
CSCI 5541: Natural Language Processing
Lecture 15: LLM Compute efficiency and engineering
James Mooney

With slides borrowed from Song Han (MIT)
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What Is Efficiency and Why Does It Matter?
❑ Efficiency for NLP is concerned with delivering faster, cheaper, smaller, less 

energy intensive solutions to problems involving natural language
❑ Faster models means LLM model services  can meet the demands of many 

clients more quickly
❑ Cheaper models reduce costs for LLM model service providers
❑ Smaller model sizes allow for service providers to use fewer resources and 

can allow for individuals to deploy LLMs to their own (smaller) devices
❑ Less energy intensive means lower cost and easier to deploy at the edge, 

where energy is harder to come by
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Model Energy Use

4

Computing’s Energy Problem (and What We Can Do About it) [Horowitz, M., IEEE ISSCC 2014 
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Efficiency Tradeoff

5

❑ More efficient models (smaller, 
faster) typically come at a cost of 
some performance of the model 
itself

❑ In the other direction, getting more 
performance from a model 
architecture likely means it will be 
larger, and require more 
computation Efficiency (speed, 1/size, etc.)
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How to Improve Model Efficiency?
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Hardware Software
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What Makes a Language Model Slow
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Efficient LLMs
❑ Quantization
❑ Sparsity
❑ Long Context
❑ Serving & Systems
❑ Distillation
❑ Parameter Efficient Fine-Tuning
❑ Alternative Paradigms
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Quantization

10

Reduce model size by 
replacing high bit-

width 
representations with 

low bit-width 
representations
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How do we go from a high-bit width data type to 
a low-bit width data type?



CSCI 5541 NLP

K-Means Quantization vs Linear Quantization
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K-Means Quantization vs Linear Quantization
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K-Means Quantization
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Deep Compression [Han et al., ICLR 2016]
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K-Means Quantization
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Deep Compression [Han et al., ICLR 2016]

Original weights
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K-Means Quantization
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Deep Compression [Han et al., ICLR 2016]

Stored weights after 
clustering
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K-Means Quantization
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Deep Compression [Han et al., ICLR 2016]

Retrieved weights to 
be used at inference 

time 
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K-Means Quantization vs Linear Quantization
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Linear Quantization

19

❑ Apply linear function on 
weights and hidden state 
activations from floating 
point values (r) to integer 
values (q)

❑ Original weights (black), 
Quantized bins (red)

❑ Black weights are mapped 
to one of the vertical red 
lines
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Linear Quantization
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❑ Apply linear function on 
weights and hidden state 
activations from floating 
point values (r) to integer 
values (q)

❑ Original weights (black), 
Quantized bins (red)

❑ Black weights are mapped 
to one of the vertical red 
lines

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

32-bit float to 4-bit int
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Linear Quantization
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❑ Apply linear function on 
weights and hidden state 
activations from floating 
point values (r) to integer 
values (q)

❑ Original weights (black), 
Quantized bins (red)

❑ Black weights are mapped 
to one of the vertical red 
lines

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

32-bit float to 4-bit int

Before Quantization: -.14
After Quantization: -2
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Linear Quantization

22

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [Jacobet al., CVPR 2018]
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Linear Quantization
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Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [Jacobet al., CVPR 2018]

Original 
Weights
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Linear Quantization
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Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [Jacobet al., CVPR 2018]

Stored Values
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Linear Quantization

25

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [Jacobet al., CVPR 2018]

Retrieved weights to 
be used at inference 

time
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Linear Quantization
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Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [Jacobet al., CVPR 2018]

Retrieved weights to 
be used at inference 

time

Virtually all modern methods use this 

(as opposed to KMeans Quantization)
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Should we use KMeans/Linear Quantization on all 
weights at the same time?
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Should we use KMeans/Linear Quantization on all 
weights at the same time?

No. We should group them.

