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What Is Efficiency and Why Does It Matter?

4 Efficiency for NLP is concerned with delivering faster, cheaper, smaller, less
energy intensive solutions to problems involving natural language

 Faster models means LLM model services can meet the demands of many
clients more quickly

1 Cheaper models reduce costs for LLM model service providers

1 Smaller model sizes allow for service providers to use fewer resources and
can allow for individuals to deploy LLMs to their own (smaller) devices

1 Less energy intensive means lower cost and easier to deploy at the edge,
where energy is harder to come by
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Model Energy Use

Operation

Energy [pJ]

Relative Energy Cost

32 bit int ADD

32 bit float ADD

32 bit DRAM Memory

0.1

Rough Energy Cost For Various Operations in 45nm 0.9V
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Computing's Energy Problem (and What We Can Do About it) [Horowitz, M., IEEE ISSCC 2014
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Efficiency Tradeoff

1 More efficient models (smaller,
faster) typically come at a cost of
some performance of the model
itself

4 In the other direction, getting more
performance from a model
architecture likely means it will be
larger, and require more

Performance (accuracy, etc.)

computation Efficiency (speed, 1/size, etc.)

Y\
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How to Improve Model Efficiency?

Hardware Software

before LESY
. 0 5 }
Training TreT - Inference
after i g
Training Inference

Model compression:
Pruning, sparsity, quantization, etc
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What Makes a Language Model Slow

Memory Utilization vs Compute Utilization
Four possible combinations:

= a

607%

Comp Mem Comp Mem Comp Mem Comp Mem

Compute Bandwidth Latency Compute and

Bound Bound Bound Bandwidth
Bound

17 < 2NVIDIA

.\
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Efficient LLMs

J Quantization

 Sparsity

1 Long Context

 Serving & Systems

4 Distillation

 Parameter Efficient Fine-Tuning
 Alternative Paradigms
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Quantization

Reduce model size by
replacing high bit-
width
representations with
low bit-width
representations

—— Continuous Signal Quantized Signal

4 Signal

................

Quantization Error

Sign Bit

/

g L
Sign 8 bit Exponent 23 bit Fraction \ Google Brain Float (BF16)
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How do we go from a high-bit width data type to
a low-bit width data type?




K-Means Quantization vs Linear Quantization

2.09 -0.98I 1.480.09

302|183 . 2|10 |1
0.05}-0.14}-1.08|2.12 1 1 0 3 | 22 |1.50 ( 1| -1 -2 .- -1)x1.07
-0.91(1.92| 0 [-1.03 0 3 1 0 | 1: |0.00 -2 -1 | -2
1.87| 0 |(1.53|1.49 3 1 2 2 |0: m -1 0 0
K-Means-based Linear
Quantization Quantization
: : Integer Weights;
Storage Floathg el Floating-Point Integer Weights
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Codebook
. Floating-Point Floating-Point . .
Computation Arthmatic Atk matic Integer Arithmetic
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K-Means Quantization

weights cluster index . reconstructed weights
(32-bit float) (2-bit int) centroids (32-bit float)
-0.98| 1.48 3 0 2 1 -1.00| 1.50
-1.08 cluster | 1 1 0 3
-0.91 -1.03 : 0 3 1 0
1.53 | 1.49 31| 2] 2

Deep Compression [Han et al., ICLR 2016]
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K-Means Quantization
/ Original weights

-0.91

weights
(32-bit float)

-0.98| 1.48

-1.08

-1.03
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cluster

=>

cluster index

(2-bit int)

centroids

0 2 1
1 0 3
3 1 0
1 2 2

Deep Compression [Han et al., ICLR 2016]

reconstructed weights
(32-bit float




K—MeanS Quant|zat|0n Stored weights after

/ clustering

weights cluster index . reconstructed weights
(32-bit float) (2-bit int) centroids (32-bit float)
-0.98| 1.48 3 0 2 1 -1.00| 1.50
-1.08 cluster|| 1 1 0 3
-0.91 -1.03 : 0 3 1 0
1.53 | 1.49 31| 2] 2

Deep Compression [Han et al., ICLR 2016]
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Retrieved weights to

K-Means Quantization e Ueed at inforence

time

weights cluster index . reconstructed weights
(32-bit float) (2-bit int) centroids (32-bit float)
-0.98| 1.48 3 0 2 1 -1.00| 1.50
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-0.91 -1.03 : 0 3 1 0
1.53 | 1.49 31| 2] 2

Deep Compression [Han et al., ICLR 2016]
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K-Means Quantization vs Linear Quantization
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Linear Quantization

(0 0]
-

 Apply linear function on
weights and hidden state
activations from floating
point values (r) to integer
values (q)

1 Original weights (black),
Quantized bins (red)

1 Black weights are mapped -08 -0.6 -04 0.2 V:I:(L)Je 02 04 06 08
to one of the vertical red
lines

(o)}
 ——
—

Tensor PDF
S

N

o
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' ' : 32-bit float to 4-bit int
Linear Quantization o bt

8 -7 6 -5-4-3 -2-10 1 2 3 45 6 7

i

 Apply linear function on
weights and hidden state
activations from floating
point values (r) to integer
values (q)

1 Original weights (black),
Quantized bins (red)

1 Black weights are mapped -08 -0.6 -04 0.2 V:I:(L)Je 02 04 06 08
to one of the vertical red
lines
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—
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' ' : 32-bit float to 4-bit int
Linear Quantization o bt

8 -7 6 -5-4-3 -2-10 1 2 3 45 6 7

i

|
|

 Apply linear function on
weights and hidden state
activations from floating
point values (r) to integer
values (q)

1 Original weights (black),
Quantized bins (red)

] Black Weights are mapped -08 -0.6 -0.4 _<0.2 Va(:I:(L)Je 02 04 06 08

to one of the vertical red Before Quantization: -.14
lines After Quantization: -2
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Linear Quantization

weights quantized weights zero point scale
(82-bit float) (2-bit signed int) (2-bit signed int) (32-bit float)

_-1))(107:

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [Jacobet al., CVPR 2018]
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Linear Quantization

weights quantized weights
(32-bit float) (2-bit signed int)

{ BinaryA

o
Original o ‘?g .
Weights 10

zero point scale
(2-bit signed int) (32-bit float)

