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Outline
❑ Annotation

o Annotation: terms, examples, and process
o Qualitative coding, recruitment, and quality assessment
o Issues in annotation
o Advanced annotation techniques
o LLMs as Annotators and Synthetic Data

❑ Evaluation:
o Properties of Good Benchmarks
o Widely Used Benchmarks and their Metrics
o Latest Benchmarks
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Annotation

❑ Just providing large amounts of data doesn’t help the model learn 
to speak. The data needs to be guided in such a way that the 
computer can more easily find patterns and inferences.

❑High-quality data means high-performance algorithms
❑Any metadata (e.g., tags, structures, categories, orders) used to 

mark up elements of the dataset is called annotation.
❑ But, in order for the algorithms to learn efficiently and effectively, 

the annotation must be accurate, and relevant to the task the 
machine is being asked to perform. 
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Terms
❑ Datasets of natural language are referred to as corpora
❑ A single set of data annotated with the same 

specification is called an annotated corpus.
❑ A dataset is a collection of examples that need to be 

annotated.
o A class is a particular classification option. 

✔ E.g., Positive or Negative and email can be Spam or Ham.
o A tag is a description name for an entity type. 

✔ E.g., Person (Jane), Country (Madagascar), Topping (Pepperoni) 
and Emotion (Fascinated).

o A response to particular question or prompt
✔ E.g., ”the answer is 4”

❑ A schema
o Everyone to use the same collection of tags and classes or pick and 

choose their own tags and classes. 
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Types of annotations

Document classification Entity annotation
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Types of annotations

Relation annotation Discourse relation annotation
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Types of annotations
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Types of annotations
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Questions for collecting the ideal dataset?
❑ What is the target accuracy you are looking for?
❑ Can it be achieved it by better models or more data?

o How many annotations are enough to ensure high accuracies? 
❑ How representative is your dataset? 

o domain vocabulary, format, genre of the text, etc
❑ How subjective is your task? Humans agree among each other?
❑ Is your dataset balanced, containing instances of each class?
❑ How clean is your dataset?
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Example Annotation: 
Semantic Type/Role Labeling
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Ms. Ramirez of QBC Productions visited Boston on 
Saturday, where she had lunch with Mr. Harris of STU 
Enterprises at 1:15 pm.

Schema
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Semantic Types

[Ms. Ramirez]Person of [QBC Productions]Organization visited 
[Boston]Place on [Saturday]Time, where she had lunch with [Mr. 
Harris]Person of [STU Enterprises]Organization at [1:15 pm]Time.
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Semantic Role Labeling (More fine-grained Semantics)
❑ Basics for Question Answering, 

o the who, what, where, and when of a sentence.

Agent The event participant that is doing or causing the event to occur
Theme/figure The event participant who undergoes a change in position or state
Experiencer The event participant who experiences or perceives something

Source The location or place from which the motion begins; the person from whom the 
theme is given

Goal The location or place to which the motion is directed or terminates
Recipient The person who comes into possession of the theme
Patient The event participant who is affected by the event

Instrument The event participant used by the agent to do or cause the event
Location/ground The location or place associated with the event itself

Schema
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The man painted the wall with a paint brush.

Mary walked to the café from her house.

John gave his mother a necklace.

My brother lives in Milwaukee.
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[The man]agent painted [the wall]patient with [a paint brush]instrument.

[Mary]figure walked to [the cafe]goal from [her house]source.

[John]agent gave [his mother]recipient [a necklace]theme.