The size of the grouping we choose is denoted as the 

granularity.
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Weight Granularity

29

❑ Weight matrices will often have 
different variances along each 
output channel

❑ High variance in weights means 
that applying linear 
quantization will result in large 
performance degradation

❑ To fix this, we can perform 
linear quantization along each 
channel of the weight tensor 
separately

SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models[Xiao et. al., ICML 2023]



CSCI 5541 NLP

Activation Granularity

30

❑ Activations can have a similar 
problem whereby the variance 
by channel can be quite 
different

❑ The variance by token can also 
differ dramatically

❑ When applying quantization, we 
should split up channels, tokens 
to take this into account

SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models[Xiao et. al., ICML 2023]
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When do we perform this quantization?
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When do we perform this quantization?
Typically, this is done after first 

completely training a model 

(pretraining → SFT → post-

training)
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Post Training Quantization (PTQ)

33

Quantize after training

https://pytorch.org/blog/quantization-in-practice/
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What are some of the modern methods for 
performing quantization?
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AWQ (W4A16)
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SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models[Xiao et. al., ICML 2023]

Observation: ?
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AWQ (W4A16)
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SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models[Xiao et. al., ICML 2023]

Observation: High variance channels are 
fixed in activations in LLM FFN layers-

weights have relatively little difference in 
variance
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AWQ (W4A16)

37

AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration [Lin et. al., arxiv 2023]

Normal quantization on LLMs performs 

poorly due to outliers in the model’s hidden 

state 
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AWQ (W4A16)
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AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration [Lin et. al., arxiv 2023]

AWQ (c below) scales 

weights to handle the 

channels separately
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AWQ (W4A16)
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AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration [Lin et. al., arxiv 2023]

Uses a calibration batch of data to determine 

what the outlier channels are along with a per-

channel scaling factor for these channels
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AWQ (W4A16)
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AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration [Lin et. al., arxiv 2023]

AWQ is weight-only → 

multiplication is still 

performed in BF16/FP16.
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GPTQ

41

● Quantizes a block of 

each weight matrix at a 

time.

● Uses a loss term + the 

inverse hessian for the 

layer to update the non-

quantized weights

● Takes a long time

GPTQ: Accurate Post-Training Quantization for Generative Pre-Trained Transformers [Frantar et al., arXiv 2022]
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GGUF Quantization

42

● No model retraining as is done with 
GPTQ

● A model is quantized by taking blocks of 
the input matrix, then performing linear 
quantization on each block separately

● Uses several different methods based 
on level of quantization

● Will come with names such as IQ2_XS–
IQ4_XS, Q2_K_S–Q5_K_S

● You can use unsloth to create models 
with this type GPTQ: Accurate Post-Training Quantization for Generative Pre-Trained Transformers [Frantar et al., arXiv 2022]

https://docs.unsloth.ai/basics/running-and-saving-models/saving-to-gguf
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FP8 Quantization (Nvidia)
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● Offered by the NVIDIA TensorRT Model Optimizer library
● Performs a separate per-channel post-training quantization
● Supported by hardware
● This library also performs a number of other functions for improving 

model efficiency

https://github.com/NVIDIA/TensorRT-Model-Optimizer
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Modern Quantization (Open Source Models)

44

Oftentimes, open source LLM 
releases from model providers 
will release versions of models
that use several of the above 

quantization techniques

https://huggingface.co/collections/Qwen/qwen3
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Efficient LLMs
❑ Quantization
❑ Sparsity
❑ Long Context
❑ Serving & Systems
❑ Distillation
❑ Parameter Efficient Fine-Tuning
❑ Alternative Paradigms
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Sparsity

46

Even though our model may 
have many parameters, we can 

get speedups by only using a 
much smaller number of those 

parameters for a given 
instance
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Mixture of Experts (MoE)
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Replace FFN layers in 
traditional 
transformers with a 
switching FFN layer 
(more generally called 
an MoE layer) 
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Mixture of Experts (MoE)
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Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity [Fedus et al., CoRR 2021]
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Mixture of Experts (MoE)
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Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity [Fedus et al., CoRR 2021]

Four FFN layers
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Mixture of Experts (MoE)
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Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity [Fedus et al., CoRR 2021]

