# CSCI 5541: Natural Language Processing

#### **Lecture 14: Data and Evaluation**







## Outline

- Annotation
  - Annotation: terms, examples, and process
  - o Qualitative coding, recruitment, and quality assessment
  - Issues in annotation
  - Advanced annotation techniques
  - LLMs as Annotators and Synthetic Data
- Evaluation:
  - Properties of Good Benchmarks
  - Widely Used Benchmarks and their Metrics
  - Latest Benchmarks

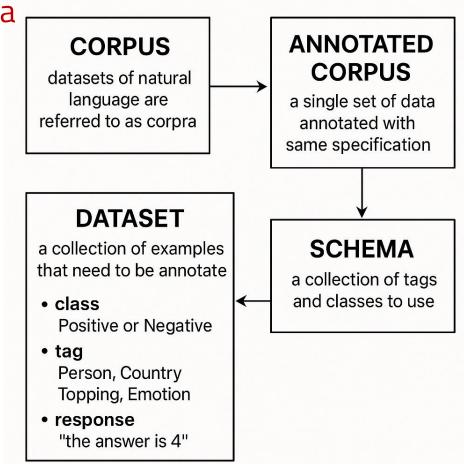


## Annotation

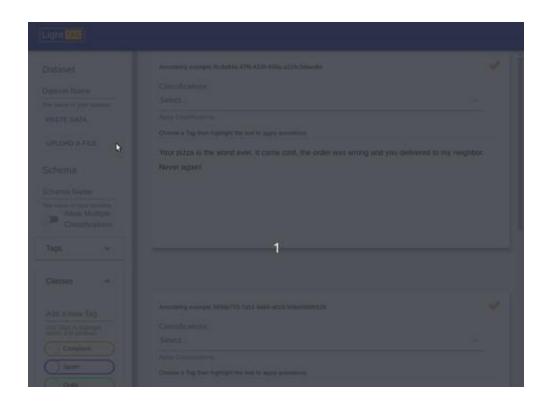
- □ Just providing large amounts of data doesn't help the model learn to speak. The data needs to be guided in such a way that the computer can more easily find patterns and inferences.
- ☐ High-quality data means high-performance algorithms
- □ Any metadata (e.g., tags, structures, categories, orders) used to mark up elements of the dataset is called annotation.
- But, in order for the algorithms to learn efficiently and effectively, the annotation must be accurate, and relevant to the task the machine is being asked to perform.

## Terms

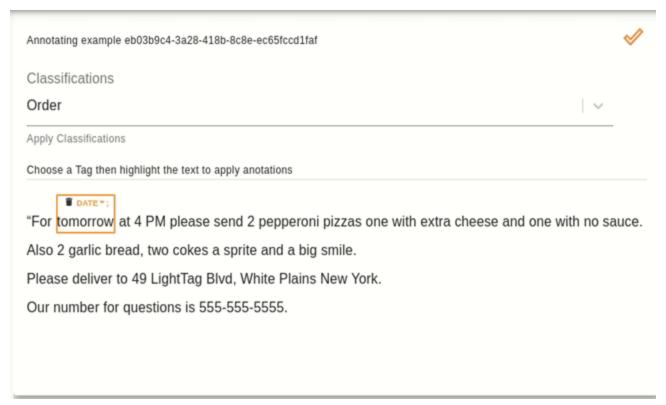
- ☐ Datasets of natural language are referred to as corpora
- ☐ A single set of data annotated with the *same* specification is called an **annotated** corpus.
- ☐ A dataset is a collection of examples that need to be annotated.
  - A class is a particular classification option.
    - ✓ E.g., Positive or Negative and email can be Spam or Ham.
  - A tag is a description name for an entity type.
    - ✓ E.g., Person (Jane), Country (Madagascar), Topping (Pepperoni) and Emotion (Fascinated).
  - A response to particular question or prompt
    - ✓ E.g., "the answer is 4"
- A schema
  - Everyone to use the same collection of tags and classes or pick and choose their own tags and classes.



M



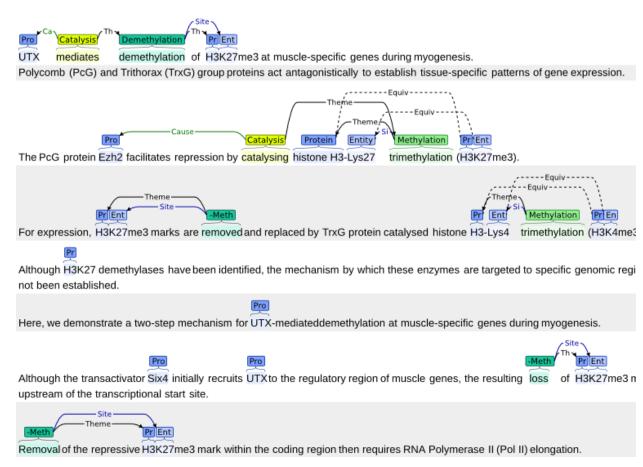
Document classification



Entity annotation



Relation annotation



Discourse relation annotation

#### **Premise**

Russian cosmonaut Valery Polyakov set the record for the longest amount of time spent in space.

## **Hypothesis**

Russians hold the record for the longest stay in space.

### **Target**

Entailment Not entailment



#### Options:

- yes
- no

## **Template 1**

Russian Cosmonaut Valery Polyakov set the record for the longest amount of time spent in space.

Based on the paragraph above, can we conclude that

Russians hold the record for the longest stay in space?

**OPTIONS** 

- -yes
- -no

## Template 2

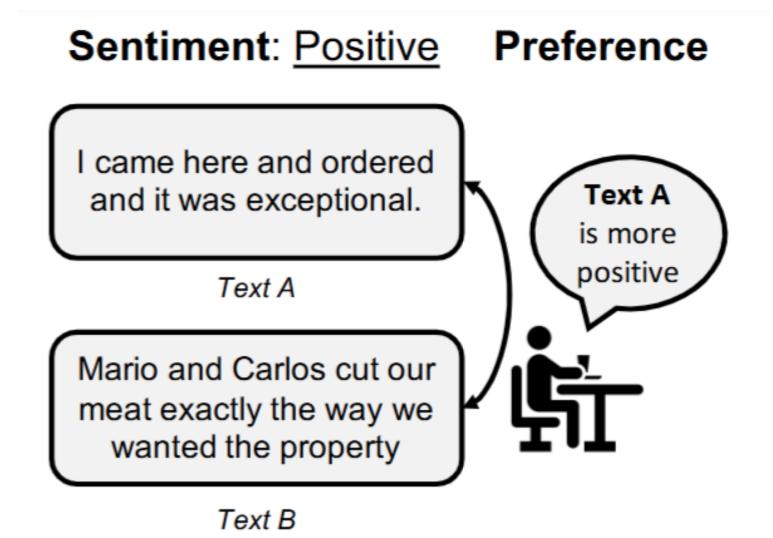
Read the following and determine if the hypothesis can be inferred from the premise:

Hypothesis: <hypothesis>

<options>

## <u> Template 3, ...</u>

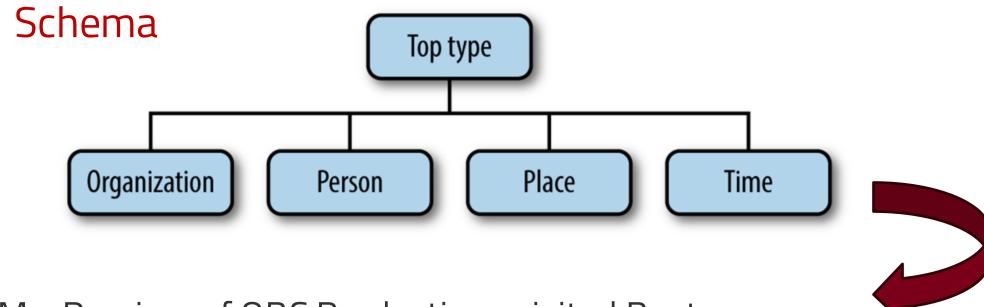




# Questions for collecting the ideal dataset?

- ☐ What is the target accuracy you are looking for?
- □ Can it be achieved it by better models or more data?
  - How many annotations are enough to ensure high accuracies?
- □ How representative is your dataset?
  - o domain vocabulary, format, genre of the text, etc
- ☐ How subjective is your task? Humans agree among each other?
- ☐ Is your dataset balanced, containing instances of each class?
- ☐ How clean is your dataset?

# Example Annotation: Semantic Type/Role Labeling



Ms. Ramirez of QBC Productions visited Boston on Saturday, where she had lunch with Mr. Harris of STU Enterprises at 1:15 pm.

# Semantic Types

[Ms. Ramirez]<sub>Person</sub> of [QBC Productions]<sub>Organization</sub> visited [Boston]<sub>Place</sub> on [Saturday]<sub>Time</sub>, where she had lunch with [Mr. Harris]<sub>Person</sub> of [STU Enterprises]<sub>Organization</sub> at [1:15 pm]<sub>Time</sub>.

# Semantic Role Labeling (More fine-grained Semantics)

Basics for Question Answering,

o the who, what, where, and when of a sentence.

## Schema

| Agent           | The event participant that is doing or causing the event to occur                           |
|-----------------|---------------------------------------------------------------------------------------------|
| Theme/figure    | The event participant who undergoes a change in position or state                           |
| Experiencer     | The event participant who experiences or perceives something                                |
| Source          | The location or place from which the motion begins; the person from whom the theme is given |
| Goal            | The location or place to which the motion is directed or terminates                         |
| Recipient       | The person who comes into possession of the theme                                           |
| Patient         | The event participant who is affected by the event                                          |
| Instrument      | The event participant used by the agent to do or cause the event                            |
| Location/ground | The location or place associated with the event itself                                      |

14

The man painted the wall with a paint brush.

Mary walked to the café from her house.

John gave his mother a necklace.

My brother lives in Milwaukee.

## [The man]<sub>agent</sub> painted [the wall]<sub>patient</sub> with [a paint brush]<sub>instrument</sub>.

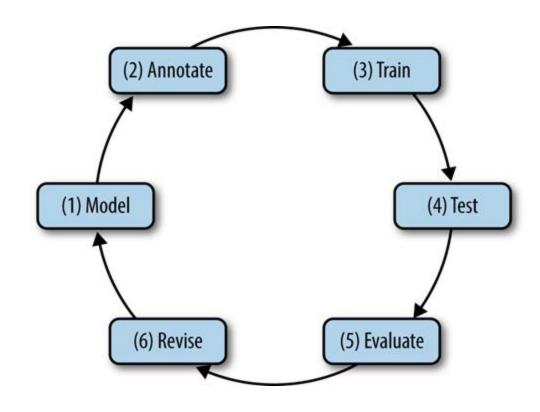
[Mary]<sub>figure</sub> walked to [the cafe]<sub>goal</sub> from [her house]<sub>source</sub>.

[John]<sub>agent</sub> gave [his mother]<sub>recipient</sub> [a necklace]<sub>theme</sub>.

[My brother]<sub>theme</sub> lives in [Milwaukee]<sub>location</sub>.

# Annotation process

# Annotation Development Cycle



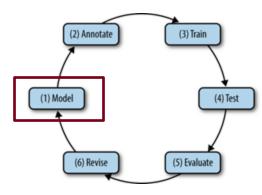
MATTER methodology (Pustejovsky 2006)

## Model the Phenomenon

(a.k.a Schematization or Specification)

A model, M, can be seen as a triple,  $M = \langle T, R, I \rangle$ .

- A vocabulary of terms, T,
- ☐ The relations between these terms, R,
- ☐ Their interpretation, I.



```
Terms = {Document_type, Spam, Not-Spam}

Relations = {Document_type ::= Spam | Not-Spam}

Interpretation = { Spam = "something we don't want!",

Not-Spam = "something we do want!"}
```

```
Terms = {Named_Entity, Organization, Person, Place, Time}

Relations = {Named_Entity ::= Organization | Person | Place | Time}

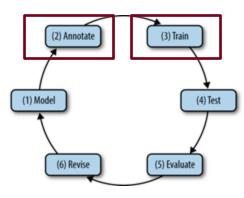
Interpretation = { Organization = "list of organizations in a database",

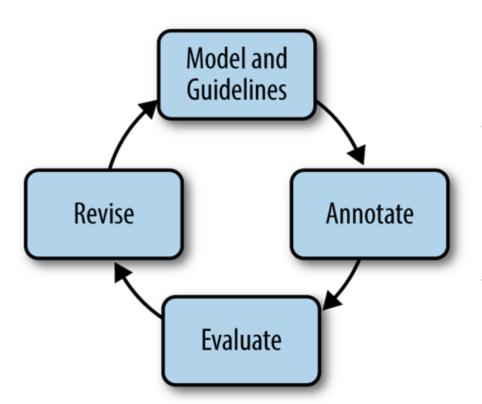
Person = "list of people in a database",

Place = "list of countries, geographic locations, etc.",

Time = "all possible dates on the calendar"}
```

# Annotate with the Specification





- Given the specification document encoding the model phenomenon, now you will need to train human annotators to mark up the dataset according to the tags that are important to you.
- This process is often repetitive by running multiple pilot studies to make sure annotators are well trained and specification is clear enough to follow.

MAMA (Model-Annotate-Model-Annotate) cycle, or the "babeling" phase of MATTER.

# Consistency

(2) Annotate (3) Train (4) Test (5) Evaluate

the most problematic when comparing annotations: namely, the extent or the span of the tag.



