

Observation: ?

CSCI 5541 NLP

AWQ (W4A16)

36

SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models[Xiao et. al., ICML 2023]

Observation: High variance channels are
fixed in activations in LLM FFN layers-

weights have relatively little difference in
variance

CSCI 5541 NLP

AWQ (W4A16)

37

AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration [Lin et. al., arxiv 2023]

Normal quantization on LLMs performs

poorly due to outliers in the model’s hidden

state

CSCI 5541 NLP

AWQ (W4A16)

38

AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration [Lin et. al., arxiv 2023]

AWQ (c below) scales

weights to handle the

channels separately

CSCI 5541 NLP

AWQ (W4A16)

39

AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration [Lin et. al., arxiv 2023]

Uses a calibration batch of data to determine

what the outlier channels are along with a per-

channel scaling factor for these channels

CSCI 5541 NLP

AWQ (W4A16)

40

AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration [Lin et. al., arxiv 2023]

AWQ is weight-only →

multiplication is still

performed in BF16/FP16.

CSCI 5541 NLP

GPTQ

41

● Quantizes a block of

each weight matrix at a

time.

● Uses a loss term + the

inverse hessian for the

layer to update the non-

quantized weights

● Takes a long time

GPTQ: Accurate Post-Training Quantization for Generative Pre-Trained Transformers [Frantar et al., arXiv 2022]

CSCI 5541 NLP

GGUF Quantization

42

● No model retraining as is done with
GPTQ

● A model is quantized by taking blocks of
the input matrix, then performing linear
quantization on each block separately

● Uses several different methods based
on level of quantization

● Will come with names such as IQ2_XS–
IQ4_XS, Q2_K_S–Q5_K_S

● You can use unsloth to create models
with this type GPTQ: Accurate Post-Training Quantization for Generative Pre-Trained Transformers [Frantar et al., arXiv 2022]

https://docs.unsloth.ai/basics/running-and-saving-models/saving-to-gguf

CSCI 5541 NLP

FP8 Quantization (Nvidia)

43

● Offered by the NVIDIA TensorRT Model Optimizer library
● Performs a separate per-channel post-training quantization
● Supported by hardware
● This library also performs a number of other functions for improving

model efficiency

https://github.com/NVIDIA/TensorRT-Model-Optimizer

CSCI 5541 NLP

Modern Quantization (Open Source Models)

44

Oftentimes, open source LLM
releases from model providers
will release versions of models
that use several of the above

quantization techniques

https://huggingface.co/collections/Qwen/qwen3

CSCI 5541 NLP

Efficient LLMs
❑ Quantization
❑ Sparsity
❑ Long Context
❑ Serving & Systems
❑ Distillation
❑ Parameter Efficient Fine-Tuning
❑ Alternative Paradigms

45

CSCI 5541 NLP

Sparsity

46

Even though our model may
have many parameters, we can

get speedups by only using a
much smaller number of those

parameters for a given
instance

CSCI 5541 NLP

Mixture of Experts (MoE)

47

Replace FFN layers in
traditional
transformers with a
switching FFN layer
(more generally called
an MoE layer)

CSCI 5541 NLP

Mixture of Experts (MoE)

48

Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity [Fedus et al., CoRR 2021]

CSCI 5541 NLP

Mixture of Experts (MoE)

49

Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity [Fedus et al., CoRR 2021]

Four FFN layers

CSCI 5541 NLP

Mixture of Experts (MoE)

50

Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity [Fedus et al., CoRR 2021]

Only one is used per token

CSCI 5541 NLP

Mixture of Experts (MoE)

51

Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity [Fedus et al., CoRR 2021]

Only 25% of the FFN parameters
are used for a single token

CSCI 5541 NLP

Mixture of Experts (MoE)

52

Most of the best-performing
open source models produced
today are mixture of experts

models

CSCI 5541 NLP

Deja Vu: Contextual Sparsity

53

Observation 1: Model activations
change very little between
consecutive layers of a network

Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time [Liu et al., 2023]

CSCI 5541 NLP

Deja Vu: Contextual Sparsity

54

Observation 2: Most attention heads
and most neurons are not used

Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time [Liu et al., 2023]