[My brother]theme lives in [Milwaukee]location.
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Annotation process
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Annotation Development Cycle

MATTER methodology (Pustejovsky 2006)

https://www.oreilly.com/library/view/natural-language-annotation/9781449332693/ape.html#pusto2006
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Model the Phenomenon 
(a.k.a Schematization or Specification)

A model, M, can be seen as a triple, M = <T,R,I>. 
❑ A vocabulary of terms, T, 
❑ The relations between these terms, R, 
❑ Their interpretation, I. 
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Terms =  {Document_type, Spam, Not-Spam}
Relations =  {Document_type ::= Spam | Not-Spam}
Interpretation =  {   Spam = “something we don’t want!”, 

Not-Spam = “something we do want!"}
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Terms = {Named_Entity, Organization, Person, Place, Time}
Relations = {Named_Entity ::= Organization | Person | Place | Time}
Interpretation = {    Organization = “list of organizations in a database”, 

Person = “list of people in a database”, 
Place = “list of countries, geographic locations, etc.”, 
Time = “all possible dates on the calendar”}
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Annotate with the Specification

MAMA (Model-Annotate-Model-Annotate) cycle, 
or the “babeling” phase of MATTER.

• Given the specification document encoding the 
model phenomenon, now you will need to train 
human annotators to mark up the dataset 
according to the tags that are important to you.

• This process is often repetitive by running multiple 
pilot studies to make sure annotators are well 
trained and specification is clear enough to follow.
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Consistency

[QBC Productions]Organization Inc. of East Anglia

[QBC Productions Inc.]Organization of East Anglia

[QBC Productions Inc. of East Anglia]Organization

the most problematic when comparing annotations: namely, the extent or the span of the tag.

QBC Productions Inc. of East Anglia Organization
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Annotation Development Cycle

MATTER methodology (Pustejovsky 2006)

The model and the annotation 
specification are revisited in order to 
make the annotation more robust and 
reliable with use in the algorithm using 
inter-annotator agreement metrics

https://www.oreilly.com/library/view/natural-language-annotation/9781449332693/ape.html#pusto2006
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In Practice
❑ An iterative process until you reach to the 

target performance
❑ As model performance converges, you will 

face edge cases in the long tail. Analyzing 
the long-tail and updating the schema are 
painful and time-consuming, but most 
important in practice.

❑ There is no single magic deep learning 
solution in real-world tasks; If so, your task 
is relatively easy or narrowed down to a very 
specific scope
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Recruiting annotators (coders)
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Outsourcing
❑ Finding capable annotators can be a tremendous headache. 
❑ From testing, onboarding, and ensuring tax compliance to 

distributing, managing, and assessing the quality of projects, 
there’s an enormous amount of hidden labor involved in 
annotating.



CSCI 5541 NLP 28

Amazon Mechanical Turk.
UpWork
Best for finding the right freelancers to complete tasks

Best for finding people to help complete crowdsourced tasks

Prolific
Quickly find research participants you can trust.

Undergraduate students
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An institutional review board (IRB) 
is a type of committee that applies 
research ethics by reviewing the 
methods proposed for research to 
ensure that they are ethical.

Takes at least one month to get 
approval. Before approval, you 
can’t collect any human-subject 
data in your project

https://en.wikipedia.org/wiki/Institutional_review_board

https://en.wikipedia.org/wiki/Institutional_review_board
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The Empathy Tutor
A university research team built an AI “Empathy Tutor” designed 
to help medical students practice comforting patients. The data 
came from what researchers believed were fully anonymized 
therapy transcripts donated from an old hospital archive.

Months into the project, a student testing the AI noticed that the 
system sometimes used strangely specific phrases—names of 
neighborhoods, rare medical conditions, and even a date that 
matched a local news story about a patient from years ago. 
Investigators discovered that the “anonymized” transcripts were 
only lightly edited, and some patients could easily be re-
identified.

The project was suspended immediately. The IRB later 
determined that the researchers technically had permission to 
use the archived data, but the risk of re-identification made the 
study unethical, despite its benign goal.
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Annotation quality assessment
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Correctness of annotations

Observed agreement between coder 1 and 2: 60%
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Inter-annotator agreement (IAA)
❑Relative agreement is 60% in the previous example, but chance 

agreement is 20%. Agreement measures need to be corrected for 
change agreement (Carletta, 1996) 

❑ Kappa coefficient (Cohen 1960)
o 1 (agreement), 0 (no correlation), -1 (disagreement)

Corrected measure:

the probability that the raters could 
have agreed purely by chance.
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Step 1: Calculate relative agreement (po) between raters.

po = (Both said Yes + Both said No) / (Total Ratings)
= (25 + 20) / (70) = 0.6429

Yes No
Yes 25 10
No 15 20

Rater 2

Rater 1
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Step 2: Calculate the hypothetical probability of chance agreement (pe) between raters.