Organization



[QBC Productions]<sub>Organization</sub> Inc. of East Anglia

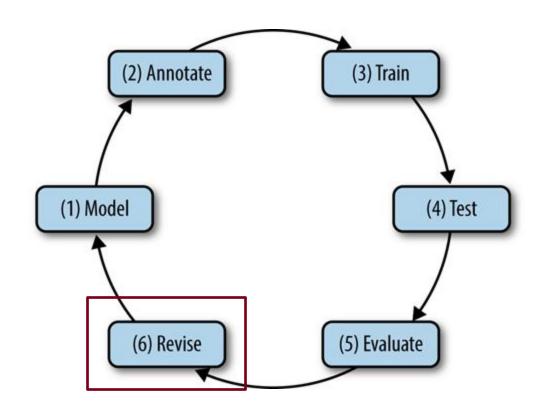


[QBC Productions Inc.]<sub>Organization</sub> of East Anglia



[QBC Productions Inc. of East Anglia]<sub>Organization</sub>

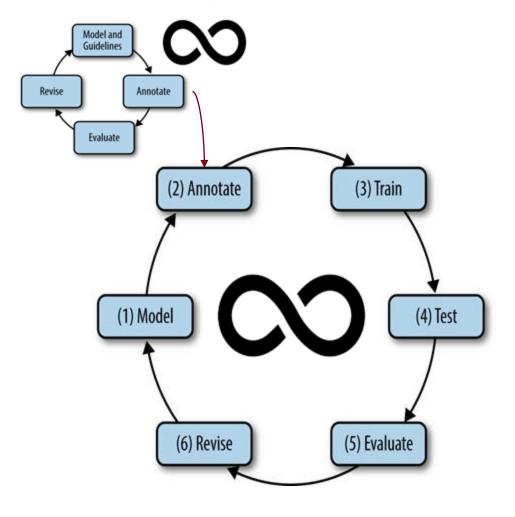
# Annotation Development Cycle



The model and the annotation specification are revisited in order to make the annotation more **robust** and **reliable** with use in the algorithm using **inter-annotator agreement metrics** 

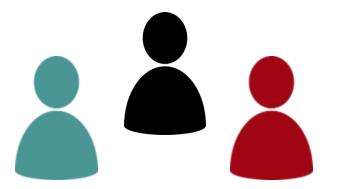
MATTER methodology (Pustejovsky 2006)

## In Practice



- An iterative process until you reach to the target performance
- As model performance converges, you will face edge cases in the long tail. Analyzing the long-tail and updating the schema are painful and time-consuming, but most important in practice.
- ☐ There is no single magic deep learning solution in real-world tasks; If so, your task is relatively easy or narrowed down to a very specific scope

# Recruiting annotators (coders)



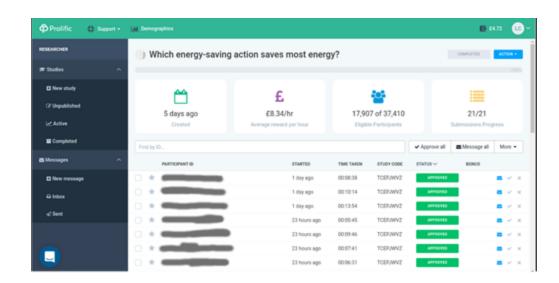
# Outsourcing

- ☐ Finding capable annotators can be a tremendous headache.
- ☐ From testing, onboarding, and ensuring tax compliance to distributing, managing, and assessing the quality of projects, there's an enormous amount of hidden labor involved in annotating.



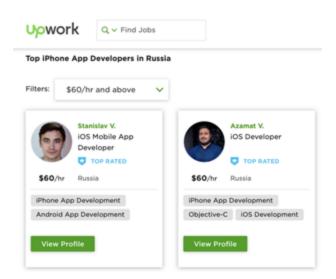
#### Amazon Mechanical Turk.

Best for finding people to help complete crowdsourced tasks



#### Prolific

Quickly find research participants you can trust.



#### UpWork

Best for finding the right freelancers to complete tasks

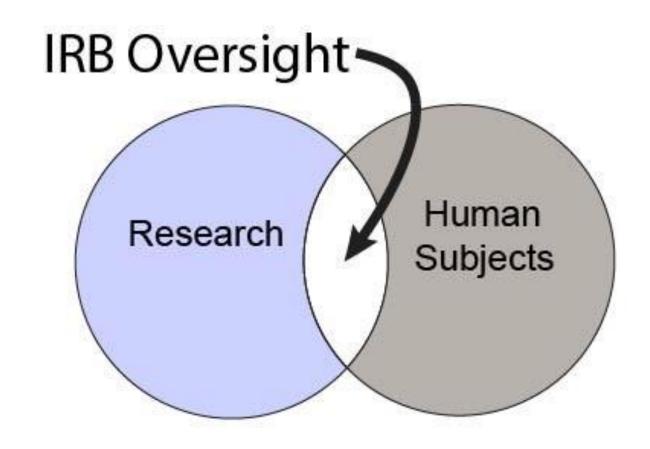


Undergraduate students

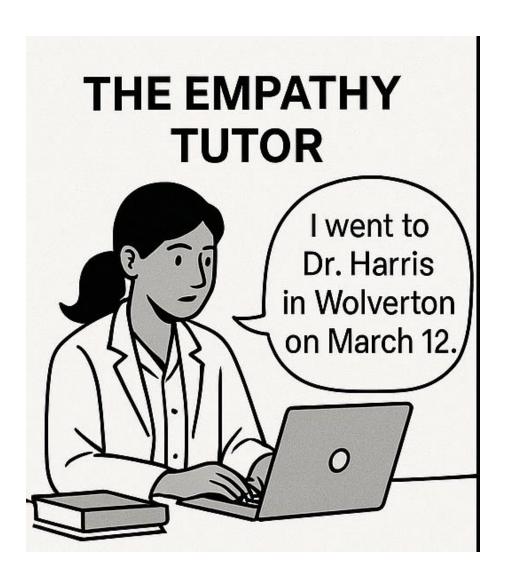
28

An institutional review board (IRB) is a type of committee that applies research ethics by reviewing the methods proposed for research to ensure that they are ethical.

Takes at least one month to get approval. Before approval, you can't collect any human-subject data in your project



About Us v ETHOS v How to Submit v Toolkit Library v Education & Training v



#### The Empathy Tutor

A university research team built an AI "Empathy Tutor" designed to help medical students practice comforting patients. The data came from what researchers believed were fully anonymized therapy transcripts donated from an old hospital archive.

Months into the project, a student testing the AI noticed that the system sometimes used strangely specific phrases—names of neighborhoods, rare medical conditions, and even a date that matched a local news story about a patient from years ago. Investigators discovered that the "anonymized" transcripts were only lightly edited, and some patients could easily be reidentified.

The project was suspended immediately. The IRB later determined that the researchers technically had *permission* to use the archived data, but the **risk of re-identification made the study unethical**, despite its benign goal.

30

# Annotation quality assessment

## Correctness of annotations

| .abel | Meaning                        | Evidence from table                  |
|-------|--------------------------------|--------------------------------------|
|       | Introduction / Problem framing | "We address the problem"             |
|       | Purpose / Aim                  | "Our aim is to"                      |
| И     | Method / Technical description | "[A] is set up as prior information" |
| ?     | Result / Conclusion            | "It is shown that"                   |

| Sentence                                                                                                                               | Coder<br>1 | Coder<br>2 | Agreement |
|----------------------------------------------------------------------------------------------------------------------------------------|------------|------------|-----------|
| We address the problem of recognition                                                                                                  | I          | Р          | ×         |
| Our aim is torecognize [x] from [y].                                                                                                   | P          | Р          | ✓         |
| [A] is set up as prior information, and its pose is determined by three parameters, which are [j,k and l].                             | М          | M          | ✓         |
| An efficient local gradient-based method is proposed to, which is combined into framework to estimate [V and W] by iterative evolution | Р          | R          | ×         |
| It is shown that the local gradient-based method can evaluate accurately and efficiently [V and W] .                                   | R          | R          | ✓         |

Observed agreement between coder 1 and 2: 60%

M

# Inter-annotator agreement (IAA)

the probability that the raters could have agreed purely by chance.

□ Relative agreement is 60% in the previous example, but chance agreement is 20%. Agreement measures need to be corrected for change agreement (Carletta, 1996)

- ☐ Kappa coefficient (Cohen 1960)
  - 1 (agreement), 0 (no correlation), -1 (disagreement)

$$K = \frac{P(A) - P(E)}{1 - P(E)} = \frac{0.6 - 0.2}{1 - 0.2} = 0.5$$

Step 1: Calculate relative agreement (p<sub>o</sub>) between raters.

Rater 2

|     | Yes | No |
|-----|-----|----|
| Yes | 25  | 10 |
| No  | 15  | 20 |

Rater 1

$$p_o = (Both said Yes + Both said No) / (Total Ratings)$$
  
=  $(25 + 20) / (70) = 0.6429$ 

# the probability that the raters could have agreed purely by chance.

Step 2: Calculate the hypothetical probability of chance agreement (p<sub>e</sub>) between raters.

|         | Rater 2 |  |     |    |  |
|---------|---------|--|-----|----|--|
|         |         |  | Yes | No |  |
| Rater 1 | Yes     |  | 25  | 10 |  |
|         | No      |  | 15  | 20 |  |
|         |         |  |     |    |  |

$$p_e = 0.285714 + 0.214285 = 0.5$$

# the probability that the raters could have agreed purely by chance.

Step 2: Calculate the hypothetical probability of chance agreement (p<sub>e</sub>) between raters.

|         |     | Rater 2 |    |  |  |
|---------|-----|---------|----|--|--|
|         |     | Yes     | No |  |  |
| Rater 1 | Yes | 25      | 10 |  |  |
|         | No  | 15      | 20 |  |  |

$$P("Yes") = ((25+10)/70) * ((25+15)/70) = 0.285714$$
  
 $P("No") = ((15+20)/70) * ((10+20)/70) = 0.214285$ 

$$p_e = 0.285714 + 0.214285 = 0.5$$

#### Step 3: Calculate Cohen's Kappa

Rater 2

|     | Yes | No |
|-----|-----|----|
| Yes | 25  | 10 |
| No  | 15  | 20 |

Rater 1

$$K = \frac{P(A) - P(E)}{1 - P(E)}$$

$$k = (p_o - p_e) / (1 - p_e)$$

$$= (0.6429 - 0.5) / (1 - 0.5)$$

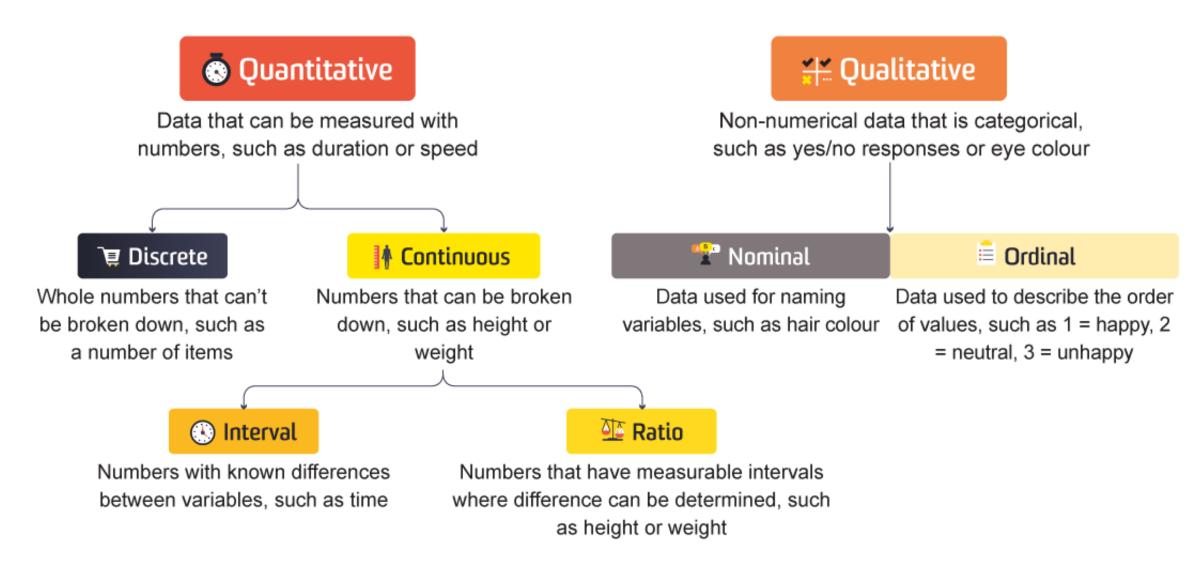
$$= 0.2857$$

## Interpretation of Cohen's Kappa



| Value Range | Cohen's Interpretation   |
|-------------|--------------------------|
| Below 0.20  | None to slight agreement |
| .21–.39     | Fair agreement           |
| .40–.59     | Moderate agreement       |
| .60–.79     | Substantial agreement    |
| .80–.90     | Almost perfect agreement |
| Above .90   | Almost perfect agreement |

## Types of Data



# Other IAA measures by types and their interpretation

| Comparison of IRR indices in presence of research limitations |          |                 |                     |                                                   |                                                                  |
|---------------------------------------------------------------|----------|-----------------|---------------------|---------------------------------------------------|------------------------------------------------------------------|
| IRR                                                           | Data     | Missing<br>Data | Number<br>of Raters | The effect of 'chance' in agreement is minimized? | General agreement<br>on the significance<br>of a numeric result? |
| Cohen's Kappa                                                 | Nominal  | No              | 2                   | No *                                              | No                                                               |
| Fleiss's Kappa                                                | Nominal  | No              | 2≥                  | No *                                              | No                                                               |
| Krippendorff's Alpha                                          | All Data | Yes             | 2≥                  | Yes                                               | Yes **                                                           |

<sup>\*\*</sup> Krippendorff's Alpha considers 0.823 as the cut point.

- Landis and Koch (1977)
- 0.6-0.79 substantial;

0.8+ perfect

Krippendorff (1980)

0.67-0.79 tentative;

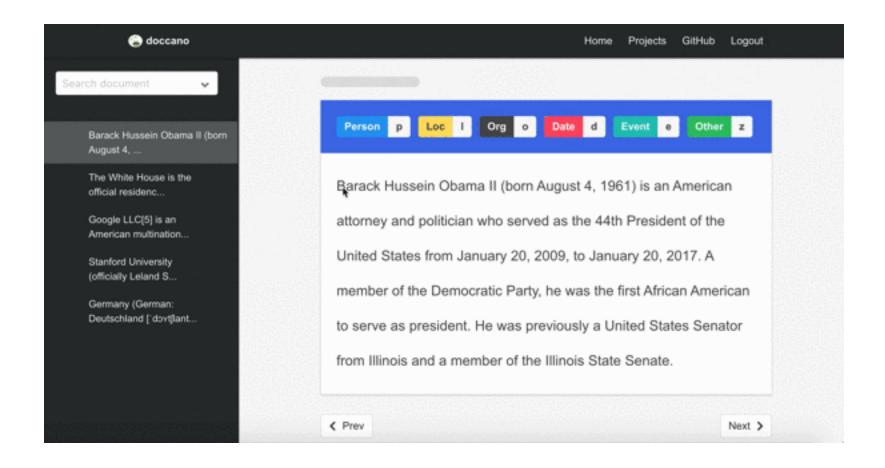
0.8+ good

Green (1997)

0.4-0.74 fair/good; 0.75 high

## Annotation tools

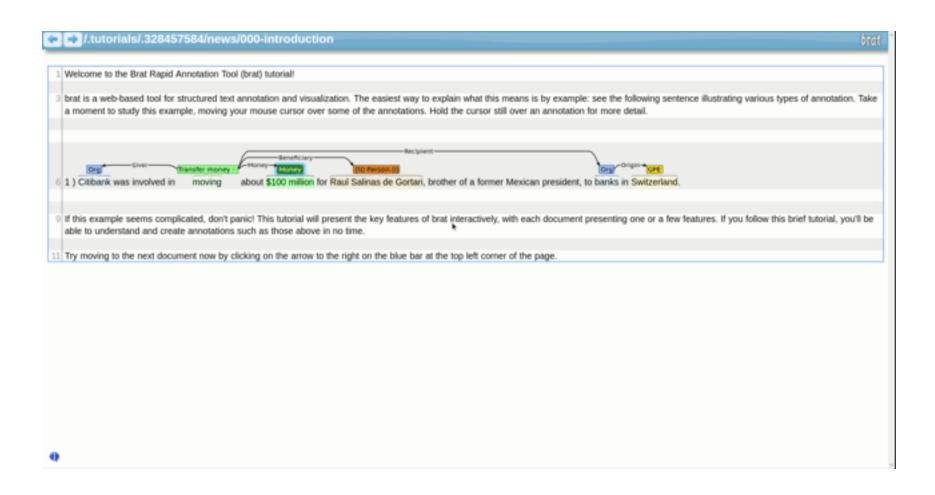
#### Doccano



Pros: Easy to use Support Teams Open Source

Cons: Fully manual annotation

#### Brat



Pros: Open source Free

Cons: Old-fashioned UI

## Prodigy

Radically efficient machine teaching. An annotation tool powered by active learning.