Only one is used per token
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Mixture of Experts (MoE)
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Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity [Fedus et al., CoRR 2021]

Only 25% of the FFN parameters 
are used for a single token
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Mixture of Experts (MoE)

52

Most of the best-performing 
open source models produced 
today are mixture of experts 

models
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Deja Vu: Contextual Sparsity
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Observation 1: Model activations 
change very little between 
consecutive layers of a network

Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time [Liu et al., 2023]
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Deja Vu: Contextual Sparsity
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Observation 2: Most attention heads 
and most neurons are not used 

Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time [Liu et al., 2023]
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Deja Vu: Contextual Sparsity

55

Sparsification: Use predictors in each 
layer to determine which neurons to 
activate and which attention heads to 
use – ignore all unpredicted 
heads/neurons

Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time [Liu et al., 2023]
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Model Routing

56

Route easier queries to smaller 
models, harder queries to larger 
models

Hybrid LLM: Cost-Efficient and Quality-Aware Query Routing [Ding et al., 2024]
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Model Routing
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Route easier queries to smaller 
models, harder queries to larger 
models

Hybrid LLM: Cost-Efficient and Quality-Aware Query Routing [Ding et al., 2024]

Valuable for companies like OpenAI/Anthropic 

when they serve multiple models of different 

capabilities & sizes
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SparseGPT

58

● Similar to GPTQ, uses a 
reconstruction loss term to 
prune entries from each 
weight matrix

● This can be taken advantage 
of with either 2:4, 4:8 
sparsity on Nvidia GPUs
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Efficient LLMs
❑ Quantization
❑ Sparsity
❑ Long Context
❑ Serving & Systems
❑ Distillation
❑ Parameter Efficient Fine-Tuning
❑ Alternative Paradigms

59
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What is a central issue with having longer context 
models?
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What is a central issue with having longer context 
models?

The storage costs are linear in 

generation length and quadratic in 

computation



CSCI 5541 NLP

What is a central issue with having longer context 
models?

The storage costs are linear in 

generation length and quadratic in 

computation



CSCI 5541 NLP

The KV-Cache

63

The transformer needs to have access to the keys and values for all 
previous tokens in all layers for all heads when

https://awsdocs-neuron.readthedocs-hosted.com/en/latest/general/appnotes/transformers-neuronx/generative-llm-inference-with-neuron.html
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The KV-Cache

64

In total, we must store 

Batch_size  *  seq_len * num_heads * num_layers * emb_dim * 2

separate values in the kv cache
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StreamingLLM

65

How can we extend models to have much longer context length at minimal cost?

Efficient Streaming Language Models with Attention Sinks [Xiao et al., 2023]



CSCI 5541 NLP

StreamingLLM
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How can we extend models to have much longer context length at minimal cost?

Efficient Streaming Language Models with Attention Sinks [Xiao et al., 2023]

Too 
much 

storage
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StreamingLLM
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How can we extend models to have much longer context length at minimal cost?

Efficient Streaming Language Models with Attention Sinks [Xiao et al., 2023]

Bad 
performance
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StreamingLLM

68

How can we extend models to have much longer context length at minimal cost?

Efficient Streaming Language Models with Attention Sinks [Xiao et al., 2023]

Too much 
recomputation
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StreamingLLM
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Observation: Most attention is either placed on the first token or to tokens that 
the model has recently seen.

Efficient Streaming Language Models with Attention Sinks [Xiao et al., 2023]
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StreamingLLM
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Efficient Streaming Language Models with Attention Sinks [Xiao et al., 2023]
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MHA/GQA/MQA
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GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints
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MHA/GQA/MQA
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GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints

Each attention head calculates separate 
keys and values for each token



CSCI 5541 NLP

MHA/GQA/MQA
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GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints

Attention heads are split into groups. 
Each group has one key/value per token.
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MHA/GQA/MQA
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GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints

Attention heads share the same keys 
and values for each token
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MHA Latent Query Attention