CSCI 5541 NLP

Deja Vu: Contextual Sparsity

55

Sparsification: Use predictors in each
layer to determine which neurons to
activate and which attention heads to
use – ignore all unpredicted
heads/neurons

Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time [Liu et al., 2023]

CSCI 5541 NLP

Model Routing

56

Route easier queries to smaller
models, harder queries to larger
models

Hybrid LLM: Cost-Efficient and Quality-Aware Query Routing [Ding et al., 2024]

CSCI 5541 NLP

Model Routing

57

Route easier queries to smaller
models, harder queries to larger
models

Hybrid LLM: Cost-Efficient and Quality-Aware Query Routing [Ding et al., 2024]

Valuable for companies like OpenAI/Anthropic

when they serve multiple models of different

capabilities & sizes

CSCI 5541 NLP

SparseGPT

58

● Similar to GPTQ, uses a
reconstruction loss term to
prune entries from each
weight matrix

● This can be taken advantage
of with either 2:4, 4:8
sparsity on Nvidia GPUs

CSCI 5541 NLP

Efficient LLMs
❑ Quantization
❑ Sparsity
❑ Long Context
❑ Serving & Systems
❑ Distillation
❑ Parameter Efficient Fine-Tuning
❑ Alternative Paradigms

59

CSCI 5541 NLP

What is a central issue with having longer context
models?

CSCI 5541 NLP

What is a central issue with having longer context
models?

The storage costs are linear in

generation length and quadratic in

computation

CSCI 5541 NLP

What is a central issue with having longer context
models?

The storage costs are linear in

generation length and quadratic in

computation

CSCI 5541 NLP

The KV-Cache

63

The transformer needs to have access to the keys and values for all
previous tokens in all layers for all heads when

https://awsdocs-neuron.readthedocs-hosted.com/en/latest/general/appnotes/transformers-neuronx/generative-llm-inference-with-neuron.html

CSCI 5541 NLP

The KV-Cache

64

In total, we must store

Batch_size * seq_len * num_heads * num_layers * emb_dim * 2

separate values in the kv cache

CSCI 5541 NLP

StreamingLLM

65

How can we extend models to have much longer context length at minimal cost?

Efficient Streaming Language Models with Attention Sinks [Xiao et al., 2023]

CSCI 5541 NLP

StreamingLLM

66

How can we extend models to have much longer context length at minimal cost?

Efficient Streaming Language Models with Attention Sinks [Xiao et al., 2023]

Too
much

storage

CSCI 5541 NLP

StreamingLLM

67

How can we extend models to have much longer context length at minimal cost?

Efficient Streaming Language Models with Attention Sinks [Xiao et al., 2023]

Bad
performance

CSCI 5541 NLP

StreamingLLM

68

How can we extend models to have much longer context length at minimal cost?

Efficient Streaming Language Models with Attention Sinks [Xiao et al., 2023]

Too much
recomputation

CSCI 5541 NLP

StreamingLLM

69

Observation: Most attention is either placed on the first token or to tokens that
the model has recently seen.

Efficient Streaming Language Models with Attention Sinks [Xiao et al., 2023]

CSCI 5541 NLP

StreamingLLM

70

Efficient Streaming Language Models with Attention Sinks [Xiao et al., 2023]

CSCI 5541 NLP

MHA/GQA/MQA

71

GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints

CSCI 5541 NLP

MHA/GQA/MQA

72

GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints

Each attention head calculates separate
keys and values for each token

CSCI 5541 NLP

MHA/GQA/MQA

73

GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints

Attention heads are split into groups.
Each group has one key/value per token.

CSCI 5541 NLP

MHA/GQA/MQA

74

GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints

Attention heads share the same keys
and values for each token

CSCI 5541 NLP

MHA Latent Query Attention

75

Some modern models
(such as DeepSeek)
train with what is
called latent query
attention → Keys +

Values are compressed
to a lower dimension to

reduce storage costs

CSCI 5541 NLP

H20: Heavy Hitter Oracle

76

H2O: Heavy-Hitter Oracle for Efficient Generative Inference of Large Language Models [Zhang et. al, 2023]

Evict all but k-
highest
cumulative
attention tokens
from cache

CSCI 5541 NLP

H20: Heavy Hitter Oracle

77

H2O: Heavy-Hitter Oracle for Efficient Generative Inference of Large Language Models [Zhang et. al, 2023]

Evict all but k-
highest
cumulative
attention tokens
from cache

CSCI 5541 NLP

Efficient LLMs
❑ Quantization
❑ Sparsity
❑ Long Context
❑ Serving & Systems
❑ Distillation
❑ Parameter Efficient Fine-Tuning
❑ Alternative Paradigms

78

CSCI 5541 NLP

PagedAttention

79

How does a large LLM service (large ChatGPT) handle multiple incoming
requests with respect to the KV-cache?
-Originally, most systems just assign fixed sized blocks of memory to each
incoming request. How to improve?