- -1 ) X 1.07

-1.07

-1.07

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [Jacobet al., CVPR 2018]
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Linear Quantization

weights quantized weights zero point scale
(82-bit float) (2-bit signed int) (2-bit signed int) (32-bit float)
-1.07
= | il ) X 1.07 = -1.07 -1.07

" Binary
1
10

Stored Values

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [Jacobet al., CVPR 2018]
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Linear Quantization

weights quantized weights
(32-bit float) (2-bit signed int)

" Binary
1
10

zero point scale
(2-bit signed int) (32-bit float)
- -1 ) X 1.07 =
-1.07

7

-1.07

1.07
& 4

-1.07

-1.07

1.07

Retrieved weights to
be used at inference
time

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [Jacobet al., CVPR 2018]
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: ; ; Virtually all modern methods use this
Linear Quantlzatlon (as opposed to KMeans Quantization)

weights quantized weights zero point scale
(82-bit float) (2-bit signed int) (2-bit signed int) (32-bit float)

_-1))(1.07:

7

{ Binary | 'Decimal ) )
01 Retrieved weights to
00 be used at inference
11 time
10 -2

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [Jacobet al., CVPR 2018]
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Should we use KMeans/Linear Quantization on all
weights at the same time?




Should we use KMeans/Linear Quantization on all
weights at the same time?

No. We should group them.
The size of the grouping we choose is denoted as the
granularity.



Weight range per output channel

Weight Granularity g s
(first depthwise-separable layer in MobileNetV2)
75 -
" " . 50- [
J Weight matrices will often have .
different variances along each ¢ olrosDj-tles-3t- []-I-I---I-é-—--l‘r%[f ”H
output channel =25
1 High variance in weights means -4 OO Oo&
] . 1234567 8 91011121314151617181920212223242526272829303132
that applying linear Outout channel index
quantization will resultin large Ayl XCl o
performance degradation 2
4 To fix this, we can perform €,
linear quantization along each C W
channel of the weight tensor
separately per-channel quant.

SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models[Xiao et. al., ICML 2023]
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Activation Granularity

1 Activations can have a similar
problem whereby the variance
by channel can be quite
different

1 The variance by token can also
differ dramatically

d When applying quantization, we
should split up channels, tokens
to take this into account

per-token quant.

SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models[Xiao et. al., ICML 2023]
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When do we perform this quantization?




When do we perform this quantization?

Typically, this is done after first
completely training a model
(pretraining — SFT — post-

training)



Post Training Quantization (PTQ)

Quantize after training

Pre-Trained Model [ Calibration Data J

@ )

Quantization

Quantized Model

https://pytorch.org/blog/quantization-in-practice/
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\WWhat are some of the modern methods for
performing quantization?




AWQ (W4A16)

Original:

X
1516 2 6 '
-2 8 -1 -9

bl W WS -

Observation: ?

Abs Max

-
b
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U
1
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SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models[Xiao et. al., ICML 2023]
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AWQ (W4A16)

Original: i
Abs Max |
X F
2|1)-2]112}¢ Observation: High variance channels are
16 2 6 +~IEINEE TR 1 fixed in activations in LLM FFN layers-
-1 -9 9 -1 .2]igt  weightshave relatively little difference in
29 TEIE : I : variance
"\

SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models[Xiao et. al., ICML 2023]
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AWQ (W4A16)

Normal quantization on LLMs performs
poorly due to outliers in the model’s hidden

state
bad hardware efficiency
Weri6 Q(W)int3 Q(W)Mixprec Q(W)ins
+12[-02|-24|-34 +1|+0]|-2|-3 +1|1+0|-2|-3 .
~25|-3.5/+1.9/+1.4 3| -4|+2|+1 determine the Salien_t ......... > |-25-35|+19/+1.4 scale before quantlze -
-09+1.6/-2.5/-19 -1] 42| -3| -2 weights by -1]| 42| -3| -2 /a——’
-35/+1.5}+05]-0.1 Q -4 |42 41|40 aCtivatiOQ.-"' -4|+2| 41|40 -
Ry B ey e Al 7 17 T 2| -2|-3|-3 T average mag.
+24|-35]|-28/-39 +2|-4|-3|-4 +2|-4|-3]-4
+0.1/-3.8|+2.4/+3.4 +0| -4 | +2|+3 X * | 40| -4|+2]+3 X *
+09(+33|-19]|-23 +1|+3|-2|-2 +1|+3]|-2|-2
(a) RTN quantization (PPL 43.2) (b) Keep 1% salient weights in FP16 (PPL 13.0) (c) Scale the weights before quantization (PPL 13.0)

AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration [Lin et. al., arxiv 2023]
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AWQ (W4A1 6) AWQ (c below) scales

weights to handle the
channels separately

bad hardware efficiency

Weri6 Q(W)int3 Q(W)Mixprec Q(W)ins
+12/-02|-24|-34 +1|+0|-2|-3 +1]|+0|-2|-3 .
~25|-3.5/+1.9/+1.4 3| -4|+2|+1 determine the Salien_t ......... > |-25-35|+19/+1.4 scale before quantlze-
-09+1.6/-2.5/-19 -1] 42| -3| -2 weights by -1]| 42| -3| -2 /a——’
-35/+1.5}+05]-0.1 Q -4 |42 41|40 aCtivatiOQ.-"' -4|+2| 41|40 -
e B T ) Al 7 17 1 +2|-2|-3]-3 Tavemge mag.
+24]-35|-28]-39 42| -4 -3[-4 42| -4 -3]-4
+0.1/-3.8|+2.4/+3.4 +0| -4 | +2|+3 X * | 40| -4|+2]+3 X *
+09}+33|-19|-23 +1| 43| 2| -2 +1| 43| -2 -2

(a) RTN quantization (PPL 43.2) (b) Keep 1% salient weights in FP16 (PPL 13.0) (c) Scale the weights before quantization (PPL 13.0)

AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration [Lin et. al., arxiv 2023]
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AWQ (W4A16)