75

Some modern models 
(such as DeepSeek) 
train with what is 
called latent query 
attention → Keys + 

Values are compressed 
to a lower dimension to 

reduce storage costs
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H20: Heavy Hitter Oracle
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H2O: Heavy-Hitter Oracle for Efficient Generative Inference of Large Language Models [Zhang et. al, 2023]

Evict all but k-
highest 
cumulative 
attention tokens 
from cache
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H20: Heavy Hitter Oracle
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H2O: Heavy-Hitter Oracle for Efficient Generative Inference of Large Language Models [Zhang et. al, 2023]

Evict all but k-
highest 
cumulative 
attention tokens 
from cache
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Efficient LLMs
❑ Quantization
❑ Sparsity
❑ Long Context
❑ Serving & Systems
❑ Distillation
❑ Parameter Efficient Fine-Tuning
❑ Alternative Paradigms
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PagedAttention

79

How does a large LLM service (large ChatGPT) handle multiple incoming 
requests with respect to the KV-cache?
-Originally, most systems just assign fixed sized blocks of memory to each 
incoming request. How to improve?

Efficient Memory Management for Large Language Model Serving with PagedAttention (Kwon et al., 2023)
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PagedAttention

80

Let’s adopt a similar approach to that found in virtual memory!

Efficient Memory Management for Large Language Model Serving with PagedAttention (Kwon et al., 2023)
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PagedAttention
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Efficient Memory Management for Large Language Model Serving with PagedAttention (Kwon et al., 2023)
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Examples of Modern Inference Systems

vLLM, sglang, and TensorRT-LLM are 
all examples of inference engines 

which take advantage of this approach. 
If you are serving models in any 

setting, you should use one of the 
above (rather than directly 

instantiating some huggingface or 
pytorch model)

82

https://docs.vllm.ai/en/latest/
https://github.com/sgl-project/sglang
https://github.com/NVIDIA/TensorRT-LLM
https://github.com/NVIDIA/TensorRT-LLM
https://github.com/NVIDIA/TensorRT-LLM
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Speculative Decoding

83

● In standard autoregressive 
decoding, we are only using 
each parameter one time
when the batch size is 1

● This means standard 
decoding has a low arithmetic 
intensity and is memory 
bound

● We have a bunch more 
compute we could be getting 
for free given how massively 
parallel GPUs are 

Big Little Decoder [Kim, et. al]
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Speculative Decoding

84

● Speculative decoding resolves 
this by ‘speculating’ multiple 
tokens into the future with a 
smaller, cheaper model

Big Little Decoder [Kim, et. al]
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Speculative Decoding
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● Speculative decoding resolves 
this by ‘speculating’ multiple 
tokens into the future with a 
smaller, cheaper model

Big Little Decoder [Kim, et. al]

Draft of potential 
next tokens
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Speculative Decoding

86

● Speculative decoding resolves 
this by ‘speculating’ multiple 
tokens into the future with a 
smaller, cheaper model

● We can now send this set of 
tokens on to a much larger 
model to verify the sequence

Big Little Decoder [Kim, et. al]

Draft of potential 
next tokens
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Speculative Decoding

87

● Because the sequence will be 
run in parallel the arithmetic 
intensity will be proportional 
to the number of draft tokens

● We run each token through 
and see if the output of the 
large model matches that of 
the smaller, draft model

Big Little Decoder [Kim, et. al]
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Speculative Decoding

88

● Because the sequence will be 
run in parallel the arithmetic 
intensity will be proportional 
to the number of draft tokens

● We run each token through 
and see if the output of the 
large model matches that of 
the smaller, draft model

● We accept the matching 
tokens

Big Little Decoder [Kim, et. al]

Several famous people of

Accept RejectSample
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Advanced Approaches

89

Big Little Decoder [Kim, et. al]

More advanced approaches will use draft 
trees, rather than draft sequences
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Logit Distillation

91

Don’t use labels, use the modeling distribution of a better ‘Teacher’ model

to train a smaller, ‘Student’ model 
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Logit Distillation