Pros: Automation

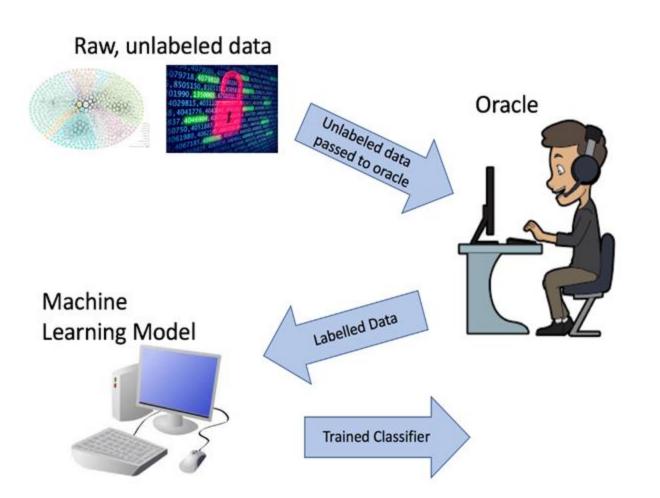
Lots of features

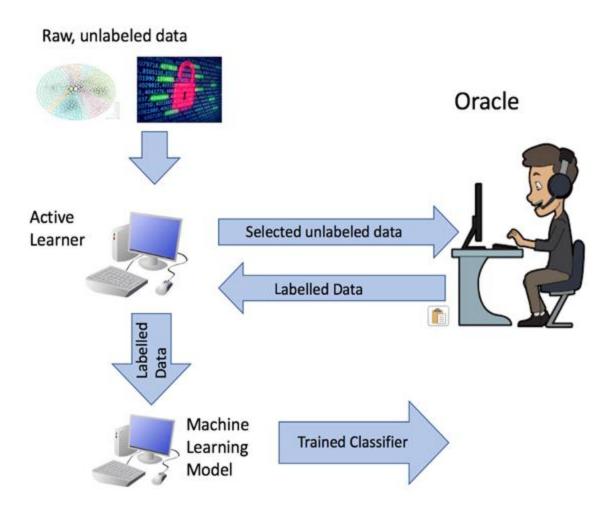
Can train the models

Cons:

Learning Curve Not Open Source.

## Passive vs. Active Learning

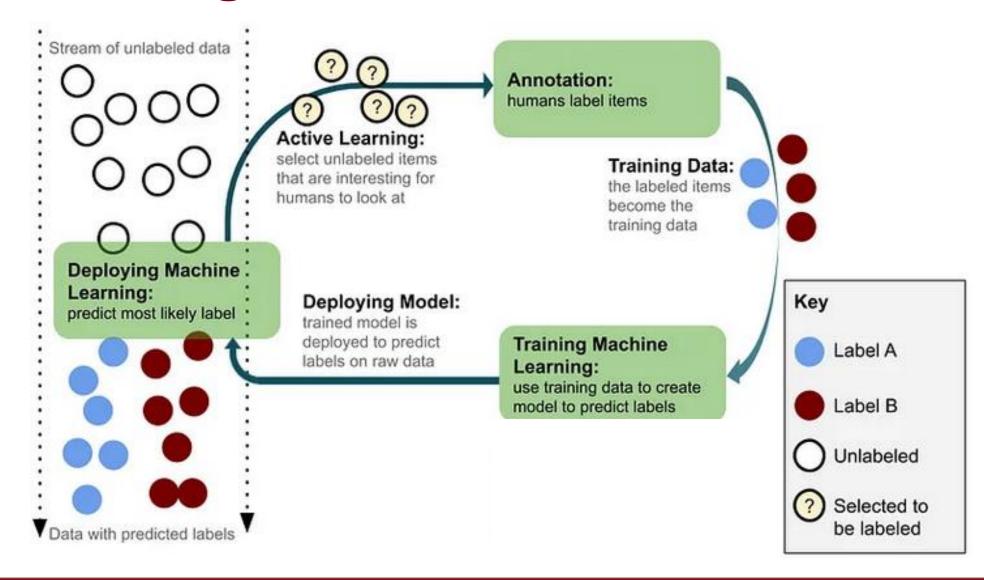




https://towardsdatascience.com/introduction-to-active-learning-117e0740d7cc

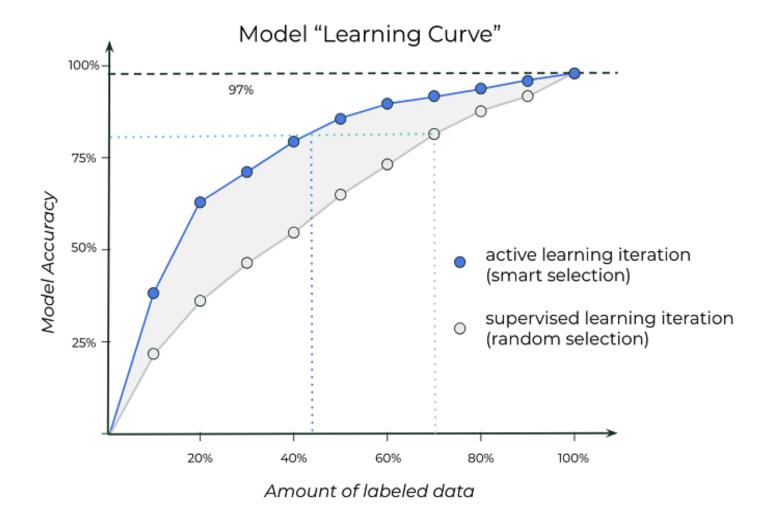


## Active learning

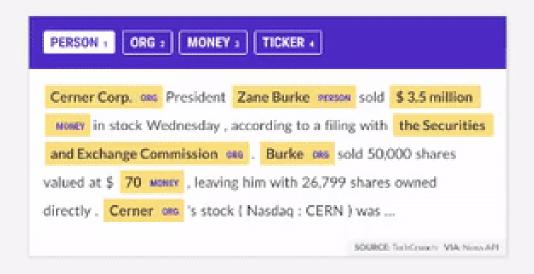


## Active learning

Using active learning gets to higher model accuracies with less labelled data







Human annotators correct the model-predicted pseudo labels



## Issues in annotation



Task 1: Classify between Order or Complaint?

Task 2: Annotate semantic types

I ordered a large chease pizza and a coke to Somehwere Blvd an hour ago! It still isn't here!!!! What gives ?! Can you call me with an update ? 555-556







## Disagreement

Semantic interpretation



Jane reads this and thinks it's not an order because the customer says the order has already been placed.



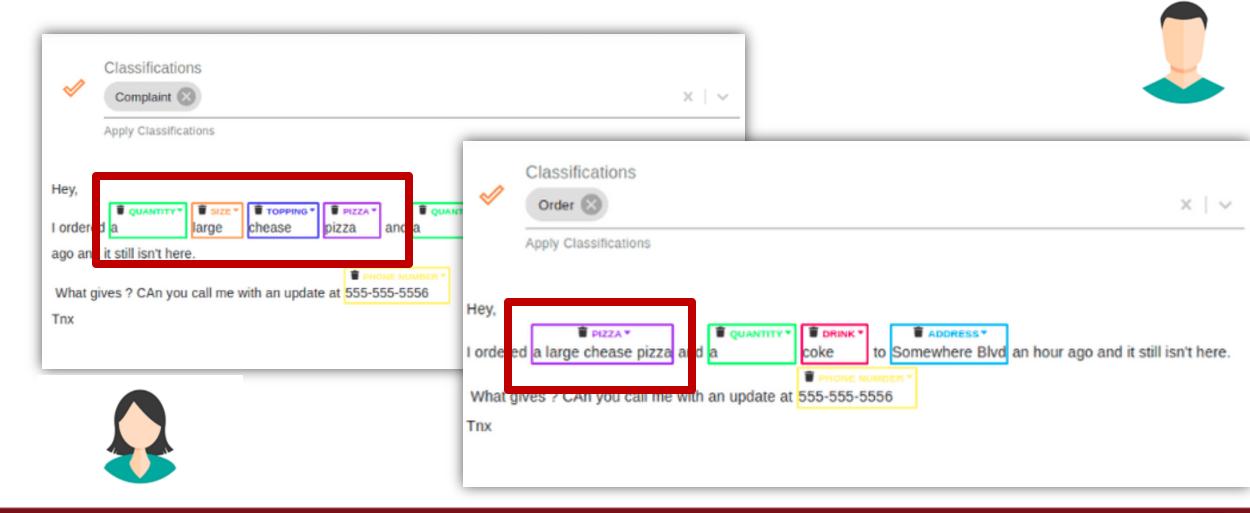
I ordered a large chease pizza and a coke to Somehwere Blvd an hour ago! It still isn't here!!!! What gives ?! Can you call me with an update ? 555-555-556

Bob classifies this as an order because it has all of the information an order would have.

## Disagreement

Syntactic errors

A large cheese pizza is a pizza after all, so why not label the whole phrase as pizza?

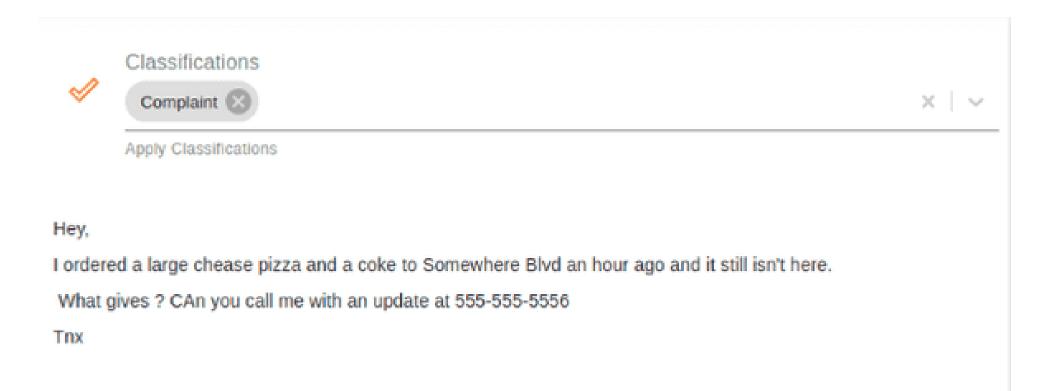


## Disagreement

Intents

Conflict between document intent and entity tags

- This is "Complaint" intent
- So, didn't annotate any entities because this is not an order



## Disagreement for subjective datasets

| Datasets   | Text                                                                                                                                                                                                | Annotation Distribution                                                                                                                                                          | Disagreement Label |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Dilemmas   | 1st action: "refusing to do a survey on the credit card<br>reader while paying with cash at the Office Max."<br>2nd action: "saying my bf has no right to dictate<br>who I tell about my abortion." | 1 annotator votes for the <u>first action</u> is less ethical while 4 others vote the <u>second action</u> is less ethical → Aggregated Label: <b>2nd action is less ethical</b> | Continuous: 1/5    |
| Dynasent   | "Had to remind him to toast the sandwich."                                                                                                                                                          | 4 annotators believe it's <u>negative</u> while one think it is <u>neutral</u> → Aggregated Label: <b>negative</b>                                                               |                    |
| Politeness | "Where did you learn English?<br>How come you're taking on a third language?"                                                                                                                       | 5 annotators politeness scores are 5, 13, 9, 11, 11 with the maximum of 25.  → Aggregated Label: impolite                                                                        | Continuous: 0      |

Everyone's Voice Matters: Quantifying Annotation Disagreement Using Demographic Information, AAAI 2023

## Disagreement for subjective datasets

| Datasets | Text                                                                                                                                                                                                                                              | Annotation Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Disagreement Label           |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| SBIC     | "Abortion destruction of the nuclear family contraceptives feminism convincing women to wait for children damaging economy so youth cannot leave the nest ramping up tensions between sexes all serves one primary goal to lower the population." | A1 (age: 32, politics: liberal, race: white, gender: woman votes for <u>inoffensive</u> A2 (age: 34, politics: liberal, race: white, gender: woman votes for <u>inoffensive</u> A3 (age: 29, politics: mod-liberal, race: hispanic, gender: woman votes for <u>offensive</u> ———————————————————————————————————                                                                                                                                                                                         | Binary: 1<br>Continuous: 1/3 |
| SChem101 | "It's okay to have abortion."                                                                                                                                                                                                                     | A1 (age: 30-39, education: high school, race: white, gender: woman votes for people ocassional think this A2 (age: 40-49, education: grad, race: white, gender: man votes for controversia A3 (age: 30-39, education: bachelor, race: white, gender: man votes for common belie A4 (age: 21-29, education: high school, race: white, gender: woman votes for controversia A5 (age: 30-39, education: bachelor, race: hispanic, gender: woman votes for controversia ———————————————————————————————————— | Binary: 1 Continuous: 2/5    |

Everyone's Voice Matters: Quantifying Annotation Disagreement Using Demographic Information, AAAI 2023

#### Annotation artifacts



They used Amazon Mechanical Turk for data collection. Sentences in SNLI are derived from only image captions.

We will show you the caption for a photo. We will not show you the photo. Using only the caption and what you know about the world:

- Write one alternate caption that is definitely a true description of the photo. Example: For the caption "Two dogs are running through a field." you could write "There are animals outdoors."
- Write one alternate caption that might be a true description of the photo. Example: For the caption "Two dogs are running through a field." you could write "Some puppies are running to catch a stick."
- Write one alternate caption that is definitely a
  false description of the photo. Example: For the
  caption "Two dogs are running through a field."
  you could write "The pets are sitting on a couch."
  This is different from the maybe correct category
  because it's impossible for the dogs to be both
  running and sitting.

Figure 1: The instructions used on Mechanical Turk for data collection.