Uses a calibration batch of data to determine
what the outlier channels are along with a per-
channel scaling factor for these channels

bad hardware efficiency

Weri6 Q(W)int3 Q(W)Mixprec Q(W)ins
+12/-02|-24|-34 +1|+0|-2|-3 +1]|+0|-2|-3 .
~25|-3.5/+1.9/+1.4 3| -4|+2|+1 determine the Salien_t ......... > |-25-35|+19/+1.4 scale before quantlze-
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e B T ) Al 7 17 1 +2|-2|-3]-3 Tavemge mag.
+24]-35|-28]-39 42| -4 -3[-4 42| -4 -3]-4
+0.1/-3.8|+2.4/+3.4 +0| -4 | +2|+3 X * | 40| -4|+2]+3 X *
+09}+33|-19|-23 +1| 43| 2| -2 +1| 43| -2 -2

(a) RTN quantization (PPL 43.2) (b) Keep 1% salient weights in FP16 (PPL 13.0) |(c) Scale the weights before quantization (PPL 13.0)

AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration [Lin et. al., arxiv 2023]
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AWQ (W4A16)

AWQ is weight-only —
multiplication is still
performed in BF16/FP16.

bad hardware efficiency
Weri6 Q(W)int3 Q(W)Mixprec Q(W)ins
+12/-02|-24|-34 +1|+0|-2|-3 +1| 40| -2|-3 i
~25-3.5|+19/+1.4 -3|-4|+2|+1 determine the Salien_t ......... »> |-25|-35/+19}+1.4 scale before quantize -
-09+1.6/-2.5/-19 -1] 42| -3| -2 weights by -1]| 42| -3| -2 /a——’
-35/+1.5}+05]-0.1 Q -4 |42 41|40 aCtivatiOQ.-"' -4|+2| 41|40 -
calis| 224 |*2| 2| 3| +2|-2|-3[-3 T average mag.
+24|-35|-28|-39 +2|-4|-3|-4 +2| -4| -3| -4
+0.1/-3.8|+2.4/+3.4 +0| -4 | +2|+3 X * | 40| -4|+2]+3 X *
+09}+33|-19|-23 +1| 43| -2|-2 +1| 43| -2 -2
(a) RTN quantization (PPL 43.2) (b) Keep 1% salient weights in FP16 (PPL 13.0) |(c) Scale the weights before quantization (PPL 13.0)

AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration [Lin et. al., arxiv 2023]
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GPTQ argming || WX — WXH2

Inverse Layer Hessian

e Quantizes a block of (Cholesky Form)

each weight matrix at a
time.

e Uses aloss term + the
iInverse hessian for the
layer to update the non-
quantized weights

e [akes a long time

Weight Matrix / Block

block i quantized recursively

computed initially column-by-column

GPTQ: Accurate Post-Training Quantization for Generative Pre-Trained Transformers [Frantar et al., arXiv 2022]

v AR
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GGUF Quantization

e No model retraining as is done with
GPTQ )
e A modelis quantized by taking blocks of @ unsioth

the input matrix, then performing linear D .
guantization on each block separately yn q m IC
e Uses several different methods based 2 0 GG U F
on level of quantization v '
e \Will come with names such as IQ2_ XS-

Q4 XS,Q2 K S-Q5 K_S
e You can use unsloth to create models

W | th th | S t\/ p e GPTQ: Accurate Post-Training Quantization for Generative Pre-Trained Transformers [Frantar et al., arXiv 2022]

2 AR
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https://docs.unsloth.ai/basics/running-and-saving-models/saving-to-gguf

FP8 Quantization (Nvidia)

Offered by the NVIDIA TensorRT Model Optimizer library

Performs a separate per-channel post-training quantization
Supported by hardware

This library also performs a number of other functions for improving
model efficiency

"/// /.

¢+ ¢ @ ‘“ @ z% ¢ mE

Quantization Pruning Distillation Speculative Decoding Sparsity
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https://github.com/NVIDIA/TensorRT-Model-Optimizer

Modern Quantization (Open Source Models)

Oftentimes, open source LLM
releases from model providers
will release versions of models

that use several of the above
guantization techniques

CSCI 5541 NLP

A Qﬁeﬁzgveps-2359-5228—Thinking-2507iFP8
A Qfeﬁ/Qwen3-2358f5228-fhinkiﬁg-2597

W Qﬁeﬁ/gwghé-2358fA228fIhstfuct-250?-fP8
A Qﬂenlgﬁeb?-235?-522§-Inst#u§t-2507

W Q§en/QWén3-30§TA3B-Th;nkjng-2507-fP8
W Q*e?/0f§n3-30§fA3BfTh§nEjng-2507v

w» Qwen/Qwen3-30B-A3B-Instruct-2507-FP8


https://huggingface.co/collections/Qwen/qwen3

Efficient LLMs

J Quantization

] Sparsity

1 Long Context

 Serving & Systems

4 Distillation

 Parameter Efficient Fine-Tuning
 Alternative Paradigms
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Sparsity

before pruning after pruning

Even though our model may
have many parameters, we can
get speedups by only using a
much smaller number of those
parameters for a given
Instance

pruning ____
synapses

pruning g
neurons
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Mixture of Experts (MoE)

Qutput
Probabilities

t

| Softmax )

|l Linear )

Replace FFN layersin & AGGE Nom )
traditional i‘ o
Forward

-,

transformers with a I
switching FFN layer N> | —~(Add& Nom )

Multi-Head

(more generally called Attention
1 J
| —

an MoE layer) & )
Positional
Encoding D

Input
Embedding

I

Inputs
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Mixture of Experts (MoE)
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y

T

Add + Normalize

1

Switching FFN Layer

t

Add + Normalize

)

Self-Attention

f

X

v [(ITTITTT] v TTTTT]
A A
>{ Add + Normalize ]:

G ! = N
{[FFN:J[mz]LFmshFFm] FFN 1 [sz][FFNsHFFm ‘:
e \I.- [

' Router Router k
\ A A /
>{ Add + Normalize }<
1 1
Self-Attention
A ﬂx

o e
i I il T o111
More Parameters

Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity [Fedus et al.,, CoRR 2021]



Mixture of Experts (MoE)
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y

T

Four FFN layers

Add + Normalize

1

Switching FFN Layer

t

Add + Normalize

)

Self-Attention

f

X

Y1 ED.?:EEI veL TTTTT]
A A
>{ Add + Normalize ]:
A

i p=08
' Router Router k
\ A A /
>{ Add + Normalize }<
Self-Attention

A ﬂx
Positional Positional
embedding e‘? embedding ?

i I Ol o111
More Parameters

Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity [Fedus et al.,, CoRR 2021]



Mixture of Experts (MoE)
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y >od