92

Both Gemma3 & 

Llama4 use logit 

distillation during 

pretraining
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Layer Wise Distillation (LWD)

93

This can be expanded to trying to match the hidden

states of the student and teacher model as well



CSCI 5541 NLP

Output Tokens as Distillation (Synthetic Data)

94

DeepSeekR1 outputs tokens for a given set of 

problems. In this case ‘distillation’, just means 
performing Supervised fine tuning on the tokens
create by the larger V3 Models
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Output Tokens as Distillation (Synthetic Data)
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DeepSeekR1 outputs tokens for a given set of 

problems. In this case ‘distillation’, just means 
performing Supervised fine tuning on the tokens
create by the larger V3 Models
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Output Tokens as Distillation (Synthetic Data)

96

DeepSeekR1 outputs tokens for a given set of 

problems. In this case ‘distillation’, just means 
performing Supervised fine tuning on the tokens
create by the larger V3 Models

Most small-model 

training today employs 

similar methods as these 
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Adapter

98

Add trainable 
layers after each 

feedforward layer

Parameter-Efficient Transfer Learning for NLP [Houlsby et al, ICML 2019]
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Prompt Tuning (Soft Prompting)

99

Train a continuous, learnable prompt in embedding space for each task we 
are training on

The Power of Scale for Parameter-Efficient Prompt Tuning [Lester, ACL 2021]
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LoRA

100

❑ Hypothesizes that fine-tuning 
results in only low rank updates

❑ Thus, we may approximate the 
updates themselves as low-rank 
and train on this low-rank 
approximation directly

The Power of Scale for Parameter-Efficient Prompt Tuning [Lester, ACL 2021]
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LoRA

101

The Power of Scale for Parameter-Efficient Prompt Tuning [Lester, ACL 2021]

Normal Finetuning:

h = Wx
Update W



CSCI 5541 NLP

LoRA

102

The Power of Scale for Parameter-Efficient Prompt Tuning [Lester, ACL 2021]

Normal Finetuning:

h = Wx

LoRA Finetuning:

h = Wx + BAx

Update W

Update B,A

Leave W unchanged
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LoRA

103

The Power of Scale for Parameter-Efficient Prompt Tuning [Lester, ACL 2021]
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State Space Model (SSM)

105

Mamba: Linear-Time Sequence Modeling with Selective State 
Spaces (Gu et. Al)

Linearity Strikes back



CSCI 5541 NLP

SSM

106

Jamba: A Hybrid Transformer-Mamba Language Model

• SSMs are growing in popularity

• Linear complexity makes them 

excellent candidates for very 

long tasks

• If they can begin outperforming 

transformers in practical 

settings, these could displace 

the transformer architecture
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Text Diffusion

107

Predict multiple tokens as the same time 

using a diffusion model
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World Models