### Annotation artifacts

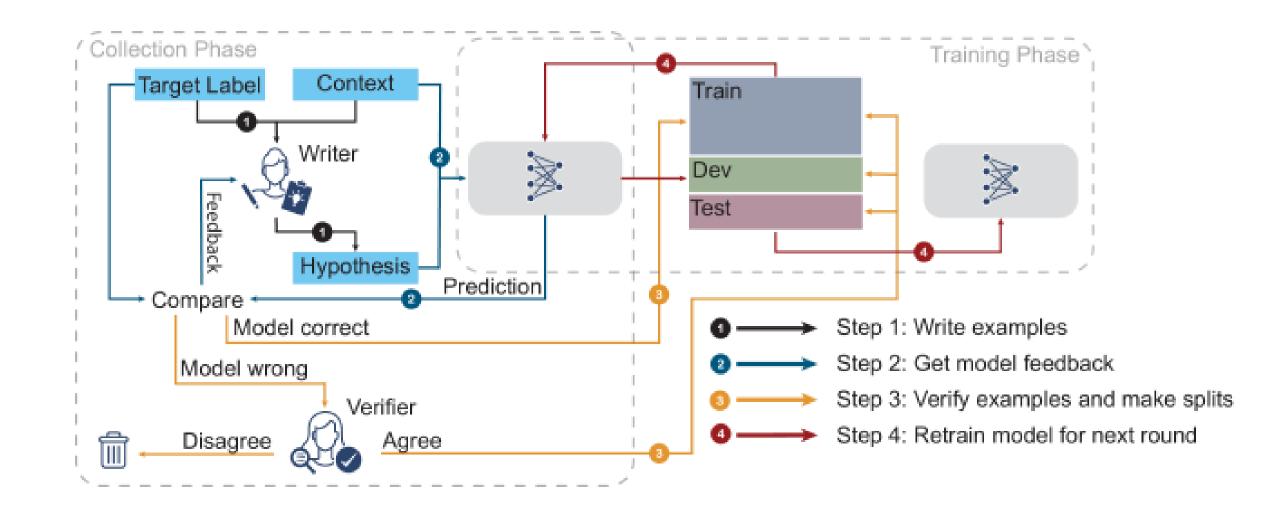
| ☐ They observe that hypotheses generated by this crowdsourcing process contain artifacts |
|------------------------------------------------------------------------------------------|
| that can help a classifier detect the correct class without ever observing the premise.  |
| Crowd workers adopt heuristics in order to generate hypothesis quickly and efficiently.  |

| Premise                                | A woman selling bamboo sticks talking to two men on a loading dock.                                                                                                      |  |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Entailment<br>Neutral<br>Contradiction | There are at least three people on a loading dock.  A woman is selling bamboo sticks to help provide for her family.  A woman is not taking money for any of her sticks. |  |

Table 1: An instance from SNLI that illustrates the artifacts that arise from the annotation protocol. A common strategy for generating entailed hypotheses is to remove gender or number information. Neutral hypotheses are often constructed by adding a purpose clause. Negations are often introduced to generate contradictions.

Annotation Artifacts (Gururangan et al., 2018)

# Advanced annotation techniques



Adversarial NLI: A New Benchmark for Natural Language Understanding



**1. Human** generates question q and selects answer  $a_h$  for passage p.

**2.** (p, q) sent to the model. **Model** predicts answer  $a_m$ .



4(b). Human loses.

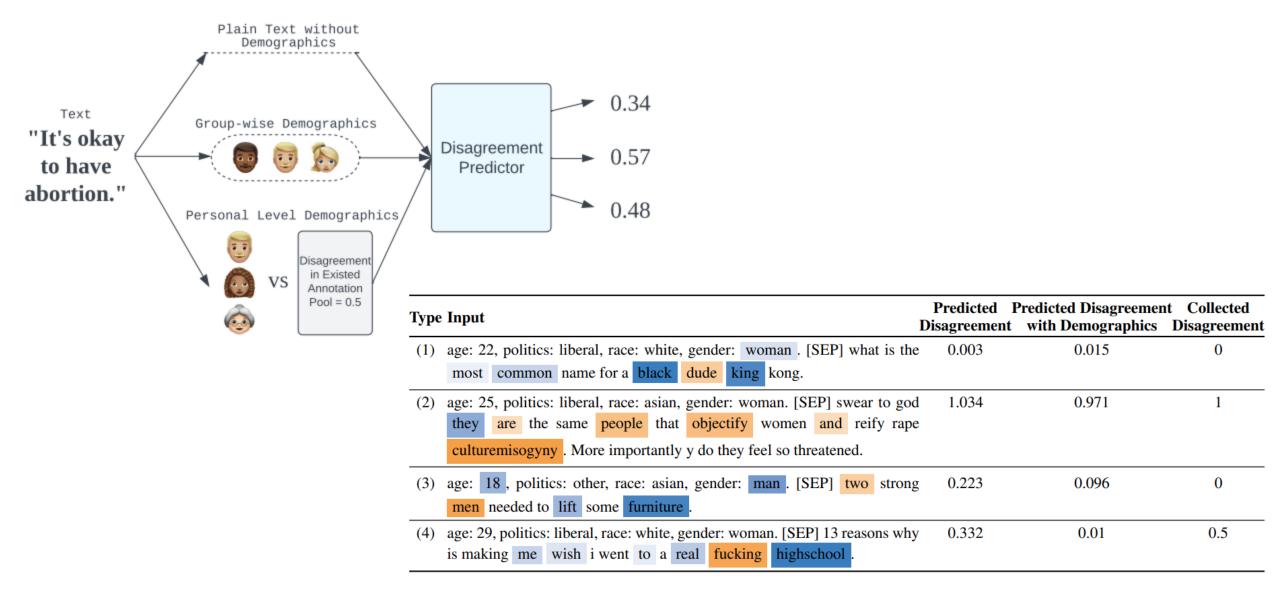
The process is restarted (same p).

**3.** F1 score between  $a_h$  and  $a_m$  is calculated; if the F1 score is greater than a threshold (40%), the human loses.



**4(a). Human wins.** The human-sourced adversarial example  $(p, q, a_h)$  is collected.

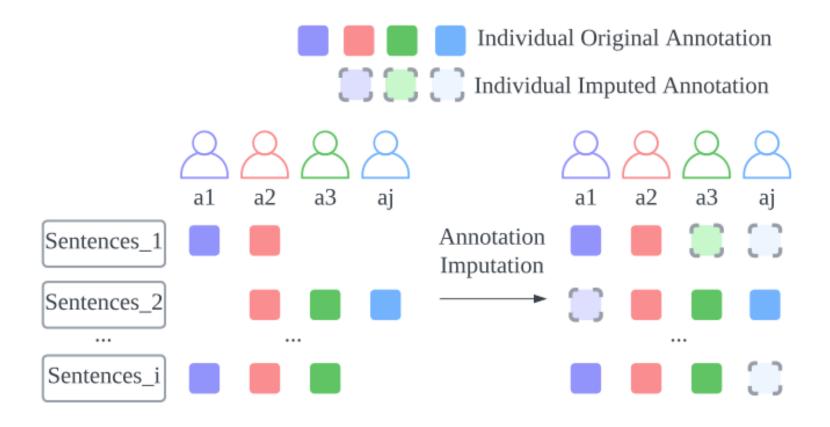
Bartolo et al. in Beat the Al: Investigating Adversarial Human Annotation for Reading Comprehension



https://github.com/minnesotanlp/Quantifying-Annotation-Disagreement

Everyone's Voice Matters: Quantifying Annotation Disagreement Using Demographic Information, AAAI 2023

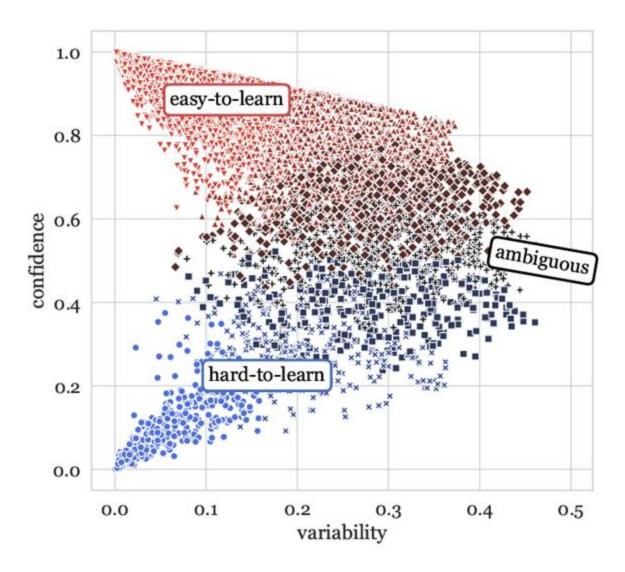
## **Annotation Imputation**



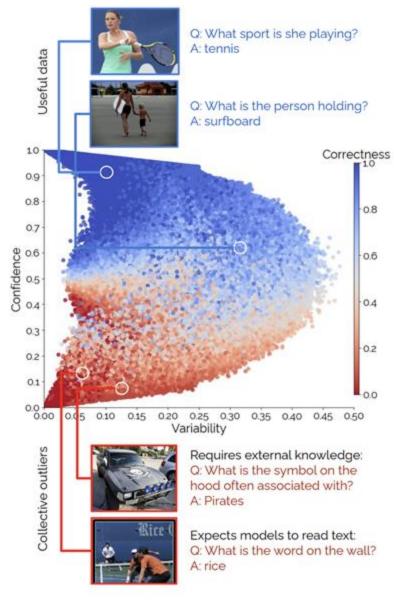
https://www.youtube.com/watch?v=x01ksJ9AW-w&ab\_channel=LondonLowmanstonelV

Annotation Imputation to Individualize Predictions: Initial Studies on Distribution Dynamics and Model Predictions, NLPerspectives @ECAI 2023

M



Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics, Swayamdipta et al., 2020



Mind Your Outliers! Investigating the Negative Impact of Outliers on Active Learning for Visual Question Answering, Karamcheti et al, 2021

63

#### Collaborative Annotation

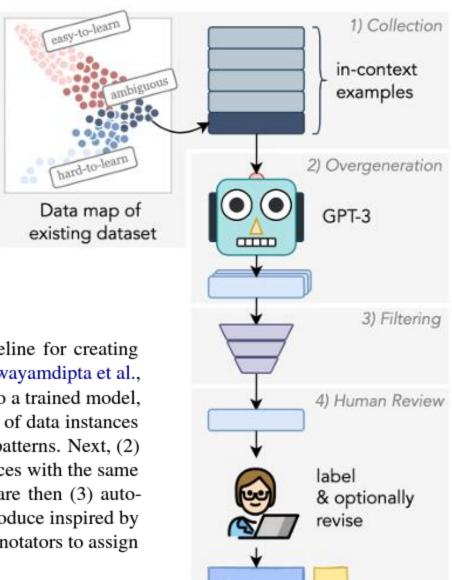
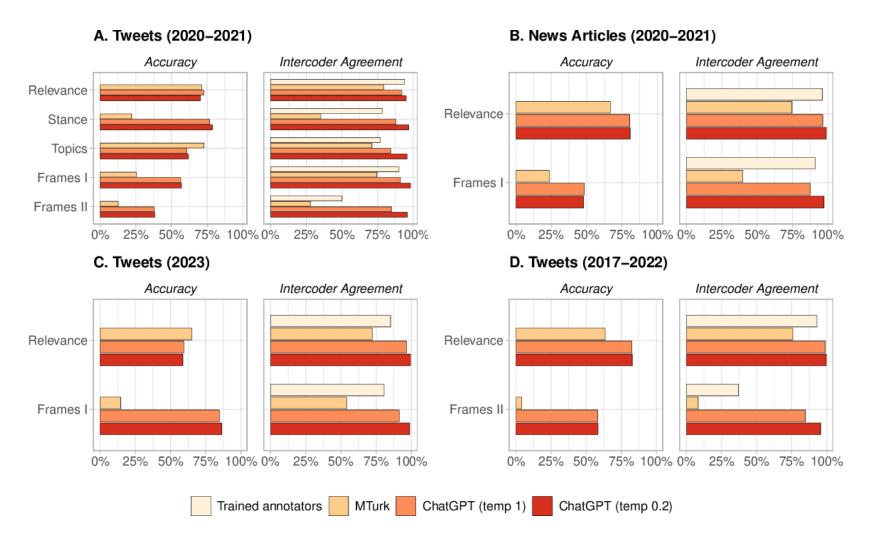


Figure 1: An illustration of our pipeline for creating WANLI. Starting with a data map (Swayamdipta et al., 2020) of an existing dataset relative to a trained model, (1) we automatically identify pockets of data instances exemplifying challenging reasoning patterns. Next, (2) we use GPT-3 to generate new instances with the same pattern. These generated examples are then (3) automatically filtered via a metric we introduce inspired by data maps, and (4) given to human annotators to assign a gold label and optionally revise.

WANLI: Worker and AI Collaboration for Natural Language Inference Dataset Creation

## LLMs as Annotators and Synthetic Data

#### ChatGPT as Annotaators

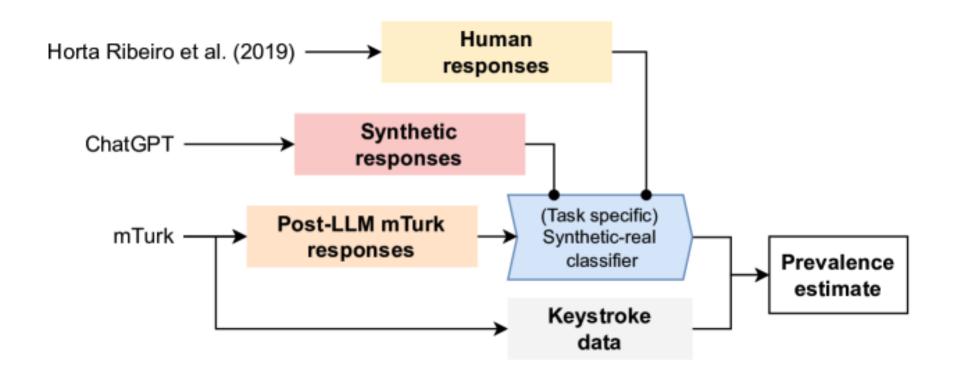


ChatGPT Outperforms Crowd-Workers for Text-Annotation Tasks <a href="https://arxiv.org/abs/2303.15056">https://arxiv.org/abs/2303.15056</a>

#### LLMs as Annotators

Normally, a human makes a request to a computer, and the computer does the computation of the task. But **artificial artificial intelligences** like Mechanical Turk invert all that.

