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Abstract

Large scale egocentric datasets, such as Ego4D
(Grauman et al., 2021), and EPIC-KITCHENS
(Damen et al., 2021), have paved the way for
solving several egocentric tasks. Egocentric
data captures a first-person view of the world
that cannot be captured by an environmental
camera (Lee et al., 2012). We can begin to
augment and improve an agent’s understanding
capabilities through activity recognition and
episodic memory (Dodd and Gutierrez, 2005),
(Hayes and Shah, 2017). Ego4D and EPIC-
KITCHENS both contain thousands of videos
of daily tasks paired with annotations, and thus,
they allow for cross-modality learning. For our
project, we tackle the episodic memory (Tul-
ving, 1972) benchmark task described by the
authors of Ego4D through both visual and nat-
ural language cues. The majority of current
state-of-the-art baseline models are limited to
learning from only the video features and input
queries (Wang et al., 2019), (Anne Hendricks
et al., 2017a). Through leveraging the textural
annotations in addition to the visual cues, we
were able to surpass the baseline. Our largest
challenge was ensuring that the model took ad-
vantage of both cues and did not rely only on
narration features. We combined these features
in a couple different ways, and found that im-
plementing an ensemble method led to the best
performance.

1 Motivation

One of the ways in which artificial intelligence
may prove fruitful in the future is the develop-
ment of robotic assistants. Consider the visual
sensory stream of such an agent - it would be con-
stantly changing with the robot’s movement, in
contrast with the static feed of a surveillance cam-
era. Such video is egocentric - captured from first
person viewpoint, and it is long, fluid, uncurated.
It naturally brings the agent’s intentions and inter-
actions with the environment to the forefront. Con-
sequently, egocentric video datasets (Damen et al.,

Figure 1: Ego4D Example images and narrations. Fig-
ure borrowed from (Grauman et al., 2021)

2021), (Lee et al., 2012), (Li et al., 2018), (Pirsi-
avash and Ramanan, 2012), (Singh et al., 2016)
provide a testbed for agents of the future to per-
ceive, learn and recall like humans do (or better).

Given the importance of large datasets in build-
ing intelligent systems, Ego4D (Grauman et al.,
2021) is a recent attempt by the computer vision
community to build a large scale egocentric dataset
and a suite of benchmark challenges to catalyze
future embodied perception research. The first ver-
sion of the dataset release comprises 3000+ hours
of first person video that is narrated along with
benchmark specific annotations for sizeable sub-
sets. The different benchmarks address the past,
present and future - search & recall for what has
already transpired; identifying hand object interac-
tions, state changes and socially relevant goings-
on in the present and forecasting future actions or
movement trajectories.

The Episodic Memory benchmark caters to un-
derstanding the past - its component tasks search
the history of episodes as seen through the first
person lens for queries that maybe visual (image),
natural language (free form sentence) or category
drawn from a taxonomy built from action verbs.
Currently implemented baselines operate by cor-
relating the query representation with the video
representation and determining the most likely oc-
currence.

While helpful, these baselines ignore the rich
information that narrations carry. Akin to how cap-
tions provide useful context for images or figures,



it stands to reason that perception systems would
benefit from leveraging annotator descriptions. The
narrations are dense at 13.2 sentences per minute
of video; an example is show in Figure 1. One
of the major challenges here is that the narrations
are only weakly aligned. Unlike image frames that
come in at a constant frame-per-second (fps), the
narrations are sparse and vary according to the ac-
tion density in the video as well as annotator bias.
This is the technical gap that we address in our
project - developing cross-modal representations
for video and weakly aligned text descriptions to
aid in egocentric video understanding.

2 Literature Survey

The neural learning revolution has allowed us to
tackle tasks that need visual and language under-
standing far better than ever before. The main task
of this project is that of episodic memory: given
a video and a query, can we determine the part
of the video required for the answer? There are
many tasks related to this one, including visual
query-answering, language cross-modality align-
ment, and span-based question answering.