108

Use some dense 

environment signals 

to predict what the 

consequences of 

each token prediction 

is
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Recursive Transformers

❑ Use transformers recursively to 
iteratively refine model outputs

❑ This approach is still  mostly 
useful in toy settings at the 
moment

109


	Slide 1: CSCI 5541: Natural Language Processing
	Slide 2: What Is Efficiency and Why Does It Matter?
	Slide 3: What Is Efficiency and Why Does It Matter?
	Slide 4: Model Energy Use
	Slide 5: Efficiency Tradeoff
	Slide 6: How to Improve Model Efficiency?
	Slide 7: What Makes a Language Model Slow
	Slide 8: Efficient LLMs
	Slide 9: Efficient LLMs
	Slide 10: Quantization
	Slide 11: How do we go from a high-bit width data type to a low-bit width data type?
	Slide 12: K-Means Quantization vs Linear Quantization
	Slide 13: K-Means Quantization vs Linear Quantization
	Slide 14: K-Means Quantization
	Slide 15: K-Means Quantization
	Slide 16: K-Means Quantization
	Slide 17: K-Means Quantization
	Slide 18: K-Means Quantization vs Linear Quantization
	Slide 19: Linear Quantization
	Slide 20: Linear Quantization
	Slide 21: Linear Quantization
	Slide 22: Linear Quantization
	Slide 23: Linear Quantization
	Slide 24: Linear Quantization
	Slide 25: Linear Quantization
	Slide 26: Linear Quantization
	Slide 27: Should we use KMeans/Linear Quantization on all weights at the same time?
	Slide 28: Should we use KMeans/Linear Quantization on all weights at the same time?
	Slide 29: Weight Granularity
	Slide 30: Activation Granularity
	Slide 31: When do we perform this quantization?
	Slide 32: When do we perform this quantization?
	Slide 33: Post Training Quantization (PTQ)
	Slide 34: What are some of the modern methods for performing quantization?
	Slide 35: AWQ (W4A16)
	Slide 36: AWQ (W4A16)
	Slide 37: AWQ (W4A16)
	Slide 38: AWQ (W4A16)
	Slide 39: AWQ (W4A16)
	Slide 40: AWQ (W4A16)
	Slide 41: GPTQ
	Slide 42: GGUF Quantization
	Slide 43: FP8 Quantization (Nvidia)
	Slide 44: Modern Quantization (Open Source Models)
	Slide 45: Efficient LLMs
	Slide 46: Sparsity
	Slide 47: Mixture of Experts (MoE)
	Slide 48: Mixture of Experts (MoE)
	Slide 49: Mixture of Experts (MoE)
	Slide 50: Mixture of Experts (MoE)
	Slide 51: Mixture of Experts (MoE)
	Slide 52: Mixture of Experts (MoE)
	Slide 53: Deja Vu: Contextual Sparsity
	Slide 54: Deja Vu: Contextual Sparsity
	Slide 55: Deja Vu: Contextual Sparsity
	Slide 56: Model Routing
	Slide 57: Model Routing
	Slide 58: SparseGPT
	Slide 59: Efficient LLMs
	Slide 60: What is a central issue with having longer context models?
	Slide 61: What is a central issue with having longer context models?
	Slide 62: What is a central issue with having longer context models?
	Slide 63: The KV-Cache
	Slide 64: The KV-Cache
	Slide 65: StreamingLLM
	Slide 66: StreamingLLM
	Slide 67: StreamingLLM
	Slide 68: StreamingLLM
	Slide 69: StreamingLLM
	Slide 70: StreamingLLM
	Slide 71: MHA/GQA/MQA
	Slide 72: MHA/GQA/MQA
	Slide 73: MHA/GQA/MQA
	Slide 74: MHA/GQA/MQA
	Slide 75: MHA Latent Query Attention
	Slide 76: H20: Heavy Hitter Oracle
	Slide 77: H20: Heavy Hitter Oracle
	Slide 78: Efficient LLMs
	Slide 79: PagedAttention
	Slide 80: PagedAttention
	Slide 81: PagedAttention
	Slide 82: Examples of Modern Inference Systems
	Slide 83: Speculative Decoding
	Slide 84: Speculative Decoding
	Slide 85: Speculative Decoding
	Slide 86: Speculative Decoding
	Slide 87: Speculative Decoding
	Slide 88: Speculative Decoding
	Slide 89: Advanced Approaches
	Slide 90: Efficient LLMs
	Slide 91: Logit Distillation
	Slide 92: Logit Distillation
	Slide 93: Layer Wise Distillation (LWD)
	Slide 94: Output Tokens as Distillation (Synthetic Data)
	Slide 95: Output Tokens as Distillation (Synthetic Data)
	Slide 96: Output Tokens as Distillation (Synthetic Data)
	Slide 97: Efficient LLMs
	Slide 98: Adapter
	Slide 99: Prompt Tuning (Soft Prompting)
	Slide 100: LoRA
	Slide 101: LoRA
	Slide 102: LoRA
	Slide 103: LoRA
	Slide 104: Efficient LLMs
	Slide 105: State Space Model (SSM)
	Slide 106: SSM
	Slide 107: Text Diffusion
	Slide 108: World Models
	Slide 109: Recursive Transformers