P (“Yes”) = ((25+10)/70) * ((25+15)/70) = 0.285714
P (“No”) = ((15+20)/70) * ((10+20)/70) = 0.214285

the probability that the raters could 
have agreed purely by chance.

Yes No
Yes 25 10
No 15 20

Rater 2

Rater 1

pe = 0.285714 + 0.214285 = 0.5
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Step 2: Calculate the hypothetical probability of chance agreement (pe) between raters.

P (“Yes”) = ((25+10)/70) * ((25+15)/70) = 0.285714
P (“No”) = ((15+20)/70) * ((10+20)/70) = 0.214285

the probability that the raters could 
have agreed purely by chance.

Yes No
Yes 25 10
No 15 20

Rater 2

Rater 1

pe = 0.285714 + 0.214285 = 0.5
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Step 3: Calculate Cohen’s Kappa

k = (po – pe) / (1 – pe)
= (0.6429 – 0.5) / (1 – 0.5)
= 0.2857

Yes No
Yes 25 10
No 15 20

Rater 2

Rater 1
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Interpretation of Cohen’s Kappa
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Types of Data
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Other IAA measures by types and their 
interpretation
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Annotation tools



CSCI 5541 NLP 42

Doccano
https://doccano.herokuapp.com/

Pros:
Easy to use
Support Teams
Open Source

Cons:
Fully manual annotation
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Brat
https://brat.nlplab.org
/

Pros:
Open source
Free

Cons:
Old-fashioned UI
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Prodigy

Pros:
Automation
Lots of features
Can train the models

Cons:
Learning Curve
Not Open Source.

https://prodi.gy/

Radically efficient machine teaching. An annotation tool powered by active learning.
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https://towardsdatascience.com/introduction-to-active-learning-117e0740d7cc

Passive vs. Active Learning

https://towardsdatascience.com/introduction-to-active-learning-117e0740d7cc
https://towardsdatascience.com/introduction-to-active-learning-117e0740d7cc
https://towardsdatascience.com/introduction-to-active-learning-117e0740d7cc
https://towardsdatascience.com/introduction-to-active-learning-117e0740d7cc
https://towardsdatascience.com/introduction-to-active-learning-117e0740d7cc
https://towardsdatascience.com/introduction-to-active-learning-117e0740d7cc
https://towardsdatascience.com/introduction-to-active-learning-117e0740d7cc
https://towardsdatascience.com/introduction-to-active-learning-117e0740d7cc
https://towardsdatascience.com/introduction-to-active-learning-117e0740d7cc
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Active learning
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Active learning

Using active learning 
gets to higher model 
accuracies with less 
labelled data
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Human annotators correct the 
model-predicted pseudo labels
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Issues in annotation
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I ordered a large chease pizza and a coke to Somehwere Blvd an hour ago!
It still isn't here!!!! What gives ?! Can you call me with an update ? 555-
555-5556

Task 1: Classify between Order or 
Complaint?
Task 2: Annotate semantic types
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Disagreement

I ordered a large chease pizza and a coke to
Somehwere Blvd an hour ago! It still isn't here!!!!
What gives ?! Can you call me with an update ?
555-555-5556

Jane reads this and thinks it’s not an 
order because the customer says the 
order has already been placed.

Bob classifies this as an order because it 
has all of the information an order would 
have.