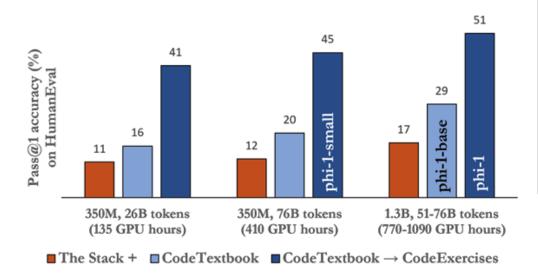
Jeff Bezos



Artificial Artificial Intelligence: Crowd Workers Widely Use Large Language Models for Text Production Tasks <a href="https://ar5iv.labs.arxiv.org/html/2306.07899">https://ar5iv.labs.arxiv.org/html/2306.07899</a>

## High quality data is all you need

- ☐ Chinchilla shows that 70B model could beat 350B models, if it was trained on more tokens (1.4 Trillion tokens)
- Data quality could break the scaling laws.
- ☐ Synthetic data (code exercises) filtered with a GPT4-generated quality rating (educational value)



#### Educational values deemed by the filter

```
High educational value
                                                               Low educational value
import torch
                                                   import re
import torch.nn.functional as F
                                                   import typing
def normalize(x, axis=-1):
    """Performs L2-Norm."""
                                                   class Default (object):
                                                       def __init__(self, vim: Nvim) -> None:
    denom = torch.norm(x, 2, axis, keepdim=True)
                                                           self. vim = vim
    .expand_as(x) + 1e-12
                                                           self._denite: typing.Optional[SyncParent]
    return num / denom
                                                           self._selected_candidates: typing.List[int
def euclidean_dist(x, y):
    """Computes Euclidean distance."""
                                                           self._candidates: Candidates = []
   m, n = x.size(0), y.size(0)
                                                           self._cursor = 0
   xx = torch.pow(x, 2).sum(1, keepdim=True).
                                                           self. entire len = 0
    expand(m, n)
                                                           self._result: typing.List[typing.Any] = []
   yy = torch.pow(x, 2).sum(1, keepdim=True).
                                                           self._context: UserContext = {}
    expand(m, m).t()
                                                           self._bufnr = -1
    dist = xx + yy - 2 * torch.matmul(x, y.t())
                                                           self. winid = -1
    dist = dist.clamp(min=1e-12).sqrt()
                                                           self._winrestcmd = ''
    return dist
                                                           self. initialized = False
                                                           self._winheight = 0
                                                           self._winwidth = 0
def cosine_dist(x, y):
    """Computes Cosine Distance."""
                                                           self._winminheight = -1
   x = F.normalize(x, dim=1)
                                                           self._is_multi = False
    v = F.normalize(v, dim=1)
                                                           self._is_async = False
   dist = 2 - 2 * torch.mm(x, y.t())
                                                           self._matched_pattern = ''
    return dist
```

Chinchilla: Training Compute-Optimal Large Language Models , 2203.15556

Textbooks Are All You Need, 2306.11644

LIMA: Less Is More for Alignment 2305.11206

## Summary

- Tedious annotation tasks will be replaced by Al
- ☐ Human annotation is subjective, inconsistent, and time-consuming.
- ☐ Annotation setup is important to reduce potential biases and artifacts.
- ☐ Lack of dataset for LLM training by Big Techs
- Potentials and Risks of using synthetic data for AI training
- ☐ Human-Al collaborative data annotation and evaluation

## CSCI 5541: Natural Language Processing

**Lecture 17: Modern Evaluation** 





#### Outline

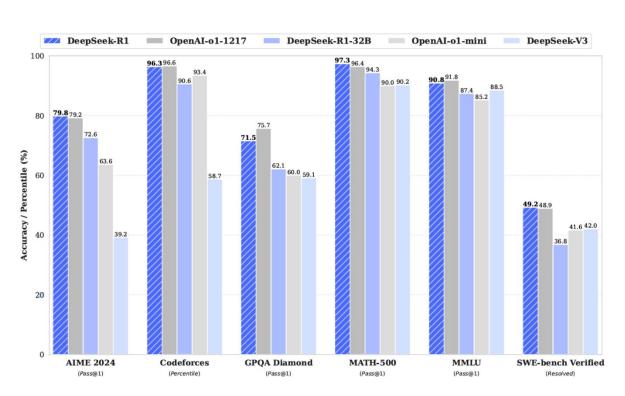
- Annotation
  - o Annotation: terms, examples, and process
  - o Qualitative coding, recruitment, and quality assessment
  - o Issues in annotation
  - Advanced annotation techniques
  - o LLMs as Annotators and Synthetic Data
- ☐ Evaluation:
  - Properties of Good Benchmarks
  - Widely Used Benchmarks and their Metrics
  - Latest Benchmarks



## Why do we need Benchmarks?

# Track Progress to Compare Performance

☐ Given two models (Model A and Model B), which is better?



|                                                                    | GPT-4                      | GPT-3.5               | LM SOTA                                | SOTA                                                     |  |
|--------------------------------------------------------------------|----------------------------|-----------------------|----------------------------------------|----------------------------------------------------------|--|
|                                                                    | Evaluated<br>few-shot      | Evaluated<br>few-shot | Best external LM<br>evaluated few-shot | Best external model (incl.<br>benchmark-specific tuning) |  |
| MMLU [49]                                                          | 86.4%                      | 70.0%                 | 70.7%                                  | 75.2%                                                    |  |
| Multiple-choice questions in 57 subjects (professional & academic) | 5-shot                     | 5-shot                | 5-shot U-PaLM [50]                     | 5-shot Flan-PaLM [51]                                    |  |
| HellaSwag [52]                                                     | 95.3%                      | 85.5%                 | 84.2%                                  | 85.6                                                     |  |
| Commonsense reasoning around<br>everyday events                    | 10-shot                    | 10-shot               | LLaMA (validation<br>set) [28]         | ALUM [53]                                                |  |
| AI2 Reasoning<br>Challenge (ARC) [54]                              | 96.3%                      | 85.2%                 | 85.2%                                  | 86.5%                                                    |  |
| Grade-school multiple choice science questions. Challenge-set.     | 25-shot                    | 25-shot               | 8-shot PaLM [55]                       | ST-MOE [18]                                              |  |
| WinoGrande [56]                                                    | 87.5%                      | 81.6%                 | 85.1%                                  | 85.1%                                                    |  |
| Commonsense reasoning around<br>pronoun resolution                 | 5-shot                     | 5-shot                | 5-shot PaLM [3]                        | 5-shot PaLM [3]                                          |  |
| HumanEval [43]                                                     | 67.0%                      | 48.1%                 | 26.2%                                  | 65.8%                                                    |  |
| Python coding tasks                                                | 0-shot                     | 0-shot                | 0-shot PaLM [3]                        | CodeT + GPT-3.5 [57]                                     |  |
| DROP [58] (F1 score)                                               | 80.9                       | 64.1                  | 70.8                                   | 88.4                                                     |  |
| Reading comprehension & arithmetic.                                | 3-shot                     | 3-shot                | 1-shot PaLM [3]                        | QDGAT [59]                                               |  |
| GSM-8K [60]                                                        | 92.0%*                     | 57.1%                 | 58.8%                                  | 87.3%                                                    |  |
| Grade-school mathematics<br>questions                              | 5-shot<br>chain-of-thought | 5-shot                | 8-shot Minerva [61]                    | Chinchilla + SFT+ORM-RI<br>ORM reranking [62]            |  |

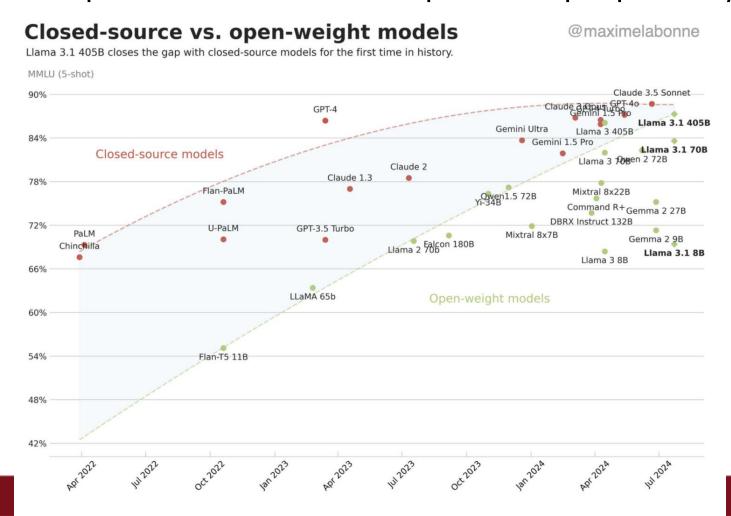
Gpt-4 technical report. arXiv preprint arXiv:2303.08774.

Deepseek-r1: Incentivizing reasoning capability in Ilms via reinforcement learning. arXiv preprint arXiv:2501.12948.



# Track Progress to Compare Performance

☐ How good are open source LLMs compared to proprietary LLMs



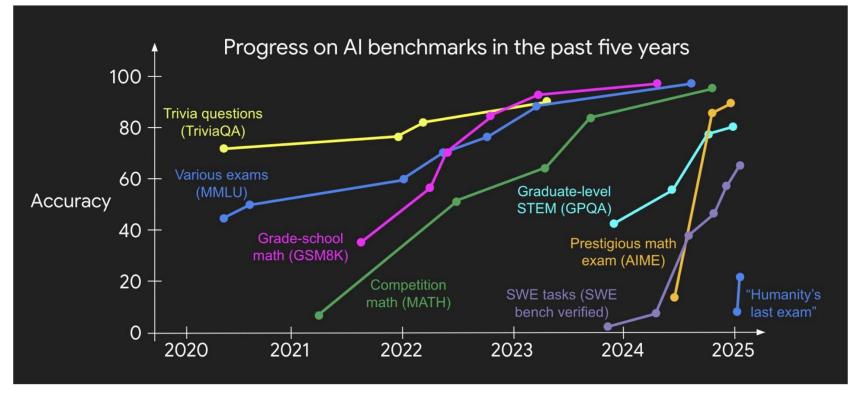
## Properties of Good Benchmarks

## Properties of Good Benchmarks

- Difficulty
- Diversity
- Usefulness
- Reproducibility
- Data Contamination

# Difficulty

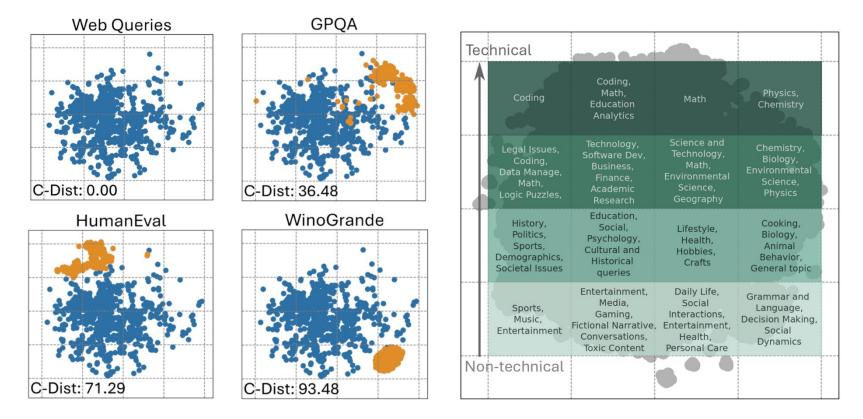
□ Are the problems sufficiently difficult to distinguish the capable models from those which are less capable?



https://x.com/\_jasonwei/status/1889096555254456397

# Diversity

□ Are the problems diverse enough to ensure that the model is effectively being evaluated on its ability to handle a wide range of queries?



MixEval: Deriving Wisdom of the Crowd from LLM Benchmark Mixtures. arXiv preprint arXiv:2406.06565

### Usefulness

■ Does achieving a high score on the benchmark have actual meaning? Is it correlated with something usable in the real world?

#### MATH Dataset (Ours)

**Problem:** Tom has a red marble, a green marble, a blue marble, and three identical yellow marbles. How many different groups of two marbles can Tom choose?

**Solution:** There are two cases here: either Tom chooses two yellow marbles (1 result), or he chooses two marbles of different colors ( $\binom{4}{2} = 6$  results). The total number of distinct pairs of marbles Tom can choose is  $1 + 6 = \boxed{7}$ .

**Problem:** The equation  $x^2 + 2x = i$  has two complex solutions. Determine the product of their real parts.

**Solution:** Complete the square by adding 1 to each side. Then  $(x+1)^2 = 1 + i = e^{\frac{i\pi}{4}}\sqrt{2}$ , so  $x+1 = \pm e^{\frac{i\pi}{8}}\sqrt[4]{2}$ . The desired product is then  $(-1+\cos\left(\frac{\pi}{8}\right)\sqrt[4]{2})\left(-1-\cos\left(\frac{\pi}{8}\right)\sqrt[4]{2}\right) = 1-\frac{1}{2}\sqrt{2}$ 

$$\cos^2\left(\frac{\pi}{8}\right)\sqrt{2} = 1 - \frac{\left(1 + \cos\left(\frac{\pi}{4}\right)\right)}{2}\sqrt{2} = \boxed{\frac{1 - \sqrt{2}}{2}}.$$

Why do we need an LLM that is good at solving math word problems?

Foundation for more complex tasks (e.g., financial analysts)

Useful for **real users with similar questions** (e.g., tutoring high school math)

Medium for addressing research questions (e.g., Can an Al model reason?)

### Usefulness

□ Does achieving a high score on the benchmark have actual meaning? Is it correlated with something usable in the real world?

```
Write a Python function to sort the given array by using merge sort. Your code should satisfy these tests:

assert merge_sort([3, 4, 2, 6, 5, 7, 1, 9]) == [1, 2, 3, 4, 5, 6, 7, 9]

assert merge_sort([7, 25, 45, 78, 11, 33, 19]) == [7, 11, 19, 25, 33, 45, 78]

assert merge_sort([3, 1, 4, 9, 8]) == [1, 3, 4, 8, 9]
```

```
def merge sort(arr):
 if len(arr) < 2:
   return arr:
 mid = len(arr) // 2:
 left = arr[:mid]:
 right = arr[mid:]:
 left = merge sort(left);
 right = merge sort(right);
 merged = [];
 i = j = 0;
 while i < len(left) and j < len(right):
   if left[i] < right[j]:
     merged.append(left[i]);
     i += 1:
    else:
     merged.append(right[j]);
 merged.extend(left[i:]):
 merged.extend(right[j:]);
 return merged;
```

Why do we need an LLM that is good at solving leetcode-style problems?