2.1 Visual question answering

Visual question answering was one of the earli-
est areas of application for language+vision tasks.
The field of VQA modeling is fairly dominated
by neural learning techniques that combine image
embeddings with query embeddings (Wu et al.,
2015). Neural-QA (Malinowski et al., 2015) com-
bined CNN-learned image embeddings with lan-
guage embeddings from the query using LSTM
cells. (Ren et al., 2015) treated the VQA prob-
lem as a classification problem and predicted the
final answer as one of several possibilities. More
recently, attention mechanisms and transformer ar-
chitectures have been heavily employed in VQA.
(Anderson et al., 2018) utilized a top-down atten-
tion mechanism for combining the query features
as context with visual features that are obtained
using a bottom-up attention CNN architecture.

2.2 Video and language cross-modality
alignment

The task of video and language cross-modality
alignment is as follows: given a video and text de-
scription or query, determine the specific part(s) of
the video that aligns with the text. There are many
different approaches to this task, but most fall into

the categories of feature-based, attention-based,
or sequential-based. A feature-based method is
(Anne Hendricks et al., 2017b), which uses tem-
poral context features to capture both local and
global context in the video. Similarly, (Zhang et al.,
2019a) uses a tree attention network to extract fea-
tures from the input query. Attention-based meth-
ods like (Xu et al., 2019) and (Liu et al., 2018a),
uses attention to focus on relevant temporal loca-
tions in the video. Additional methods like (Liu
et al., 2018b), (Jiang et al., 2019), and (Yuan et al.,
2019) use attention to capture the interaction be-
tween the natural language query and the video.
On the other hand, we have sequence-based meth-
ods like (Zhang et al., 2019b), which use recurrent
neural network (RNN) structures to capture the tem-
poral relationship between text and video. Finally,
(Zhang et al., 2020b) uses a temporal adjacent net-
work, and is discussed further in our baseline sec-
tion below.

2.3 Span-based Question Answering
Highly related to the task of this project is span-
based question answering, or the challenge of an-
swering questions about a span of text or video.
(Wang and Jiang, 2016) combines two pre-existing
models, match-LSTM (Wang and Jiang, 2015) and
Pointer-net (Vinyals et al., 2015) to correctly deter-
mine the answer to the query within the given con-
text passage. Many methods utilize attention, in-
cluding (Seo et al., 2016), which uses bi-directional
attention, (Xiong et al., 2017), which uses co-
attention, and (Yu et al., 2018), which uses self-
attention. In addition, (Huang et al., 2017) uses
multi-level attention to fuse local and global se-
mantic information. More recently, pre-trained
models are rising to the forefront. This includes
transformer-based models like BERT (Devlin et al.,
2019) and its variations such as RoBERTa (Liu
et al., 2019) and ViLBERT (Lu et al., 2019). Other
transformer-based methods for this task include
(Yang et al., 2019), (Sun et al., 2019), (Yu and
Jiang, 2019), and (Tan and Bansal, 2019). Lastly,
(Zhang et al., 2020a) uses a span-based framework
and is discussed further in our baseline section.

2.4 Egocentric video datasets
Egocentric datasets aim to capture first-person
videos depicting diverse actions performed on a
large scale. These datasets provide the basis for
solving several downstream tasks. Datasets such as
the UT-Egocentric (Lee et al., 2012) and the Activi-



ties of Daily Life (ADL) (Pirsiavash and Ramanan,
2012) are compiled using a diverse set of actions
in different settings. On the other hand, the EPIC-
KITCHENS dataset (Damen et al., 2021) is a col-
lection of activities that were all recorded in kitchen
settings, annotated by a narrator and a transcriber.
The Disney dataset (Fathi et al., 2012) is collected
through agents at theme parks and covers social in-
teractions. By pairing first-person and third-person
views at the same timestamp, the Charades-Ego
(Sigurdsson et al., 2018) dataset allows for joint
modeling of the actor and observer perspectives.

3 Problem Formulation

The Ego4D Episodic Memory benchmark is com-
prised of three related tasks about querying the past
as seen in a video. In this project we address the nat-
ural language queries (NLQ) task, as defined below.
One key aspect of this task is that the model does
not need an external knowledge base to provide
an answer, and all queries should be answerable
from the contents of the video itself. For exam-
ple, “What is capital of France?" is not a fair query,
whereas “What did I do in France just before my
flight home?" is.