Semantic interpretation
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Disagreement
Syntactic errors

A large cheese pizza is a pizza after all, so why
not label the whole phrase as pizza?
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Disagreement
Intents Conflict between document intent and entity tags

- This is “Complaint” intent
- So, didn’t annotate any entities because this is not an order
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Disagreement for subjective datasets

Everyone's Voice Matters: Quantifying Annotation Disagreement Using Demographic Information, AAAI 2023
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Disagreement for subjective datasets

Everyone's Voice Matters: Quantifying Annotation Disagreement Using Demographic Information, AAAI 2023
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Annotation artifacts

They used Amazon Mechanical Turk for data collection. 
Sentences in SNLI are derived from only image captions.
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Annotation artifacts
❑ They observe that hypotheses generated by this crowdsourcing process contain artifacts

that can help a classifier detect the correct class without ever observing the premise.
❑ Crowd workers adopt heuristics in order to generate hypothesis quickly and efficiently.

Annotation Artifacts (Gururangan et al., 2018)
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Advanced annotation techniques
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Adversarial NLI: A New Benchmark for Natural Language Understanding
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Bartolo et al. in Beat the AI: Investigating Adversarial Human Annotation for Reading Comprehension
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https://github.com/minnesotanlp/Quantifying-Annotation-Disagreement
Everyone's Voice Matters: Quantifying Annotation Disagreement Using Demographic Information, AAAI 2023

https://github.com/minnesotanlp/Quantifying-Annotation-Disagreement
https://github.com/minnesotanlp/Quantifying-Annotation-Disagreement
https://github.com/minnesotanlp/Quantifying-Annotation-Disagreement
https://github.com/minnesotanlp/Quantifying-Annotation-Disagreement
https://github.com/minnesotanlp/Quantifying-Annotation-Disagreement
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Annotation Imputation

Annotation Imputation to Individualize Predictions: Initial Studies on Distribution Dynamics and Model Predictions, NLPerspectives @ECAI 2023

https://www.youtube.com/watch?v=xO1ksJ9AW-w&ab_channel=LondonLowmanstoneIV

https://www.youtube.com/watch?v=xO1ksJ9AW-w&ab_channel=LondonLowmanstoneIV
https://www.youtube.com/watch?v=xO1ksJ9AW-w&ab_channel=LondonLowmanstoneIV
https://www.youtube.com/watch?v=xO1ksJ9AW-w&ab_channel=LondonLowmanstoneIV
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Mind Your Outliers! Investigating the Negative Impact of Outliers on Active 
Learning for Visual Question Answering, Karamcheti et al, 2021

Dataset Cartography: Mapping and Diagnosing Datasets with 
Training Dynamics, Swayamdipta et al., 2020
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Collaborative Annotation

WANLI: Worker and AI Collaboration for Natural Language Inference Dataset Creation
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LLMs as Annotators and Synthetic Data
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ChatGPT as Annotators

ChatGPT Outperforms Crowd-Workers for Text-Annotation Tasks https://arxiv.org/abs/2303.15056

https://arxiv.org/abs/2303.15056
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LLMs as Annotators

Artificial Artificial Artificial Intelligence: Crowd Workers Widely Use Large Language Models for Text 

Production Tasks https://ar5iv.labs.arxiv.org/html/2306.07899

https://ar5iv.labs.arxiv.org/html/2306.07899
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High quality data is all you need

Chinchilla: Training Compute-Optimal Large Language Models , 2203.15556

Textbooks Are All You Need, 2306.11644
LIMA: Less Is More for Alignment 2305.11206

❑ Chinchilla shows that 70B model could beat 
350B models, if it was trained on more tokens 
(1.4 Trillion tokens)

❑ Data quality could break the scaling laws. 
❑ Synthetic data (code exercises) filtered with a 

GPT4-generated quality rating (educational 
value)
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Summary
❑ Tedious annotation tasks will be replaced by AI
❑ Human annotation is subjective, inconsistent, and time-consuming.
❑ Annotation setup is important to reduce potential biases and artifacts.
❑ Lack of dataset for LLM training by Big Techs
❑ Potentials and Risks of using synthetic data for AI training
❑ Human-AI collaborative data annotation and evaluation