Efficient Memory Management for Large Language Model Serving with PagedAttention (Kwon et al., 2023)

CSCI 5541 NLP

PagedAttention

80

Let’s adopt a similar approach to that found in virtual memory!

Efficient Memory Management for Large Language Model Serving with PagedAttention (Kwon et al., 2023)

CSCI 5541 NLP

PagedAttention

81

Efficient Memory Management for Large Language Model Serving with PagedAttention (Kwon et al., 2023)

CSCI 5541 NLP

Examples of Modern Inference Systems

vLLM, sglang, and TensorRT-LLM are
all examples of inference engines

which take advantage of this approach.
If you are serving models in any

setting, you should use one of the
above (rather than directly

instantiating some huggingface or
pytorch model)

82

https://docs.vllm.ai/en/latest/
https://github.com/sgl-project/sglang
https://github.com/NVIDIA/TensorRT-LLM
https://github.com/NVIDIA/TensorRT-LLM
https://github.com/NVIDIA/TensorRT-LLM

CSCI 5541 NLP

Speculative Decoding

83

● In standard autoregressive
decoding, we are only using
each parameter one time
when the batch size is 1

● This means standard
decoding has a low arithmetic
intensity and is memory
bound

● We have a bunch more
compute we could be getting
for free given how massively
parallel GPUs are

Big Little Decoder [Kim, et. al]

CSCI 5541 NLP

Speculative Decoding

84

● Speculative decoding resolves
this by ‘speculating’ multiple
tokens into the future with a
smaller, cheaper model

Big Little Decoder [Kim, et. al]

CSCI 5541 NLP

Speculative Decoding

85

● Speculative decoding resolves
this by ‘speculating’ multiple
tokens into the future with a
smaller, cheaper model

Big Little Decoder [Kim, et. al]

Draft of potential
next tokens

CSCI 5541 NLP

Speculative Decoding

86

● Speculative decoding resolves
this by ‘speculating’ multiple
tokens into the future with a
smaller, cheaper model

● We can now send this set of
tokens on to a much larger
model to verify the sequence

Big Little Decoder [Kim, et. al]

Draft of potential
next tokens

CSCI 5541 NLP

Speculative Decoding

87

● Because the sequence will be
run in parallel the arithmetic
intensity will be proportional
to the number of draft tokens

● We run each token through
and see if the output of the
large model matches that of
the smaller, draft model

Big Little Decoder [Kim, et. al]

CSCI 5541 NLP

Speculative Decoding

88

● Because the sequence will be
run in parallel the arithmetic
intensity will be proportional
to the number of draft tokens

● We run each token through
and see if the output of the
large model matches that of
the smaller, draft model

● We accept the matching
tokens

Big Little Decoder [Kim, et. al]

Several famous people of

Accept RejectSample

CSCI 5541 NLP

Advanced Approaches

89

Big Little Decoder [Kim, et. al]

More advanced approaches will use draft
trees, rather than draft sequences

CSCI 5541 NLP

Efficient LLMs
❑ Quantization
❑ Sparsity
❑ Long Context
❑ Serving & Systems
❑ Distillation
❑ Parameter Efficient Fine-Tuning
❑ Alternative Paradigms

90

CSCI 5541 NLP

Logit Distillation

91

Don’t use labels, use the modeling distribution of a better ‘Teacher’ model

to train a smaller, ‘Student’ model

CSCI 5541 NLP

Logit Distillation

92

Both Gemma3 &

Llama4 use logit

distillation during

pretraining

CSCI 5541 NLP

Layer Wise Distillation (LWD)

93

This can be expanded to trying to match the hidden

states of the student and teacher model as well

CSCI 5541 NLP

Output Tokens as Distillation (Synthetic Data)