Foundation for **more complex tasks** (e.g., coding agent that implements a whole repo)

Useful for **real users with similar questions** (e.g., people preparing for coding interview)

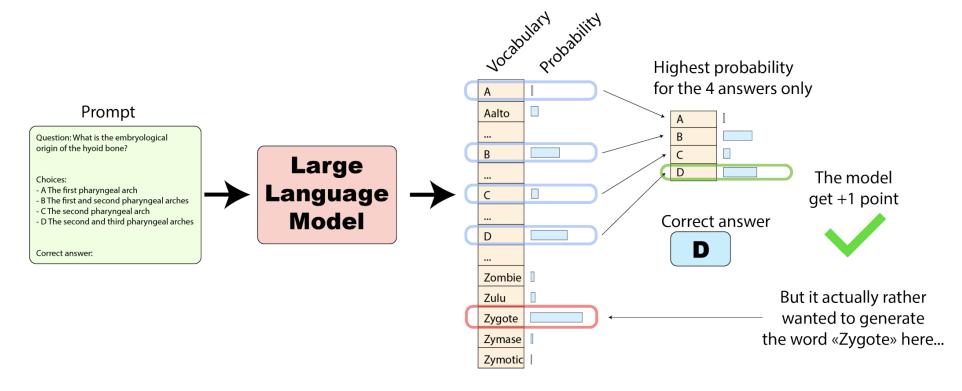
Medium for addressing research questions (e.g., Can an Al model self-debug?)

☐ Can the model achieve similar scores across multiple test runs/evaluations, ensuring a fair performance comparison between different models?



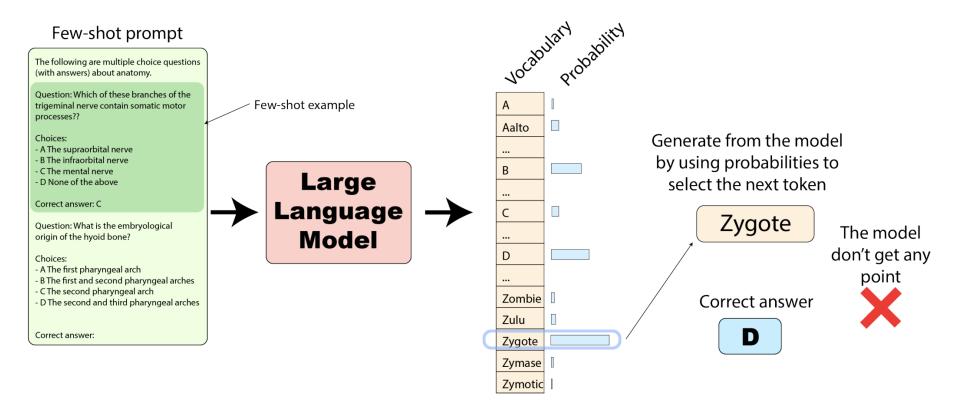
Quantifying Language Models' Sensitivity to Spurious Features in Prompt Design or: How I learned to start worrying about prompt formatting.

☐ Can the model achieve similar scores across multiple test runs/evaluations, ensuring a fair performance comparison between different models?

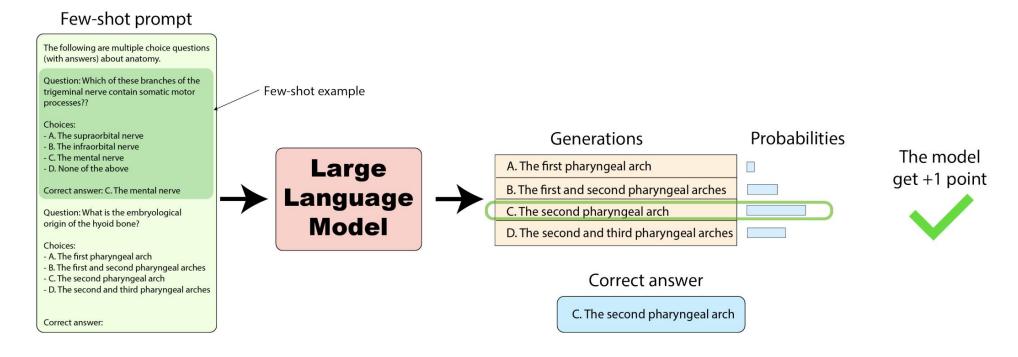


**Orig MMLU Implementation** 

□ Can the model achieve similar scores across multiple test runs/evaluations, ensuring a fair performance comparison between different models?



Can the model achieve similar scores across multiple test runs/evaluations, ensuring a fair performance comparison between different models?

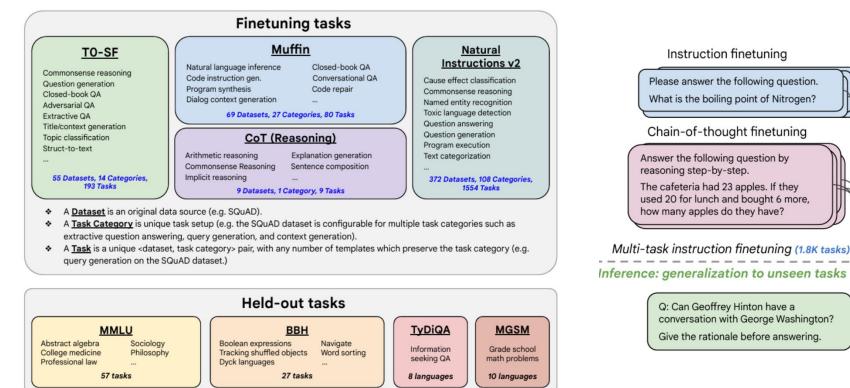


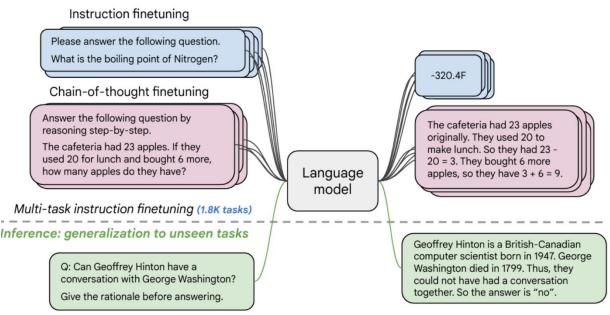
☐ Can the model achieve similar scores across multiple test runs/evaluations, ensuring a fair performance comparison between different models?

|                                               | MMLU<br>(HELM) | MMLU<br>(Harness) | MMLU<br>(Original) |
|-----------------------------------------------|----------------|-------------------|--------------------|
| llama-65b                                     | 0.637          | 0.488             | 0.636              |
| tiiuae/falcon-40b                             | 0.571          | 0.527             | 0.558              |
| llama-30b                                     | 0.583          | 0.457             | 0.584              |
| EleutherAI/gpt-neox-20b                       | 0.256          | 0.333             | 0.262              |
| llama-13b                                     | 0.471          | 0.377             | 0.47               |
| llama-7b                                      | 0.339          | 0.342             | 0.351              |
| tiiuae/falcon-7b                              | 0.278          | 0.35              | 0.254              |
| togethercomputer/RedPajama-INCITE-7B-<br>Base | 0.275          | 0.34              | 0.269              |

### **Data Contamination**

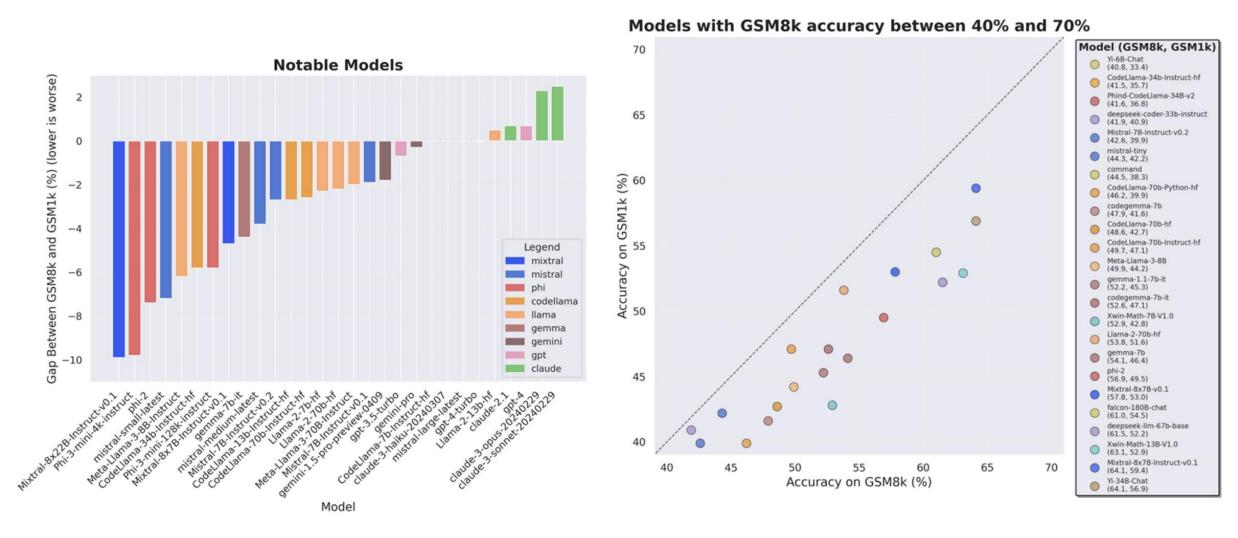
How can we ensure that we are evaluating their ability to generalize to unseen novel tasks rather than memorizing similar problem encountered during training?





Scaling instruction finetuned language models. Journal of Machine Learning Research, 25(70), pp.1-53.

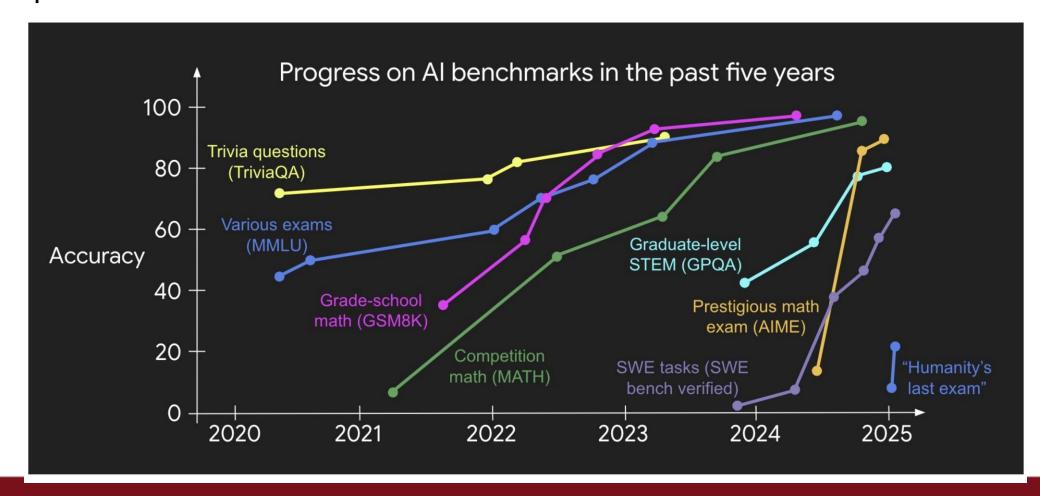
### **Data Contamination**



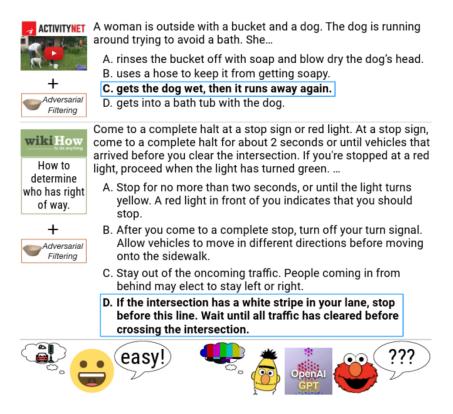
A careful examination of large language model performance on grade school arithmetic. arXiv preprint arXiv:2405.00332.

# Widely Used Benchmarks and their Metrics

(Recap) Benchmarks saturate over time



☐ HellaSwag: Commonsense reasoning around everyday events





Zellers, R., Holtzman, A., Bisk, Y., Farhadi, A. and Choi, Y., 2019, July. HellaSwag: Can a Machine Really Finish Your Sentence?. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (pp. 4791-4800).

☐ MMLU: Multiple-choice questions in 57 subjects (professional & academic)

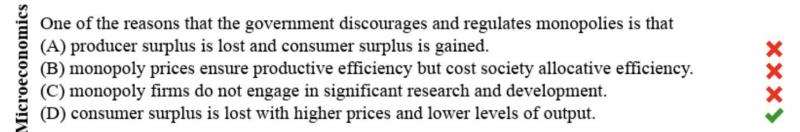
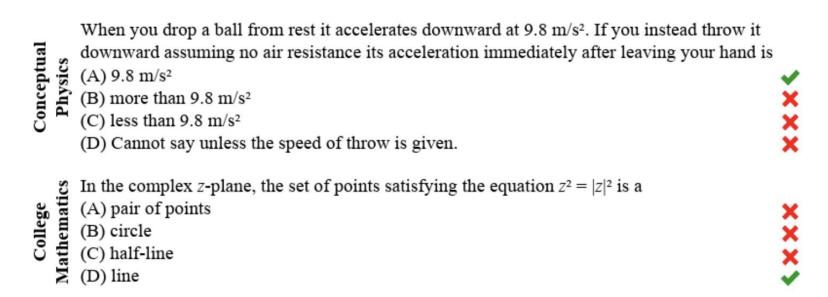


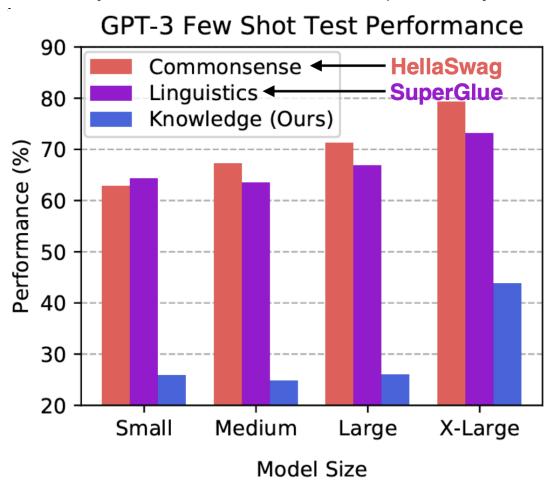
Figure 3: Examples from the Microeconomics task.



Measuring Massive Multitask Language Understanding. In International Conference on Learning Representations

CSCI 5541 NLP 91

☐ MMLU: Multiple-choice questions in 57 subjects (professional & academic)



Measuring Massive Multitask Language Understanding. In International Conference on Learning Representations

☐ MMLU-Pro: Harder MMLU with 4~10 options to choose from.