CSCI 5541: Natural Language Processing
Lecture 17: Modern Evaluation
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Outline
❑ Annotation

o Annotation: terms, examples, and process
o Qualitative coding, recruitment, and quality assessment
o Issues in annotation
o Advanced annotation techniques
o LLMs as Annotators and Synthetic Data

❑ Evaluation:
o Properties of Good Benchmarks
o Widely Used Benchmarks and their Metrics
o Latest Benchmarks
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Why do we need Benchmarks?
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Track Progress to Compare Performance
❑ Given two models (Model A and Model B), which is better?

Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. arXiv preprint arXiv:2501.12948.

Gpt-4 technical report. arXiv preprint arXiv:2303.08774.
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Track Progress to Compare Performance
❑ How good are open source LLMs compared to proprietary LLMs
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Properties of Good Benchmarks
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Properties of Good Benchmarks

❑ Difficulty
❑ Diversity
❑ Usefulness
❑ Reproducibility
❑ Data Contamination
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Difficulty
❑ Are the problems sufficiently difficult to distinguish the capable models 

from those which are less capable?

https://x.com/_jasonwei/status/1889096555254456397
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Diversity
❑ Are the problems diverse enough to ensure that the model is effectively 

being evaluated on its ability to handle a wide range of queries?

MixEval: Deriving Wisdom of the Crowd from LLM Benchmark Mixtures. arXiv preprint arXiv:2406.06565
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Usefulness
❑ Does achieving a high score on the benchmark have actual meaning? Is it 

correlated with something usable in the real world?
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Usefulness
❑ Does achieving a high score on the benchmark have actual meaning? Is it 

correlated with something usable in the real world?
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Reproducibility and Reliability
❑ Can the model achieve similar scores across multiple test runs/evaluations, 

ensuring a fair performance comparison between different models?

Quantifying Language Models' Sensitivity to Spurious Features in Prompt Design or: How I learned to start worrying about prompt formatting.
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Reproducibility and Reliability
❑ Can the model achieve similar scores across multiple test runs/evaluations, 

ensuring a fair performance comparison between different models?
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Reproducibility and Reliability
❑ Can the model achieve similar scores across multiple test runs/evaluations, 

ensuring a fair performance comparison between different models?
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Reproducibility and Reliability
❑ Can the model achieve similar scores across multiple test runs/evaluations, 

ensuring a fair performance comparison between different models?
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Reproducibility and Reliability
❑ Can the model achieve similar scores across multiple test runs/evaluations, 

ensuring a fair performance comparison between different models?
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Data Contamination
❑ How can we ensure that we are evaluating their ability to generalize to unseen novel 

tasks rather than memorizing similar problem encountered during training?

Scaling instruction finetuned language models. Journal of Machine Learning Research, 25(70), pp.1-53.
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Data Contamination

A careful examination of large language model performance on grade school arithmetic. arXiv preprint arXiv:2405.00332.
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Widely Used Benchmarks and their 

Metrics
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Multiple-Choice QA (Classification)
❑ (Recap) Benchmarks saturate over time
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Multiple-Choice QA (Classification)
❑ HellaSwag: Commonsense reasoning around everyday events

Zellers, R., Holtzman, A., Bisk, Y., Farhadi, A. and Choi, Y., 2019, July. HellaSwag: Can a Machine Really Finish Your Sentence?. In Proceedings of 

the 57th Annual Meeting of the Association for Computational Linguistics (pp. 4791-4800).
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Multiple-Choice QA (Classification)
❑ MMLU: Multiple-choice questions in 57 subjects (professional & academic)

Measuring Massive Multitask Language Understanding. In International Conference on Learning Representations
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Multiple-Choice QA (Classification)
❑ MMLU: Multiple-choice questions in 57 subjects (professional & academic)

Measuring Massive Multitask Language Understanding. In International Conference on Learning Representations
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Multiple-Choice QA (Classification)
❑ MMLU-Pro: Harder MMLU with 4~10 options to choose from.