3.1 Task Definition

The task is defined as, given an egocentric video V
and a natural language query Q, identify the con-
tiguous track of frames r = {rs, rs+1 . . . re} from
which the answer to the query may be deduced.
Note that the task is coarser than VQA - it is only
sought to temporally localize the query rather than
to answer it itself. Our hypothesis is that this task
definition naturally lends itself to modular pipelines
where the first phase is to localize the query, and the
second is to delve into the short localized segment
to retrieve the answer.

3.2 Evaluation Metrics

The prescribed metric for evaluation, in keeping
with prior work (Zhang et al., 2020c) is recall@k,
IoU=m. It computes the percentage of times that
at least one of the top k prediction windows has
an intersection-over-union overlap of at least m.
Methods are evaluated at k = {1, 3, 5} and m =
{0.3, 0.5}.

3.3 Baselines

Two recent methods from natural language ground-
ing literature - 2D-TAN (Zhang et al., 2020c) and

Baseline r@1, IoU=0.3 r@5, IoU=0.3
2D-TAN 5.04 12.89
VSLNet 5.45 33.45

Table 1: Performance of the NLQ baselines

VSLNet (Zhang et al., 2020a) are adapted to the
task and benchmarked. The results are provided in
1. Notably, both methods use precomputed Slow-
Fast (Feichtenhofer et al., 2019) video features and
language features from a pretrained BERT (Devlin
et al., 2019) model for training. We propose to
start from these precomputed features as well and
only train the cross-modality representation and
prediction parts of the model.

4 Method

We took a deliberately stepped approach to devel-
oping our model by first designing simple experi-
ments to test our hypothesis, that introducing tex-
tural features from narrations would lead to im-
proved performance. Once that was validated, we
developed deep learning models to exploit the use-
ful signals discovered. Our code can be found at
https://github.com/emulhall/episodic-memory.

4.1 Terminology

For a query Q associated with egocentric video V ,
we denote by Qtext, Qs

time and Qe
time the natural

language text, the starting time and the ending time,
respectively. These three components together de-
fine query Q. The start and end times delimit the
part of the video where the answer to the query
may be found.

The set of narrations associated with video V
are denoted by [Nk] where k is the index into the
chronologically sorted array. Each narration Nk is
comprised of the natural language description and
a video timestamp for the point in time to which
the narration corresponds - Nk, text and Nk, time

respectively.

4.2 Proof of Concept

First, we viewed some video data comprising the
benchmark task by creating visualizations in which
the videos were overlaid with queries and narra-
tions according to their time intervals or times-
tamps. Figure 2 shows an example.

We observed that narrations highlighted interac-
tions of the camera wearer with their environment,

https://github.com/emulhall/episodic-memory


Figure 2: Visualization examples. Queries are in red,
and the narrations are the blue text at the bottom of the
frame.

and such interactions were also the subject of nu-
merous queries. For example, in the top frame of
Figure 2, the query, “Where was the soap before I
picked it up?" can likely be answered around the
frame in which the narration is, “#CC picks up
soap," where #CC is the camera wearer. Likewise,
in the bottom frame, the query, "What did I pour in
the bowl?" is directly answered by the narration at
that frame, “#CC puts water in bowl."

Having observed a few instances, such as these,
supporting our hypothesis, we next sought to garner
quantitative validation over the full dataset with a
simple experiment.

4.2.1 Narrations
Following machine learning tradition, we devel-
oped our own version of a nearest neighbor (NN)
baseline. There are two major components here -
first is the feature space and distance metric, and
second is the metric to baseline. We used a large
language model (LLM) feature extractor to get sen-
tence features, and the distance metric was cosine
distance in normalized feature space.

While the answer to each query is a contigu-
ous set of frames, observe that the narrations only
correspond to a point in time. Even if the nearest
neighbor retrieved narration be appropriate to the
query, it is non-trivial to go from point in time to

the time span expected as the correct answer to the
query.

We, therefore, construct a simpler accuracy met-
ric instead of the full intersection over union (IOU).
We make the above discussion mathematically con-
crete below,

Given query Q for video V with narrations [Nk],

f(xtext) =
g(xtext)

||g(xtext)||

Ni = argmax
Nk

f(Nk, text)
T f(Qtext)

acc =

{
1 Qs

time ≤ Ni,time ≤ Qe
time

0 otherwise

where g is a pretrained LLM feature extractor.