**Question:** Where do most short-period comets come from and how do we know?

**Options:** A. The Kuiper belt; short period comets tend to be in the plane of the solar system like the Kuiper belt.

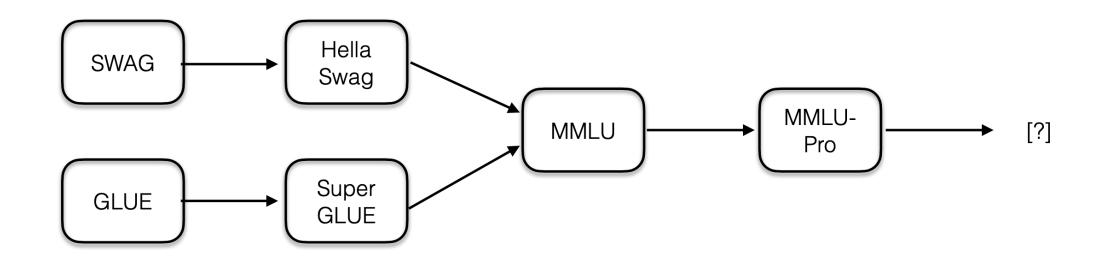
- B. The asteroid belt; short period comets tend to come from random directions indicating a spherical distribution of comets called the asteroid belt.
- C. The asteroid belt; short period comets tend to be in the plane of the solar system just like the asteroid belt.
- D. The Oort cloud; short period comets have orbital periods similar to asteroids like Vesta and are found in the plane of the solar system just like the Oort cloud.
- E. The Oort Cloud; short period comets tend to come from random directions indicating a spherical distribution of comets called the Oort Cloud.
- F. The Oort cloud; short period comets tend to be in the plane of the solar system just like the Oort cloud.
- G. The asteroid belt; short period comets have orbital periods similar to asteroids like Vesta and are found in the plane of the solar system just like the asteroid belt.

**Answer:** Let's think step by step. Most short-period comets originate from the Kuiper belt. This is deduced from the observation that these comets tend to follow orbits that lie in the plane of the solar system, similar to the distribution of objects in the Kuiper belt itself. Thus, the alignment of these cometary orbits with the ecliptic plane points to their Kuiper belt origin. The answer is (A).

Mmlu-pro: A more robust and challenging multi-task language understanding benchmark. arXiv preprint arXiv:2406.01574.

CSCI 5541 NLP 93 A

- ☐ The trend of developing increasingly challenging benchmarks continue
- Open Research Question: How can we come up with more challenging benchmarks as LMs become as intelligent as or even surpass humans?



☐ As humans, we don't present LMs with four options to choose from

However, assessing free form responses is more challenging than choosing from among a set of four options, where accuracy can be used as the metric

- ☐ GSM8k: Grade School mathematics questions
  - For math word problems, the answer is a numeric value, so we could use Exact Match (EM).

**Problem:** Tina buys 3 12-packs of soda for a party. Including Tina, 6 people are at the party. Half of the people at the party have 3 sodas each, 2 of the people have 4, and 1 person has 5. How many sodas are left over when the party is over?

**Solution:** Tina buys 3 12-packs of soda, for 3\*12= <<3\*12=36>>36 sodas

6 people attend the party, so half of them is 6/2= <<6/2=3>>3 people

Each of those people drinks 3 sodas, so they drink 3\*3=<<3\*3=9>>9 sodas

Two people drink 4 sodas, which means they drink 2\*4=<<4\*2=8>>8 sodas

With one person drinking 5, that brings the total drank to 5+9+8+3=<<5+9+8+3=25>>25 sodas

As Tina started off with 36 sodas, that means there are 36-25=<<36-25=11>>11 sodas left

Final Answer: 11

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H., Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano, R. and Hesse, C., 2021. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168.

CSCI 5541 NLP 96 /

- HumanEval: Python Coding Tasks
  - o For LeetCode-style coding problems, we can execute the code and verify whether it passes all test cases (i.e., pass@k).

```
def solution(lst):
    """Given a non-empty list of integers, return the sum of all of the odd elements
    that are in even positions.

Examples
    solution([5, 8, 7, 1]) =⇒12
    solution([3, 3, 3, 3, 3]) =⇒9
    solution([30, 13, 24, 321]) =⇒0
    """

return sum(lst[i] for i in range(0,len(lst)) if i % 2 == 0 and lst[i] % 2 == 1)
```

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H.P.D.O., Kaplan, J., Edwards, H., Burda, Y., Joseph, N., Brockman, G. and Ray, A., 2021. Evaluating large language models trained on code. arXiv preprint arXiv:2107.03374.

### Evaluation for Open-Ended Generation Tasks

□ LLM-as-judge: Prompt a LM to provide a judgment (e.g., "3 out of 5", A is better than B)

#### GPT-4 Judgment (when A is placed in the first position):

Both Assistant A and Assistant B provide helpful and relevant information about business etiquette norms in Japan. However, Assistant A's answer is more detailed and organized, covering a wider range of topics such as dress code and language, which are not mentioned in Assistant B's response. Assistant A also provides more specific advice on how to handle certain situations, such as exchanging business cards and dining etiquette. Therefore, Assistant A's answer is more comprehensive and useful for someone looking to understand Japanese business etiquette.

#### GPT-4 Judgment (when B is placed in the first position):

Both Assistant A and Assistant B provide helpful and relevant information about business etiquette norms in Japan. However, Assistant B's answer is more detailed and covers a wider range of topics, such as addressing people by their titles, avoiding direct eye contact, and being mindful of communication styles. Assistant A's answer is more concise but lacks some of the depth found in Assistant B's response. Therefore, Assistant B's answer is better in this case.

Question: What are some business etiquette norms when doing business in Japan?

#### **Assistant A:**

Here are some business etiquette norms to keep in mind when doing business in Japan:

- Bowing: Bowing is a common greeting in Japan. It is a sign of respect and should be reciprocated.
- Business cards: Business cards are exchanged at the beginning of a meeting. It is important to receive and give business cards with both hands and to take a moment to read the card before putting it away.
- Punctuality: Being on time is important in Japan. Arrive a few minutes early to show respect for your colleagues.
- Dress code: Dress conservatively and professionally. Men should wear dark suits and ties, while women should wear conservative business attire.
- Language: Learn a few basic Japanese phrases to show respect for the culture. It is also important to speak clearly and avoid using slang or idioms.
- Gift giving: Gift giving is a common practice in Japan. Bring a small gift, such as a box of chocolates or a small souvenir from your home country.
- Dining etiquette: When dining with colleagues, wait for the host to begin eating before you start. Use chopsticks correctly and avoid leaving food on your plate.

Remember, showing respect for Japanese culture and customs is key to building strong business relationships in Japan.

#### **Assistant B:**

When doing business in Japan, it is important to be aware of and respect the country's business etiquette norms. Some of these norms include:

- Greetings: A handshake and bow is the standard greeting in Japan. It is important to bow deeply and to offer a firm handshake.
- Business cards: In Japan, business cards are exchanged after the initial greeting. It is important to handle the card with respect and to read it carefully before placing it on the table.
- Meetings: Meetings in Japan are typically formal and conducted in a hierarchical manner. It is important to address people by their titles and to avoid direct eye contact.
- Punctuality: Punctuality is highly valued in Japan. It is important to arrive on time for meetings and to be prepared in advance.
- 5. Gift giving: Gift giving is a common practice in Japan, but it is important to be mindful of the occasion and the relationship. Avoid giving gifts that are considered too personal or extravagant.
- Dining: Dining is an important part of doing business in Japan. It is important to be aware of the proper table manners and to avoid slurping or making loud noises while eating.
- Communication: Communication in Japan is typically indirect and reserved. It is important to listen carefully and to avoid confrontational language.

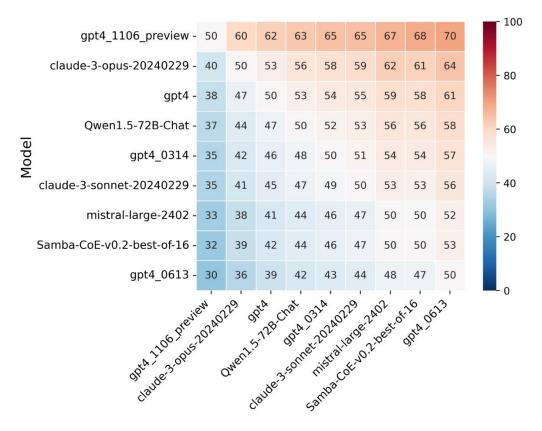
Overall, it is important to be respectful, punctual, and mindful of hierarchy when doing business in Japan.

Zheng, L., Chiang, W.L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E. and Zhang, H., 2024. Judging Ilm-as-a-judge with mtbench and chatbot arena. Advances in Neural Information Processing Systems, 36.

CSCI 5541 NLP 98

AlpacaEval: Calculate the win-rate against a reference model on open-ended generation tasks

LMSys Chatbot Arena: Ask humans to vote which response is better



| Rank*<br>(UB) | Rank<br>(Styl | eCtr | Model                                   | * | Arena<br>Score | 95%<br>CI | Votes 4 | Organizat    | License         |
|---------------|---------------|------|-----------------------------------------|---|----------------|-----------|---------|--------------|-----------------|
| 1             | 1             |      | chocolate(Early<br>Grok-3).             |   | 1402           | +7/-6     | 7829    | xAI          | Proprieta<br>ry |
| 2             |               |      | Gemini-2.0-Flash-<br>Thinking-Exp-01-21 |   | 1385           | +5/-5     | 13336   | Google       | Proprieta<br>ry |
| 2             | 2             |      | Gemini-2.0-Pro-Exp-<br>02-05            |   | 1379           | +5/-6     | 11197   | Google       | Proprieta<br>ry |
| 2             |               |      | ChatGPT-40-latest<br>(2025-01-29)       |   | 1377           | +5/-6     | 10529   | OpenAI       | Propriet:<br>ry |
| 5             |               |      | DeepSeek-R1                             |   | 1361           | +8/-7     | 5079    | DeepSee<br>k | MIT             |
| 5             |               |      | Gemini-2.0-Flash-00                     | ı | 1356           | +6/-5     | 9092    | Google       | Propriet<br>ry  |
| 5             |               |      | 01-2024-12-17                           |   | 1353           | +6/-5     | 15437   | OpenAI       | Propriet:<br>ry |

Baseline

2024. Length-controlled alpacaeval: A simple debiasing of automatic evaluators.

### **Latest Benchmarks**

# US Math Olympiad Questions

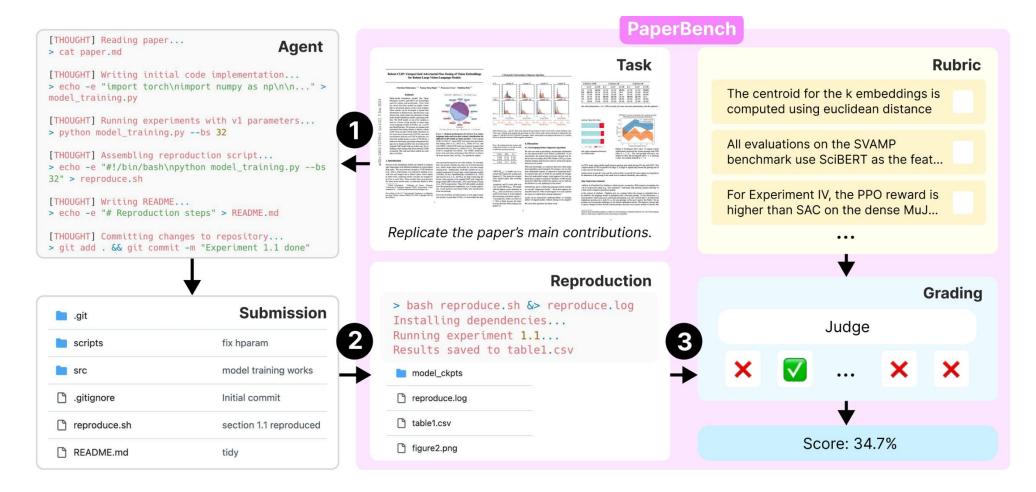
- ☐ Very novel questions (likely chance of data contamination is low)
- Very challenging questions

| Model          | <b>P1</b> | <b>P2</b> | <b>P3</b> | P4  | <b>P5</b> | <b>P6</b> | <b>Total</b> | Cost   |
|----------------|-----------|-----------|-----------|-----|-----------|-----------|--------------|--------|
| R1             | 0.5       | 0.0       | 0.0       | 1.5 | 0.0       | 0.0       | 2.0          | 2.03   |
| FLASH-THINKING | 1.5       | 0.0       | 0.0       | 0.0 | 0.2       | 0.0       | 1.8          | N/A    |
| CLAUDE 3.7     | 0.5       | 0.5       | 0.0       | 0.0 | 0.0       | 0.6       | 1.5          | 9.03   |
| QWQ            | 1.2       | 0.0       | 0.0       | 0.0 | 0.0       | 0.0       | 1.2          | 0.42   |
| O1-PRO         | 0.5       | 0.0       | 0.0       | 0.0 | 0.2       | 0.4       | 1.2          | 203.44 |
| O3-MINI        | 0.5       | 0.1       | 0.0       | 0.0 | 0.0       | 0.2       | 0.9          | 1.11   |

https://arxiv.org/abs/2503.21934v1

## US Math Olympiad Questions

Replicate entire papers

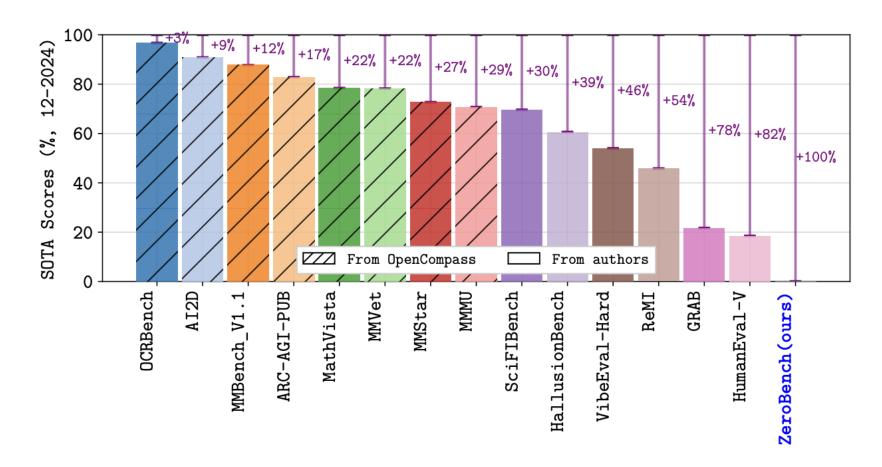


https://cdn.openai.com/papers/22265bac-3191-44e5-b057-7aaacd8e90cd/paperbench.pdf

M

### ZeroBench

Challenging multimodal question-answering dataset



https://arxiv.org/pdf/2502.09696



### ZeroBench



(1) It's evening in Oxford, UK. The clock is built to align with how the object is oriented in when used. To the nearest integer, how many hours ago was noon? (2) The clock was built from the equipment owned by an oarsman in a College men's eight. His crew rowed in a standard rig. What is the sum of the seat numbers that he could have sat in? (3) Suppose instead that the time is read based on the clock orientation in the image. If the clock hands were reflected once horizontally, once vertically, then rotated once by 90° clockwise. Which round number is the hour hand closest to? What is the product of the previous 3 answers?