T

Add + Normalize ]

1

Switching FFN Layer

t

Add + Normalize ]

)

Self-Attention

f 5

X \\

vo[TTTTT]

A

Add + Normalize le

Only one is used per token

-~

........
)

-

Roulerb
— /
>{ Add + Normalize }<
Self-Attention
A ﬂx
Positional 9 Positional
embedding Y embedding ?
i I Ol o111
More Parameters

Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity [Fedus et al.,, CoRR 2021]




Mixture of Experts (MoE)

Only 25% of the FFN parameters
are used for a single token

. yi[(ITTTT] v[TTT11]
% A A
-
- 2 z ]
P 6 Add + Normalize N N
> td
y I N e e S ~N
1
Add + Normalize ] FPn3 | [ Frna | Fnt | [ Fenz | [ Fens || Fena | )
; | e p=08
( Switching FFN Layer ‘
i) RL |
i outer
[ Add + Normalize ] — /
1 ; |
sl E ={ Add + Normalize }: <
fi Ve Self-Attention
> R ~ A ﬂk
o J
RN Positional D Positional
' embedding Y embedding ?
~
0 [IT11TT]
More Parameters

Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity [Fedus et al.,, CoRR 2021]
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Mixture of Experts (MoE)

w% Qwen/Qwen3-235B-A22B-Thinking-2507-FP8

3% Qwen/Qwen3-235B-A22B-Thinking-2507

Most of the best-performing o e AR e I e T 25T <F B
open source models produced .
today are mixture of experts
models

A Qfo‘ler‘\/Q‘@e‘n’?-2358v-gl‘\22By-InstJv:vucvt’-2507 “
A VQv.JIe‘n/Qv‘vén3-30§:-63B-Th§nk?hg-2507-IiP8
W Qw’errr’/Qv'ffenZ‘B-BOBA‘-A3B-‘T”h‘Ain‘k:ing-250?.

W Q'v.Je‘n’/.Qﬁen?-308ﬁ-l§38-1nstr_uc{:t(—250?-FP8
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Deja \Vu: Contextual Sparsity

o o
© ©
) ©

Cosine Similarity
o
©
~

0.96

Observation 1: Model activations oss 1 (IR |
change very little between R
consecutive layers of a network s

2000

1500

Norm

1000

500

0 A‘\-—v-/
0 20 40 60 80
Transformer Layer

(c¢) Residual Around Attention

Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time [Liu et al., 2023]
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(d) Residual Around MLP

53 SN




Deja \Vu: Contextual Sparsity

100%

©
4]
Q
I
o 80%
ot
]
>
S 60%
<<
- —— OPT-30B
2 40% OPT-66B
“ — OPT-175B
%
20% "0 20 40 60 80

Transformer Layer

Observation 2: Most attention heads
and most neurons are not used

(a) Contextual sparsity in Attention Head

100%
98%

96%

94%

—— OPT-30B

92% OPT-66B
- OPT-175B

% Not Activated Neurons

%
%0 20 40 60 80

Transformer Layer

(b) Contextual sparsity in MLP Block

Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time [Liu et al., 2023]
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Deja \Vu: Contextual Sparsity

/ Deja Vu \
Attentiony,,

Pred‘ictor
Sparsification: Use predictors in each \/
layer to determine which neurons to — -
activate and which attention heads to T—
use — ignore all unpredicted Attention, | ‘ .
Predictor
heads/neurons S—— |

L

Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time [Liu et al., 2023]
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Model Routing

e =
Route easier queries to smaller o

models, harder queries to larger Aracedgs ) T
models

. AL WS O\
Routing: T s n
utput

Hybrid LLM: Cost-Efficient and Quality-Aware Query Routing [Ding et al., 2024]
CSCI 5541 NLP




: Valuable for companies like OpenAl/Anthropic
MOdEl ROUtlng when they serve multiple models of different

capabilities & sizes

All-at- @ :l:t . \ :::! l 2
Route easier queries to smaller o
models, harder queries to larger All-at-edge: @ — "
models

. QWY [ AULLS U\
Routing: T s

Hybrid LLM: Cost-Efficient and Quality-Aware Query Routing [Ding et al., 2024]
CSCI 5541 NLP




SparseGPT

e Similar to GPTQ, uses a
reconstruction loss term to
prune entries from each
weight matrix

e This can be taken advantage
of with either 2:4, 4:8
sparsity on Nvidia GPUs

CSCI 5541 NLP
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What is a central issue with having longer context
models?




. QK'
Attention(Q, K, V) = softmax 7d V

What is a central issue with having longer context
models?

The storage costs are linear in
generation length and quadratic in
computation



. QK'
Attention(Q, K, V) = softmax 7d V

What is a central issue with having longer context
models?

The storage costs are linear in
generation length and quadratic in
computation



The KVV-Cache

The transformer needs to have access to the keys and values for all
previous tokens in all layers for all heads when

linput__seq>
input__Token P 3 "love” "Troinium.
xL0J xL1] sLa]
e.MBepUi'\g : Z : AT )
LO] , Nal1l 7 7, al2]
Key kLOJ k1] kLad
V. l // VLOJ s / V[.’J 5 74 VL&J
alue X 0% K 7% %
- — {n_embd>
i"“e"t‘“ oL27 « k[0] = 0.3 aL2d « k[11 = 0.1 aL2] « k[2] = 0.6
ore

https://awsdocs-neuron.readthedocs-hosted.com/en/latest/general/appnotes/transformers-neuronx/generative-llm-inference-with-neuron.ntml
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The KVV-Cache

In total, we must store

Batch_size * seq_len * num_heads * num_layers *emb_dim * 2

separate values in the kv cache

CSCI 5541 NLP




StreaminglLLM

How can we extend models to have much longer context length at minimal cost?

: : : ¢) Sliding Window
(a) Dense Attention (b) Window Attention (©) & :
w/ Re-computation
| |
Current Token
------- A T O
‘ U are truncated
<+—— T cached tokens —» T L evncted L cachcd <L re-computed_
tokens tokens tokens
O(T?)x PPL:5641x  O(TL)v PPL:5158x  O(TL?*)x PPL:5.43v
Has poor efficiency and Breaks when initial Has to re-compute cache
performance on long text. tokens are evicted. for each incoming token.