Intuitively, the nearest neighbor narration should
correspond to a frame that falls within the start
and end times of the query. We run top-k NN
experiments with k = 1,3,5,10 and compare with
random retrieval.

4.2.2 Image Captions
In addition, we explore the use of auto generated
image captions as a complementary source of infor-
mation to narrations. We observe that the narrations
describe salient interactions of the camera wearer
with the environment but fail to mention other ob-
jects that may be of interest. For e.g.: a pan on a
kitchen shelf above the sink won’t be mentioned in
the narrations if the camera wearer is only washing
dishes in the observed video, however, it is impor-
tant from an episodic memory standpoint since it
might come in handy later. To this end, we explore
if image captioning networks can provide useful
scene descriptions that may be leveraged for the
NLQ prediction task.

Image captioning networks have come a long
way at describing the foreground and background
of an image using natural language in recent years
(Hossain et al., 2019). We visualize some sam-
ple egocentric images from the dataset and cap-
tions generated by OpenAI’s CLIP model (Con-
trastive Language-Image Pre-Training) (Mokady
et al., 2021) in Figure 3. While the model performs
well on non-egocentric data, it clearly struggles
with egocentric images. The model appears to be
quite sensitive to the domain gap. We leave the
exploration of dense captioning methods to the fu-
ture.



In spite of our skepticism, we tested the utility of
image captions through a setup identical to the one
for narrations. We captioned videos at a constant
frame rate and these were used as an input to the
nearest neighbor pipeline.

Figure 3: Captioning visualization examples. Queries
are in red, and the captions are the blue text at the bottom
of the frame.

4.3 Full Model

4.3.1 Representation
The input to the baseline model, VSLNet, is a fea-
ture representation of the video Vf with shape
(N,K) where the first dimension indexes video
location, e.g., index 0 is video start, N − 1 is end,
⌊N/2⌋ is middle, etc. The second dimension is
the feature dimension. Analogous to how word
embeddings in recent language models embody
context, the frame-wise video features also encode
the temporal context found in the video.

One method to encode narrations could be to
map the per narration features extracted by a lan-
guage model onto the frame indices corresponding
to their timestamp. While logical, this would result
in a sparse and uneven feature distribution since
the majority of frames do not have a corresponding
narration.

Researchers working on 2D Pose Detection (Wei
et al., 2016) discovered that converting a delta func-

tion into a continuous function using Gaussian fil-
tering was conducive to neural network learning.
We take inspiration from this body of literature as
well as observe that the underlying action being
described by video narrations must have been per-
formed over a neighboring time span. We process
narration features by filtering them using a radial
basis kernel with bandwidth equal to a few sec-
onds before pooling the features over the video.
Concretely, for narration Nk, we construct feature
N f

k ∈ RN×L s.t.

N f
k [i] =

{
i = h(Nk,time) g(Nk,text)

0 otherwise

where h(.) is a function mapping timestamps to
frame indices and g is an LLM feature extractor.
We then smooth and consolidate all narration fea-
tures for video V:

N f =
∑
k

N f
k ∗Wσ

where ∗ is the cross-correlation operator and Wσ

a 1D Gaussian filter with bandwidth σ and width
∼ 6σ.

4.3.2 Query Prediction
We attempted two different forms of combining
video and narration features for final prediction.
First, we used simple concatenation of video and
narration embeddings. The rest of the model re-
mained unchanged. We also try an ensembling
approach. Here, we trained independent models
with video only as well as narration only features
with the full objective as described in the original
paper.

We then train new start and end time prediction
heads, the input to which are the concatenated fea-
tures from the respective heads of the two original
models. The models trained in the previous stage
are now frozen and the prediction heads are the
only component trained with a prediction loss; the
query highlighting loss is ignored in this stage.