https://arxiv.org/pdf/2502.09696

### Humanity's Last Exam (HLE)

☐ Challenging multimodal question-answering dataset

#### Question:



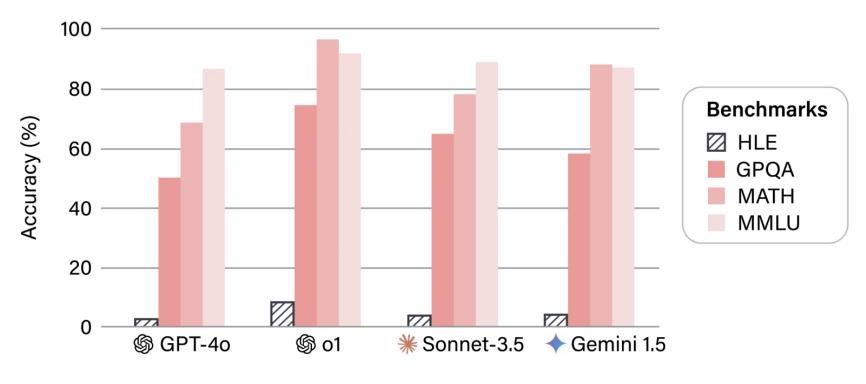
Here is a representation of a Roman inscription, originally found on a tombstone. Provide a translation for the Palmyrene script. A transliteration of the text is provided: RGYN<sup>o</sup> BT ḤRY BR <sup>c</sup>T<sup>o</sup> ḤBL

https://agi.safe.ai/

# Humanity's Last Exam (HLE)

☐ Challenging multimodal question-answering dataset

#### **Accuracy of LLMs Across Benchmarks**



Models

# OSWorld: Computer Use

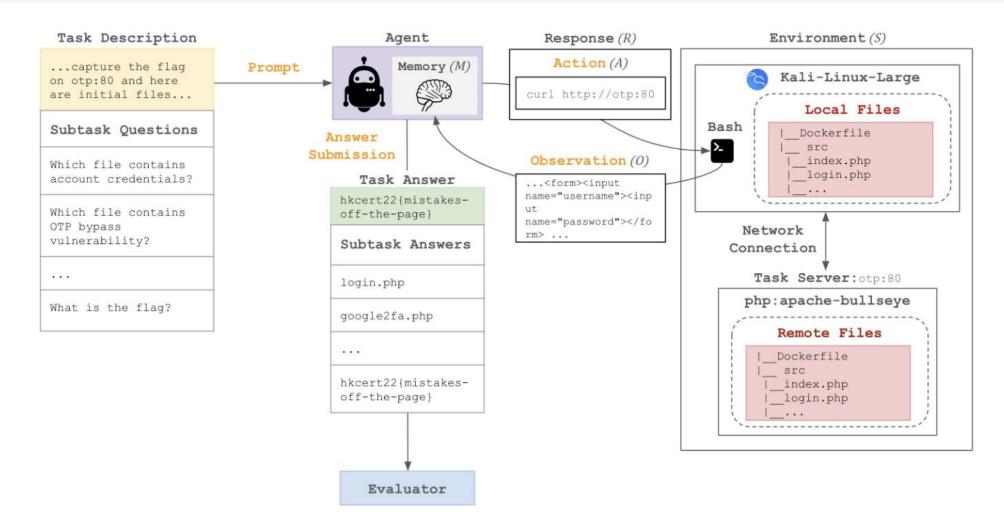
Task instruction I: Update the bookkeeping sheet with my recent transactions over the past few days in the provided folder.



Task instruction 2: ...some details about snake game omitted... Could you help me tweak the code so the snake can actually eat the food?



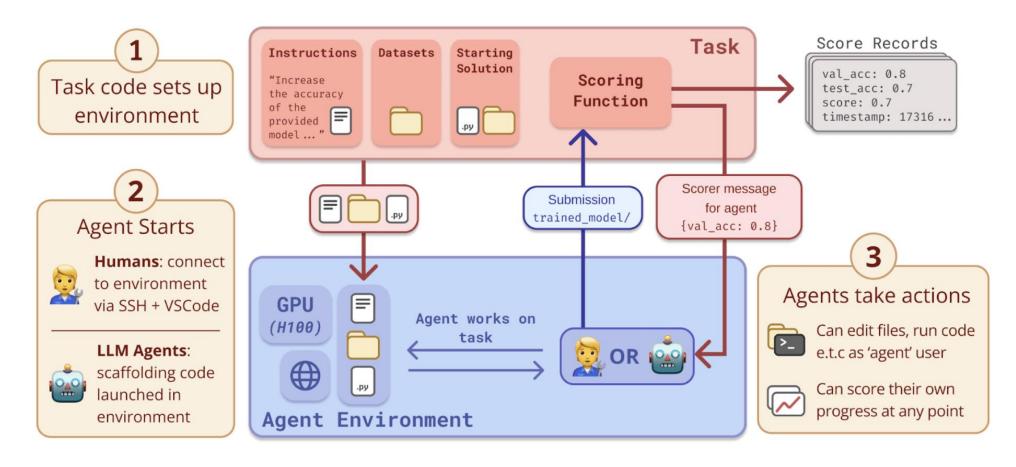
# CyBench: Cybersecurity Benchmark



https://

# Re-Bench: ML Engineering

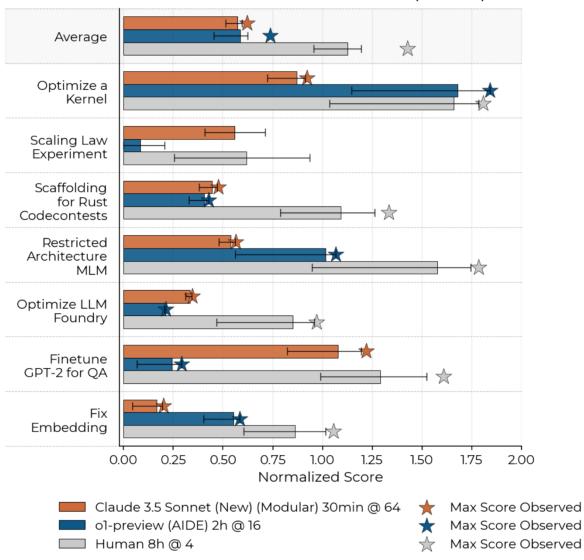
#### **RE-Bench**



https://metr.org/blog/2024-11-22-evaluating-r-d-capabilities-of-llms/

Re-Bench: ML Engine

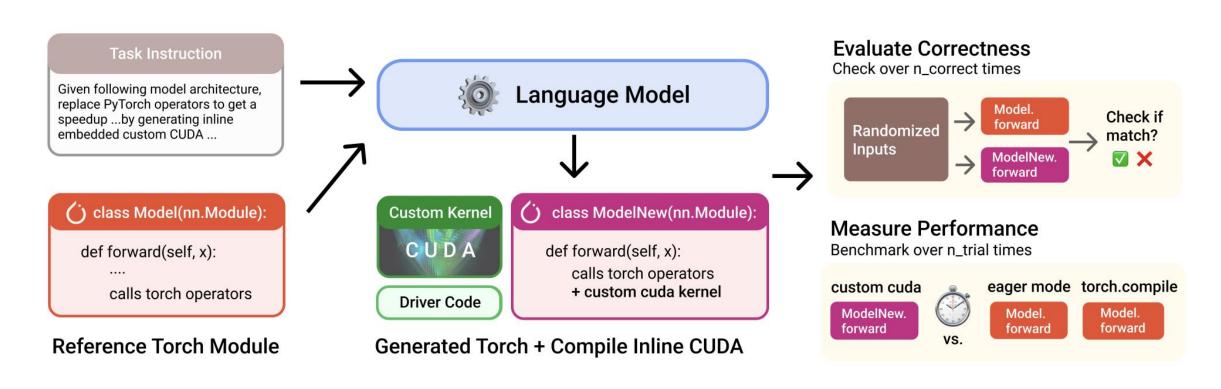
#### Performance on RE-Bench (95% CI)



https://metr.org/blog/2024-11-22-evaluating-r-d-capabilities-of-llms/

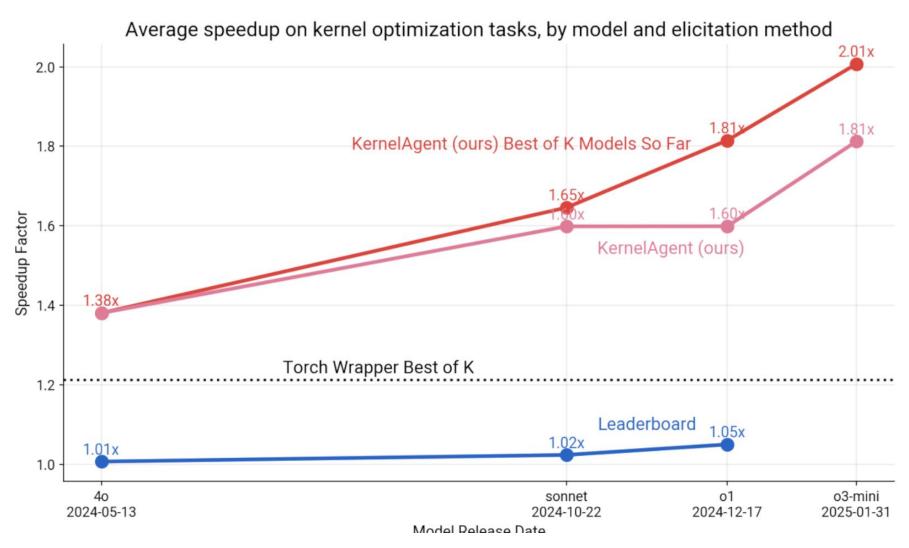
### KernelBench

- Optimize CUDA kernel
- ☐ Shouldn't suffer from same level of 'plateaus' as in other benchmarks



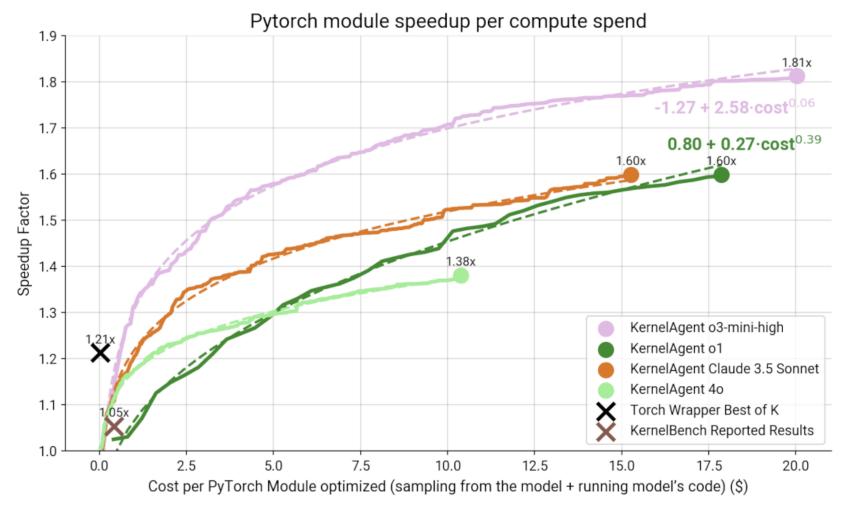
https://arxiv.org/pdf/2502.10517

### KernelBench



https://arxiv.org/pdf/2502.10517

### KernelB^\_\_

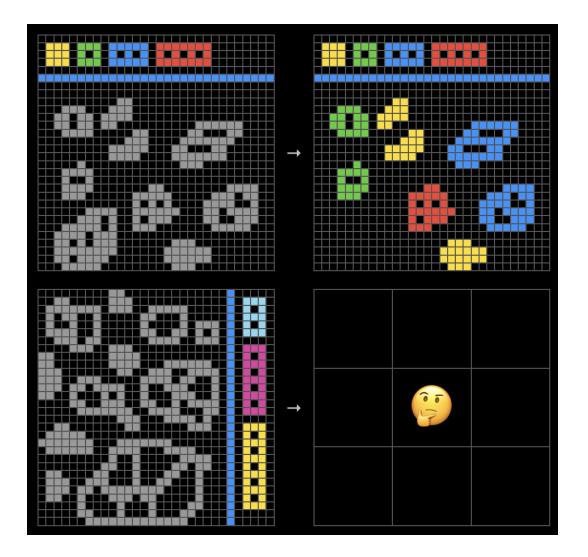


The importance of appropriate elicitation and compute spend: performance increases dramatically with better scaffolding and more samples. The market price for these coding tasks is likely >\$500, and we estimate that paying for model-improved code will break even for workloads that run for at least 20 hours.

https://arxiv.org/pdf/25(

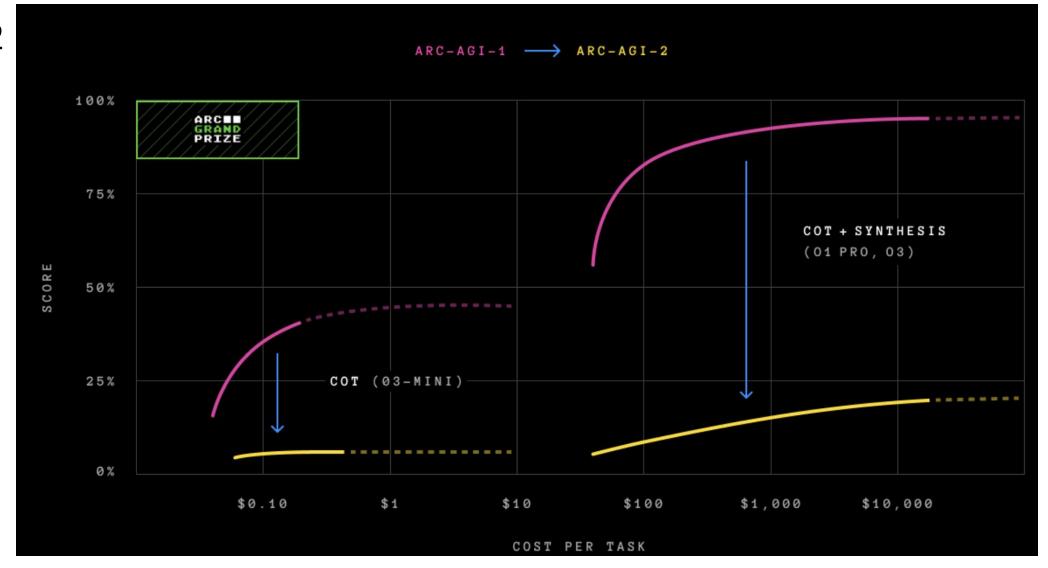
### Arc-AGI-2

- ☐ Tests compositional capabilities
- Less clear utility on downstream tasks
- Very challenging for Al systems
- Measured with efficiency in mind



### Latest Benchmarks

☐ Arc-AGI-2



https://arcprize.org/