Efficient Streaming Language Models with Attention Sinks [Xiao et al., 2023]
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StreaminglLLM

How can we extend models to have much longer context length at minimal cost?

(a) Dense Attention
l
Too
much
StOI’age m}t%ken

<4—— T cached tokens —»

O(T?)x PPL: 5641X

Has poor efficiency and
performance on long text.

(b) Window Attention
l

-------

- - [

E cachcd
tokens

O(TL) v PPL: 5158X

Breaks when initial
tokens are evicted.

T L evncted
tokens

(c) Sliding Window
w/ Re-computation

previous tokens
are truncated

[ [

<«Lre computed_,
tokens

O(TL?»)X PPL: 5.43v

Has to re-compute cache
for each incoming token.

Efficient Streaming Language Models with Attention Sinks [Xiao et al., 2023]
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StreaminglLLM

How can we extend models to have much longer context length at minimal cost?

: : . (c) Sliding Window
(a) Dense Attention (b) Window Attention w/ Re-comiwitation
| |
Bad
performance
Current Token
- W o | e -
| t], | = are truncated
<+—— T cached tokens —» T-L evicted L cached <L re-computed_
tokens tokens tokens
O(T*)x PPL:5641x  |O(TL)v PPL:5158x | O(TL*)X PPL: 5.43v
Has poor efficiency and Breaks when initial Has to re-compute cache
performance on long text. tokens are evicted. for each incoming token.

Efficient Streaming Language Models with Attention Sinks [Xiao et al., 2023]
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StreaminglLLM

How can we extend models to have much longer context length at minimal cost?

(c) Sliding Window

(a) Dense Attention (b) Window Attention w/ Re-comiwitation

| |

Too much
recomputation

Current Token
| o] = I are truncated

<+—— T cached tokens —» T-L evicted L cached <L re-computed_
tokens tokens tokens

O(T?)x PPL: 5641X O(TL)v PPL:5158x | O(TL®x PPL:5.43v

Has poor efficiency and Breaks when initial Has to re-compute cache
performance on long text. tokens are evicted. for each incoming token.

Efficient Streaming Language Models with Attention Sinks [Xiao et al., 2023]
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StreaminglLLM

Observation: Most attention is either placed on the first token or to tokens that
the model has recently seen.

Layer 2 Head 0

Layer 0 Head 0 Layer 1 Head 0

Layer 9 Head 0 Layer 16 Head 0

Efficient Streaming Language Models with Attention Sinks [Xiao et al., 2023]
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StreaminglLLM

(a) Dense Attention (b) Window Attention

<4—— T'cached tokens —» T-L evicted L cached
tokens tokens

O(TL) v PPL: 5158X

Breaks when initial
tokens are evicted.

O(T?)x PPL: 5641X

Has poor efficiency and
performance on long text.

(¢) Sliding Window

w/ Re-computation (d) Streaming LLLM (ours)

il
Attention Sink

previous tokens m \ Race %E
are truncated e

<L re-computed_
tokens

O(TL?X PPL:5.43v

Has to re-compute cache
for each incoming token.

L cached
tokens

O(TL)v PPL:5.40v

evicted
tokens

Can perform efficient and stable
language modeling on long texts.

Efficient Streaming Language Models with Attention Sinks [Xiao et al., 2023]

CSCI 5541 NLP
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MHA/GQA/MQA

Multi-head Grouped-query Multi-query
Values
 S— | — | S— —  — — S  S— L_—/ S —  S— ——
Keys
Queries

GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints
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M HA/G QA/M QA Each attention head calculates separate

keys and values for each token

Multi-head Grouped-query Multi-query

Jr— — p— p— — — — — o —— — —_— o —_—

Values

Keys

——————————
.....

LA LA LA ’

| ] ' ' 1 ' ' ' PR PN e ¢ N

| ] ] ' ' ' ' ' P , ’ N ’ \ ’ \ =

| ' ' ' ' ' ' ' ‘ . ’ . ’ ) ‘ ' R S - ‘ s

L ' L} - - .
| ' | ' ' ‘ . ' \ ’ ) v . e - o ’ .
r (
| ] D

GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints
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MHA/G QA/M QA Attention heads are split into groups.

Each group has one key/value per token.