Mmlu-pro: A more robust and challenging multi-task language understanding benchmark. arXiv preprint arXiv:2406.01574.
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Multiple-Choice QA (Classification)
❑ The trend of developing increasingly challenging benchmarks continue
❑ Open Research Question: How can we come up with more challenging 

benchmarks as LMs become as intelligent as or even surpass humans?
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Generation Tasks
❑ As humans, we don’t present LMs with four options to choose from

❑ However, assessing free form responses is more challenging than choosing 
from among a set of four options, where accuracy can be used as the 
metric
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Generation Tasks
❑ GSM8k: Grade School mathematics questions

o For math word problems, the answer is a numeric value, so we could use Exact 
Match (EM).

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H., Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano, R. and Hesse, C., 2021. Training 

verifiers to solve math word problems. arXiv preprint arXiv:2110.14168.
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Generation Tasks
❑ HumanEval: Python Coding Tasks

o For LeetCode-style coding problems, we can execute the code and verify whether it 
passes all test cases (i.e., pass@k).

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H.P.D.O., Kaplan, J., Edwards, H., Burda, Y., Joseph, N., Brockman, G. and Ray, A., 2021. Evaluating 

large language models trained on code. arXiv preprint arXiv:2107.03374.
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Evaluation for Open-Ended Generation Tasks
❑ LLM-as-judge: Prompt a LM to 

provide a judgment (e.g., “3 out of 
5”, A is better than B)

Zheng, L., Chiang, W.L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E. and Zhang, H., 2024. Judging llm-as-a-judge with 

mtbench and chatbot arena. Advances in Neural Information Processing Systems, 36.
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Generation Tasks
❑ AlpacaEval: Calculate the win-rate against a reference model on open-ended generation tasks
❑ LMSys Chatbot Arena: Ask humans to vote which response is better

2024. Length-controlled alpacaeval: A simple debiasing of automatic evaluators. 
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Latest Benchmarks
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US Math Olympiad Questions
❑ Very novel questions (likely chance of data contamination is low)
❑ Very challenging questions

https://arxiv.org/abs/2503.21934v1
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US Math Olympiad Questions
❑ Replicate entire papers

https://cdn.openai.com/papers/22265bac-3191-44e5-b057-7aaacd8e90cd/paperbench.pdf



CSCI 5541 NLP 103

ZeroBench
❑ Challenging multimodal question-answering dataset

https://arxiv.org/pdf/2502.09696
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ZeroBench

https://arxiv.org/pdf/2502.09696
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Humanity’s Last Exam (HLE)
❑ Challenging multimodal question-answering dataset

https://agi.safe.ai/
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Humanity’s Last Exam (HLE)
❑ Challenging multimodal question-answering dataset

https://agi.safe.ai/
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OSWorld: Computer Use

https://os-world.github.io/
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CyBench: Cybersecurity Benchmark

https://cybench.github.io/
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Re-Bench: ML Engineering

https://metr.org/blog/2024-11-22-evaluating-r-d-capabilities-of-llms/
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Re-Bench: ML Engineering

https://metr.org/blog/2024-11-22-evaluating-r-d-capabilities-of-llms/
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KernelBench
❑ Optimize CUDA kernel
❑ Shouldn’t suffer from same level of ‘plateaus’ as in other benchmarks 

https://arxiv.org/pdf/2502.10517
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KernelBench

https://arxiv.org/pdf/2502.10517
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KernelBench

https://arxiv.org/pdf/2502.10517
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Arc-AGI-2
❑ Tests compositional capabilities
❑ Less clear utility on downstream 

tasks
❑ Very challenging for AI systems
❑ Measured with efficiency in mind

https://arcprize.org/
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Latest Benchmarks
❑ Arc-AGI-2

https://arcprize.org/
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