94

DeepSeekR1 outputs tokens for a given set of

problems. In this case ‘distillation’, just means
performing Supervised fine tuning on the tokens
create by the larger V3 Models

CSCI 5541 NLP

Output Tokens as Distillation (Synthetic Data)

95

DeepSeekR1 outputs tokens for a given set of

problems. In this case ‘distillation’, just means
performing Supervised fine tuning on the tokens
create by the larger V3 Models

CSCI 5541 NLP

Output Tokens as Distillation (Synthetic Data)

96

DeepSeekR1 outputs tokens for a given set of

problems. In this case ‘distillation’, just means
performing Supervised fine tuning on the tokens
create by the larger V3 Models

Most small-model

training today employs

similar methods as these

CSCI 5541 NLP

Efficient LLMs
❑ Quantization
❑ Sparsity
❑ Long Context
❑ Serving & Systems
❑ Distillation
❑ Parameter Efficient Fine-Tuning
❑ Alternative Paradigms

97

CSCI 5541 NLP

Adapter

98

Add trainable
layers after each

feedforward layer

Parameter-Efficient Transfer Learning for NLP [Houlsby et al, ICML 2019]

CSCI 5541 NLP

Prompt Tuning (Soft Prompting)

99

Train a continuous, learnable prompt in embedding space for each task we
are training on

The Power of Scale for Parameter-Efficient Prompt Tuning [Lester, ACL 2021]

CSCI 5541 NLP

LoRA

100

❑ Hypothesizes that fine-tuning
results in only low rank updates

❑ Thus, we may approximate the
updates themselves as low-rank
and train on this low-rank
approximation directly

The Power of Scale for Parameter-Efficient Prompt Tuning [Lester, ACL 2021]

CSCI 5541 NLP

LoRA

101

The Power of Scale for Parameter-Efficient Prompt Tuning [Lester, ACL 2021]

Normal Finetuning:

h = Wx
Update W

CSCI 5541 NLP

LoRA

102

The Power of Scale for Parameter-Efficient Prompt Tuning [Lester, ACL 2021]

Normal Finetuning:

h = Wx

LoRA Finetuning:

h = Wx + BAx

Update W

Update B,A

Leave W unchanged

CSCI 5541 NLP

LoRA

103

The Power of Scale for Parameter-Efficient Prompt Tuning [Lester, ACL 2021]

CSCI 5541 NLP

Efficient LLMs
❑ Quantization
❑ Sparsity
❑ Long Context
❑ Serving & Systems
❑ Distillation
❑ Parameter Efficient Fine-Tuning
❑ Alternative Paradigms

104

CSCI 5541 NLP

State Space Model (SSM)

105

Mamba: Linear-Time Sequence Modeling with Selective State
Spaces (Gu et. Al)