Multi-head Grouped-query Multi-query

’_"—’_\H’—\'_"_w’— ——— — — o —

Values

Keys

~~~~~~~~~
-----

Queries

GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints
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\Y HA/G QA/M QA Attention heads share the same keys

and values for each token

Multi-head Grouped-query Multi-query

Jr— — p— p— — — — — o —— — —_— o —_—

Values

Keys

——————————
.....

LA LA LA ’

| ] ' ' 1 ' ' ' PR PN e ¢ N

| ] ] ' ' ' ' ' P , ’ N ’ \ ’ \ =

| ' ' ' ' ' ' ' ‘ . ’ . ’ ) ‘ ' R S - ‘ s

L ' L} - - .
| ' | ' ' ‘ . ' \ ’ ) v . e - o ’ .
r (
| ] D

GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints

CSCI 5541 NLP




MHA Latent Query Attention

Attention - MQA |GQA | MHA | MLA

Some modern models
suchaspeepsee | | | ||| [WHII DHHIE 2

train with what is | -
S S V[
attention — Keys +
\Values are compressed T ‘ ‘ ‘ | | l
el LLLLLLUINE LU UL

Query

to a lower dimension to
reduce storage costs Atention MOA)  AtentionGOA)  Avtention (MHA)  Adtention (ML)
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H,0: Heavy Hitter Oracle

Evict all but k-
highest
cumulative
attention tokens
from cache

Dynamic Sparsity

Static Sparsity (Strided)

|

Static Sparsity (Local)

I

Static Sparsity w. H O

~J
wm
A

~)
=

Accuracy

v

.

e

. \
.

>
w
A

| ==e— Static Sparsity (Strided) |

Static Sparsity (Local)

1
1 =% Static Sparsity w. H,0 fl

w—= e+ Dynamic Sparsity

0 20 40 60 S0
Memory Reduction (%)

H20: Heavy-Hitter Oracle for Efficient Generative Inference of Large Language Models [Zhang et. al, 2023]
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H,0: Heavy Hitter Oracle

CSCI 5541 NLP

Evict all but k-
highest
cumulative
attention tokens
from cache

’{ihlurtn[ laughed | and | played | in | the | sumny | | park |,
W = Y o1a s O os
02 0.1 0.1 06 0l {09
77777777777777 0110
Decoding Step 4 0veny 1 92]e!
[( Mldrtnlla ghed | and | played | in | the | sunny i b oo )
— Y 6 oo
f ol &
l
: 01|09
_______ 0.1[0s
02{0.1 :
Decoding Step 5 paspo o
e S 16 18 050 0@ 09
: OB
) -t S S 0109
s 0.03 04 01 Ao 09 i o 1 Tos
' 8 02101
* Eviction w. Global Statistic =~ P
(infeasible) |
S

H20: Heavy-Hitter Oracle for Efficient Generative Inference of Large Language Models [Zhang et. al, 2023]
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PagedAttention

How does a large LLM service (large ChatGPT) handle multiple incoming

requests with respect to the KV-cache?
-Originally, most systems just assign fixed sized blocks of memory to each

iIncoming request. How to improve?

2 slots for 3 slots future used External
generated tokens (reserved) fragmentation
& A A
- N N
Artiﬁcia*nte”'g ° is the | future of technol <e0s> <resv> ... <resv> S LLM is
nce ogy
.

Y T Y )

2040 slots never used Request B
(internal fragmentation)

3 KV cache slots for

R tA
request A's prompt Ues

current step

Efficient Memory Management for Large Language Model Serving with PagedAttention (Kwon et al., 2023)
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PagedAttention

Let's adopt a similar approach to that found in virtual memory!

Memory management in OS Memory management in vLLM
Page 0 KV Block 0
Process Page 1 Process Request KV Block 1 Request
A Page 2 B A KV Block 2 B
Page 3 KV Block 3
Page 4 KV Block 4
Physical Memory KV Cache

Efficient Memory Management for Large Language Model Serving with PagedAttention (Kwon et al., 2023)

CSCI 5541 NLP




PagedAttention

Physical KV blocks

Block Table Block Table
Request computer | scientist| and mathem Request
A atician B
Logical KV blocks Artificial '"t:c'ige is | the Logical KV blocks
Alan Turing is a Artificial |Intelligence is the
computer | scientist and 'm:tcr;:?a' future of
future
Alan Turing

Efficient Memory Management for Large Language Model Serving with PagedAttention (Kwon et al., 2023)
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Examples of Modern Inference Systems
vLLM, sglang, and TensorRT-LLM are ’ L L M
all examples of inference engines

which take advantage of this approach. e
If you are serving models in any e
setting, you should use one of the

above (rather than directly
instantiating some huggingface or
pytorch model)
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https://docs.vllm.ai/en/latest/
https://github.com/sgl-project/sglang
https://github.com/NVIDIA/TensorRT-LLM
https://github.com/NVIDIA/TensorRT-LLM
https://github.com/NVIDIA/TensorRT-LLM

Speculative Decoding

e [nstandard autoregressive

decoding, we are only using @ Several @ famous (® songs (@) are -
each parameter one time

when the batch size is 1
e This means standard Small Model
decoding has a low arithmetic (#parameter N)
iIntensity and is memory
bound 0 ) d )
e \\Ne have a bunch more <s> Several famous songs

compute we could be getting
for free given how massively r
parallel GPUs are Autoregressive (sequential)

Big Little Decoder [Kim, et. al]
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Speculative Decoding

® Speculative decoding resolves

this by ‘speculating’ multiple @ Several (@ famous @) songs @) are -
tokens into the future with a

smaller, cheaper model

A % AY

Small Model
(#parameter N)

) ) ) )

<s> Several famous songs

Y
Autoregressive (sequential)

Big Little Decoder [Kim, et. al]
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Speculative Decoding Draft of potentia

next tokens

® Speculative decoding resolves
this by ‘speculating’ multiple |
tokens into the future with a | . . \
smaller, cheaper model

Small Model
(#parameter N)

) ) ) )

<s> Several famous songs

Y
Autoregressive (sequential)

Big Little Decoder [Kim, et. al]
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Speculative Decoding Draft of potentia

next tokens

® Speculative decoding resolves
this by ‘speculating’ multiple
tokens into the future with a

smaller, cheaper model

® \\e can now send this set of Small Model
tokens on to a much larger (#parameter N)
model to verify the sequence

) ) ) )

<s> Several famous songs

Y
Autoregressive (sequential)

Big Little Decoder [Kim, et. al]
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Speculative Decoding

e Because the sequence will be
run in parallel the arithmetic B iaiinead
intensity will be proportional T T T T T
to the number of draft tokens

e \We run each token through
and see if the output of the Large Model
large model matches that of (#parameter ~10N)
the smaller, draft model

I | | ] I

> <8> Several famous songs are

| J
I

Non-autoregressive (parallel)

Big Little Decoder [Kim, et. al]
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Speculative Decoding

Accept Sample Reject

e Because the sequence will be 7 / TN
run in parallel the arithmetic Several famous people  of @) composed
intensity will be proportional T T T | T

to the number of draft tokens
e \Ne run each token through
and see if the output of the Large Model
large model matches that of (#parameter ~10N)
the smaller, draft model
e \We accept the matching 1 | 1 | |

tokens > <§>  Several famous songs are

\ J
I

Non-autoregressive (parallel)

Big Little Decoder [Kim, et. al]
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Advanced Approaches

Attention mask

—
—

is has a the to good be

More advanced approaches will use draft
trees, rather than draft sequences

v
s |V |V
has v v
It (1.0)
y % a |/ v
is (0.6) has (0.2) L Y /
0.8 0.1 0.7 0.1
57 N i B % /
a(0.48)  the (0.06) to (0.14)  a(0.02)
0.7) SNl 0.6] ™SNQ2 good | V' | / 4 v
v

good (0.34) nice (0.05) be (0.08) do (0.03) be

Big Little Decoder [Kim, et. al]
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I_O g it D iSti | | ati O n Don’t use labels, use the modeling distribution of a better ‘Teacher model

to train a smaller, ‘Student’ model

/

Data

CSCI 5541 NLP




Logit Distillation

Gemrnd 3 Both Gemma3 &
Llama4 use logit

distillation during
pretraining

0N
LLAMAA4

CSCI 5541 NLP




Layer Wise Distillation (LWD)

This can be expanded to trying to match the hidden
states of the student and teacher model as well

r ------- \

| :Instance Relations
i |
I_ s _l

Distillation
Loss

Data

Instance Relations
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Output Tokens as Distillation (Synthetic Data)

DoepSeck-V3 Base
(671B/378 Actvated)

EEEEEE
e S Long CoT Data
(SFT)
ARl

i
f Reasoning Oriented RL |
GRPO + CoT Languoge

Rude-Dased Rerward Consistency Reward
(Accuracy, Formatting) | J

DeepSeekR1 outputs tokens for a given set of
Oosptect 3 e — problems. In this case ‘distillation’, just means
‘ TS ad performing Supervised fine tuning on the tokens
; create by the larger V3 Models

Qwond 5Mamh-1 58 Qwen2 5-Mah T8
Qwen2 5 140 Quwen2 5 28
Uama-3 3.708-Instruct Uama3 188
4" _ o
S#Y " Combimed

2 apochs [ | SFTData
000K samphes | (800K sampies)

. égg_

Reasoning + Preference Rewss
Dwverse Traning Prompts

3 A
DoepSeek R1Zoro DoepSeak R1.Dintill (QwenvLiama) {'B) DeepSeok R
Distilation
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Output Tokens as Distillation (Synthetic Data)

CSCI 5541 NLP

f Reasoning Oriented RL |
GRPO

Rude-Dased Rerward

(Accuracy, Formatting) |

.
DoepSeek R1Zoro

DoepSeck-V3 Base
(67T1B/378 Actvaled)

A
Supervised

| s
e | Long Co¥ Data
(5! )
. | ok samples)
i
+CoTL
Consistency Reward
\
V3
+ CS SFY + RORL
. - -
Reasoning Prompts + Pr—ee
Rejection ling | DeapSeek
(Rube based & * SFT Dats
DS-V3 a3 jxige) Lo
=5 -
| Reasosing
Data

Qwen2 SMath-1 58 Qwen2 5-Math-TB
Qwen2 5 140 Qwen2 5 28
Uama-3 3.708-Instruct Uama-3.1.88
.
85T

2 epochs
BOOx sarmphos

A
DoepSeok R1.Distill (Qwen/Liama) {'B}
Distilation

DeepSek-V3
{6718278 Actvated)

DeepSeok R

DeepSeekR1 outputs tokens for a given set of
problems. In this case ‘distillation’, just means
performing Supervised fine tuning on the tokens
create by the larger V3 Models




Output Tokens as Distillation (Synthetic Data)
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f Reasoning Oriented RL |
GRPO

Rude-Dased Rerward

(Accuracy, Formatting) |

DoepSeek R Zevo

DoepSeck-V3 Base
(671B/378 Actvated)

s " By sl |

e S Long CoT Data
(SFT)
ARl

]

+ CoT Language
Consistency Reward

DoepSoek-V) Base
+ CSSFY » RORL

' -
Reasoning Prompts +
Rejection
(Rue toves &
DSV as pxige)

| Deopseskvs |
SFT Data

Qwen2 5Mamh-1 58 Qwen2 5-Mat-TB
Quwen2 5 140 Qwen2 5 28
Uama-3 3.708-Instruct Uama-3.1.88

85T
2 epochs
BOOx sarmphos

A
DoepSeok R1.Distill (Qwen/Liama) {'B}
Distilation

DeepSeekR1 outputs tokens for a given set of
problems. In this case ‘distillation’, just means
performing Supervised fine tuning on the tokens
create by the larger V3 Models

DeepSek-V3
{57 18278 Actvated)

CoT Prompting

Most small-model
o . training today employs
i ' ) similar methods as these
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Adapter

¢ Layer Norm \ .

: . \ Add trainable

\ Transformer -

| Layer | layers after each

| ]

i Adapter "

: : feedforward layer

: 2x Feed-forward |

, layer :

| |

| ]

| ]

) ]

: Layer Norm !

| |

| % 1

| ]

’ ‘

| . ]

: : Total yum T“"“cd“ : ‘ CoLA SST MRPC STS-B QQP MNLI, MNLI,, ONLI R’I'E’Total

! Feed-forward layer ! params params / tas

! - | BERT Arce 9.0 100% 60.5 949 893 87.6 721 867 859 9.1 70. | 804

. Multi-headed ! Adapters (8-256) | 1.3x 3.6% 505 940 895 869 718 849 851 90.7 715 | 80.0
. b ¢ . -

! | attention : Adapters (64) | 1.2x 2.1% 569 942 89.6 87.3 718 853 846 91.4 688 | 79.6

\

. 4 it

Parameter-Efficient Transfer Learning for NLP [Houlsby et al, ICML 2019]
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Prompt Tuning (Soft Prompting)

Train a continuous, learnable prompt in embedding space for each task we
are training on

Prompt Tuning

. (~ Pre-trained 2 | . “positive”
Model Tuning Model 1 Prompt Tuning ‘
_ (11B params) | |
I ; ( Transformer i
:%t @ B Mixed-task ‘ -
Task A Task AModel | | Batch (c00](cee](ese] (ece] (ece] (ece] (ece)
Batch (iEReame)] |, LA Al ai s (cec] (cee)(eee) (ece) (ece) (ece) (eve)
( : | B | L_th_ Model (000 ] [(coe |(eee] (ece] (ece] (ece] (ece]