Linearity Strikes back

CSCI 5541 NLP

SSM

106

Jamba: A Hybrid Transformer-Mamba Language Model

• SSMs are growing in popularity

• Linear complexity makes them

excellent candidates for very

long tasks

• If they can begin outperforming

transformers in practical

settings, these could displace

the transformer architecture

CSCI 5541 NLP

Text Diffusion

107

Predict multiple tokens as the same time

using a diffusion model

CSCI 5541 NLP

World Models

108

Use some dense

environment signals

to predict what the

consequences of

each token prediction

is

CSCI 5541 NLP

Recursive Transformers

❑ Use transformers recursively to
iteratively refine model outputs

❑ This approach is still mostly
useful in toy settings at the
moment

109

	Slide 1: CSCI 5541: Natural Language Processing
	Slide 2: What Is Efficiency and Why Does It Matter?
	Slide 3: What Is Efficiency and Why Does It Matter?
	Slide 4: Model Energy Use
	Slide 5: Efficiency Tradeoff
	Slide 6: How to Improve Model Efficiency?
	Slide 7: What Makes a Language Model Slow
	Slide 8: Efficient LLMs
	Slide 9: Efficient LLMs
	Slide 10: Quantization
	Slide 11: How do we go from a high-bit width data type to a low-bit width data type?
	Slide 12: K-Means Quantization vs Linear Quantization
	Slide 13: K-Means Quantization vs Linear Quantization
	Slide 14: K-Means Quantization
	Slide 15: K-Means Quantization
	Slide 16: K-Means Quantization
	Slide 17: K-Means Quantization
	Slide 18: K-Means Quantization vs Linear Quantization
	Slide 19: Linear Quantization
	Slide 20: Linear Quantization
	Slide 21: Linear Quantization
	Slide 22: Linear Quantization
	Slide 23: Linear Quantization
	Slide 24: Linear Quantization
	Slide 25: Linear Quantization
	Slide 26: Linear Quantization
	Slide 27: Should we use KMeans/Linear Quantization on all weights at the same time?
	Slide 28: Should we use KMeans/Linear Quantization on all weights at the same time?
	Slide 29: Weight Granularity
	Slide 30: Activation Granularity
	Slide 31: When do we perform this quantization?
	Slide 32: When do we perform this quantization?
	Slide 33: Post Training Quantization (PTQ)
	Slide 34: What are some of the modern methods for performing quantization?
	Slide 35: AWQ (W4A16)
	Slide 36: AWQ (W4A16)
	Slide 37: AWQ (W4A16)
	Slide 38: AWQ (W4A16)
	Slide 39: AWQ (W4A16)
	Slide 40: AWQ (W4A16)
	Slide 41: GPTQ
	Slide 42: GGUF Quantization
	Slide 43: FP8 Quantization (Nvidia)
	Slide 44: Modern Quantization (Open Source Models)
	Slide 45: Efficient LLMs
	Slide 46: Sparsity
	Slide 47: Mixture of Experts (MoE)
	Slide 48: Mixture of Experts (MoE)
	Slide 49: Mixture of Experts (MoE)
	Slide 50: Mixture of Experts (MoE)
	Slide 51: Mixture of Experts (MoE)
	Slide 52: Mixture of Experts (MoE)
	Slide 53: Deja Vu: Contextual Sparsity
	Slide 54: Deja Vu: Contextual Sparsity
	Slide 55: Deja Vu: Contextual Sparsity
	Slide 56: Model Routing
	Slide 57: Model Routing
	Slide 58: SparseGPT
	Slide 59: Efficient LLMs
	Slide 60: What is a central issue with having longer context models?
	Slide 61: What is a central issue with having longer context models?
	Slide 62: What is a central issue with having longer context models?
	Slide 63: The KV-Cache
	Slide 64: The KV-Cache
	Slide 65: StreamingLLM
	Slide 66: StreamingLLM
	Slide 67: StreamingLLM
	Slide 68: StreamingLLM
	Slide 69: StreamingLLM
	Slide 70: StreamingLLM
	Slide 71: MHA/GQA/MQA
	Slide 72: MHA/GQA/MQA
	Slide 73: MHA/GQA/MQA
	Slide 74: MHA/GQA/MQA
	Slide 75: MHA Latent Query Attention
	Slide 76: H20: Heavy Hitter Oracle
	Slide 77: H20: Heavy Hitter Oracle
	Slide 78: Efficient LLMs
	Slide 79: PagedAttention
	Slide 80: PagedAttention
	Slide 81: PagedAttention
	Slide 82: Examples of Modern Inference Systems
	Slide 83: Speculative Decoding
	Slide 84: Speculative Decoding
	Slide 85: Speculative Decoding
	Slide 86: Speculative Decoding
	Slide 87: Speculative Decoding
	Slide 88: Speculative Decoding
	Slide 89: Advanced Approaches
	Slide 90: Efficient LLMs
	Slide 91: Logit Distillation
	Slide 92: Logit Distillation
	Slide 93: Layer Wise Distillation (LWD)
	Slide 94: Output Tokens as Distillation (Synthetic Data)
	Slide 95: Output Tokens as Distillation (Synthetic Data)
	Slide 96: Output Tokens as Distillation (Synthetic Data)
	Slide 97: Efficient LLMs
	Slide 98: Adapter
	Slide 99: Prompt Tuning (Soft Prompting)
	Slide 100: LoRA
	Slide 101: LoRA
	Slide 102: LoRA
	Slide 103: LoRA
	Slide 104: Efficient LLMs
	Slide 105: State Space Model (SSM)
	Slide 106: SSM
	Slide 107: Text Diffusion
	Slide 108: World Models
	Slide 109: Recursive Transformers