task8 [ TaskB Model | Alaz | | (11Bparams) | - ’
as asl e I
Batch (11Bparams) | 1 LC] G c2 B
. ¥ : Task Prompts (cee])(ece)(eec) ece) (ece] (ece] [ece)
a ) (20K params each) .
Task C [-53 Task C Model | ! &
Batch k(118 params)) : | like  fruits

The Power of Scale for Parameter-Efficient Prompt Tuning [Lester, ACL 2021]

CSCI 5541 NLP




LoRA

Pretrained
Weights

1 Hypothesizes that fine-tuning
results in only low rank updates

1 Thus, we may approximate the
updates themselves as low-rank
and train on this low-rank
approximation directly

The Power of Scale for Parameter-Efficient Prompt Tuning [Lester, ACL 2021]
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LoRA

Normal Finetuning:

h =W

Update W

Pretrained
Weights

= RdXd

The Power of Scale for Parameter-Efficient Prompt Tuning [Lester, ACL 2021]
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LoRA

Normal Finetuning:

h =W

Update W

Pretrained
Weights

LoRA Finetuning:

h=Wx+i

Update B,A
Leave W unchanged

The Power of Scale for Parameter-Efficient Prompt Tuning [Lester, ACL 2021]

= RdXd

102 .M
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LoRA

Model & Method | # Trainable

Parameters| MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg.
RoBpyse (FT)* 125.0M| 87.6 948 90.2 63.6 928 919 78.7 91.2 864
RoBy.. (BitFit)* 0.IM| 847 93.7 92.7 62.0 91.8 84.0 81.5 90.8 85.2
RoBhpase (AdptD)* 0.3M|87.1+0 942+ 88.54+11 60.8+4 93.1+1 90.2+0 71.5427 89.7+3 844
RoBhpase (AdptD)* 09M |87.3+1 94.7+3 8844+, 62.6+9 93.0+2 90.6+0 759422 903+, 854
ROBbasc (LORA) 0.3M 87.51‘3 95-1:t.2 89.7:1:,7 63.4;t1,z 93-3:t.3 90.81.! 86.63-_.7 91.5:t.2 87.2
RoBjye (FT)* 355.0M| 90.2 96.4 90.9 68.0 947 92.2 86.6 924 889
RoBjage (LORA) 0.8M |90.6+2 96.2+5 90.94+12 68.21+190 94943 916+, 8744125 92.6+> 89.0
RoBiage (Adpt™)t 3.0M|90.2+3 96.1+3 90.2+7 683110 94.8+2 919+, 83.8429 92.117 884
ROBiarge (Adptp)]‘ 0.8M|90.5+3 96.6+2 89.7+12 67.8+25 94.8+3 91.7+> 80.1420 91.9+4 879
ROBmgc (AdptH)T 6.0M 89.9:1:_5 96.2:t.3 88.7;};2.9 66.5;{:44 94.7*.2 92-1:t.l 83.4:“_1 91.0:tl.7 87.8
RoBiue (Adpt™)t 0.8M|90.34+3 96315 877417 663420 94742 9154, 729129 91.5:5 864
RoBjuge (LORA)T 0.8M |90.6+2 96.2+5 90.24+10 68.2+19 94.8+3 91.6+2 85.2+1, 92.3:+5 88.6
DeBxxi. (FT)* 1500.0M| 91.8 97.2 92.0 72.0 96.0 92.7 93.9 929 91.1
DCBx)(L (LORA) 4™ 91.91_2 96.91.2 92.6;};_6 72.4;;;1_1 96.0&;.! 92.93;,1 94.91:,4 93~0i.2 91.3

Table 2: RoBERTay,s., ROBERTay,ge, and DeBERTaxy; with different adaptation methods on the
GLUE benchmark. We report the overall (matched and mismatched) accuracy for MNLI, Matthew’s
correlation for CoLLA, Pearson correlation for STS-B, and accuracy for other tasks. Higher is better
for all metrics. * indicates numbers published in prior works. { indicates runs configured in a setup
similar to Houlsby et al. (2019) for a fair comparison.

The Power of Scale for Parameter-Efficient Prompt Tuning [Lester, ACL 2021]
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Efficient LLMs

J Quantization

 Sparsity

1 Long Context

 Serving & Systems

4 Distillation

 Parameter Efficient Fine-Tuning
1 Alternative Paradigms
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State Space Model (SSM)

M

/ H Computation ]
Linear %
projection

SSM Communication
Sequence é 7
transformation ()

Linearity Strikes back Conv

Nonlinearity
® (activation or

I
multiplication) \ !/ \ AH Computation ]
|

Mamba

Mamba: Linear-Time Sequence Modeling with Selective State
Spaces (Gu et. Al)
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SSM

« SSMs are growing in popularity
* Linear complexity makes them
excellent candidates for very

long tasks

 |f they can begin outperforming
transformers in practical
settings, these could displace
the transformer architecture
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Transtommers layer

1.

—

G-

l KLF

H

 —

| RMSHNorm

-

—_—

l Marnia

#

—

[ RMSMNorm

:

Mamba layer

RMSMarm
L™ .

Altanban

RMSMarm
LS

RMSMarm

bamba

e

RMSMarm

;

Mamba MoE layer
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Jamba: A Hybrid Transformer-Mamba Language Model
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TEXt DifoSion Predict multiple tokens as the same time

using a diffusion model

Latent Diffusion Model

7" 2,2

-

m Transformer Model

v
2, 2,2
v v ¥

v
(£

?
o
E
[55]
o
E
e

Denoising

v v

=
AT p

The bank announced The Bank of Scotland has announced it
the closures...in UK. is to close 23 branches in Scotland.
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World Models

Use some dense
environment signals
to predict what the
consequences of
each token prediction
IS

<|trace_context_start|>

8

n +=

return n

count("strawberry”,

("d_ef count(s, t):
n =
for ¢ in

5.
int(c == t)

“r") # =< START_OF_TRACE

~

Input source code
— I

/

<|frame_sep|>
<|action_sep|> def count(s, t):

<|frame_sep|>

s tlactlon_sepl( n=a )

§ ™~

<|action_sep|> for ¢ in s: Program step

<|call_sep|> {"s 'strawberry'", "t": "'r'"}
"]"n&_ﬁeplh {"5 L} , g
o i
(L
Gline_sem: {"s": " , "t . "n": 8"}
"l"n&_ﬁ&plb {"5 L} , "t

<|return_sep|>

<|action_sep|>

1
L =
E .n' "Nt ||--u' "t u.su.u} Ctiﬂn_ﬁepl} n+

return n

int(ec == t)
Predicted internal variable states

<|frame_sep|>

<|arg_sep|> 3"

<|frame_sep|>
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Recursive Transformers S

| Reverse Embedding
F 3

[

S

Transformer block
Add & Norm
A yd

1 Use transformers recursively to Ad o f;a/ n times: Recursively

A update latent z

Self-Attention and answer y

iteratively refine model outputs ——
1 This approach is still mostly —— j’“J - _,/
|

. . [Question] [Answer] [Reasoning] |
useful in toy settings at the /[— A

Start with
moment embedded !
question and Step 1, 2, ..., n: Update z given x, y, z
answer and {Improve the latent z)
randomly init v
latent Step n+1 : Update y given y, Z
(Improve the prediction y)

Applied N, = 16 times
(trying to improve the prediction y)
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