5 Experiments

5.1 Proof of Concept

We first discuss implementation details and results
of our Proof of Concept experiments. To extract
narration features, we used BERT (Devlin et al.,
2018) as the LLM feature extractor.



kNN Retrieval Accuracy(%)
r@1 r@3 r@5 r@10

Random 1 3 4 8
Image Captioning 2 4 6 9

Narration 6 11 15 20

Table 2: Proof of Concept

Method IoU = 0.3(%) IoU = 0.5(%) mIoU
r@1 r@5 r@1 r@5

Video only 4.57 9.03 2.50 6.12 3.55
Narration only 6.97 13.58 3.41 8.26 5.12

Concat 6.56 13.58 3.41 8.26 5.12
MLP 4.96 10.33 2.45 5.91 3.78

Ensemble (Full Model) 8.29 15.31 4.85 9.94 6.08

Table 3: Model Performance

For image captioning, we used OpenAI’s CLIP
(Mokady et al., 2021) and captioned videos to
roughly match the frequency of narrations - once
every 5 seconds, or 0.2 fps. Even though only clips
or sections of videos are part of the data subset that
forms the benchmark, we nevertheless narrated the
entirety of videos resulting in just over 300 hours
of total video captioned. Once captioned, features
were again extracted using BERT (Devlin et al.,
2018).

Since kNN is an unsupervised learning method,
we used the large train split. The train split com-
prises 754 videos and 11293 total queries with an
average of 14.97 queries per video. The results are
presented alongside a random retrieval baseline in
Table 2.

We observe that the network generated image
captions seem to provide only a marginal lift com-
pared to random retrieval while the human anno-
tated narrations clearly contain a useful signal. We
build on the insight generated by this simple ex-
periment, and incorporate the narrations into the
VSLNet baseline.

5.2 Model Performance

Since our representation for the narrations is mod-
eled after the video representation and aligned with
it, we try a variety of experiments to ablate and
combine the two representations. We tried the fol-
lowing different methods:

1. Video only - The model input is SlowFast
video features (Feichtenhofer et al., 2019)
only; this is the baseline released as part of

the benchmark.

2. Narration only - We substitute the video fea-
tures with our consolidated narration feature
as described in Section 4.3.1. The kernel band-
width used was ∼ 1 second.

3. Concat - We concatenate the video and narra-
tion features along the feature dimension and
use it as the input to the model.

4. MLP - We process the video and narration
streams using three successive Conv1D op-
erations with width=1 before concatenating
along the feature dimension. We use ReLU
non-linearity along with Batch Normalization
(Ioffe and Szegedy, 2015) at every layer.

5. Ensemble (Full Model) - Our Full Model cor-
responding to a late feature fusion strategy as
describe in Section 4.3.2.

The models were trained on the train split and
tested on the validation split; labels for the test
split are hidden since an active challenge on the
benchmark is ongoing. The results are presented in
Table 3.

The narrations are surprisingly effective at the
prediction task, beating the video representation by
a comfortable margin. We observed that combin-
ing the video and narration representations was far
from straightforward. While concatenation gave
results comparable to when only narrations were
used, preprocessing the features using Conv1D op-
erations fared suprisingly worse. We analyzed the



output of the Narration only and Concat models,
but found no evidence to indicate that the model
had collapsed to learning only from narrations; the
output was equally correlated with the output from
Video and Narration only models.

Finally, the ensembling strategy works well and
converges quickly to deliver better results than if
either one of the representations were used alone.

6 Analysis

6.1 Limitations
Throughout this project, we experienced a few lim-
itations. First, the benchmark task is brand new,
having been released only this month. Thus, be-
sides the original baselines presented in (Grauman
et al., 2021), there are no other methods to compare
against. Second, the benchmark task does not pro-
vide the narrations for the test set. This is likely to
prevent competitors from manually matching nar-
rations to queries. However, this prevents us from
being able to evaluate our method on an unseen test
set. Lastly, any update to the features takes place
in the data preparation module of the model. This
phase generates the features and organizes them for
input to the model in the training process, and can
take quite a long time to complete. Thus, experi-
menting with features is a timely process, because
each little change needs to re-run the entire data
preparation script in addition to then running the
training code.

6.2 Ethical Concerns
A few ethical concerns arose during this project.
While Ego4D (Grauman et al., 2021) was collected
by nearly 1,000 subjects over 9 different coun-
tries, it is not necessarily balanced by demographic.
Thus, there is a possibility that the data is racially
and/or gender biased. In addition, narrations were
not necessarily annotated in the same counties as
the data was originally collected. Thus, narrators
could miss cultural nuances present in the video.
Lastly, tasks performed during data collection are
not necessarily balanced, which could lead to the
model performing far better on certain tasks than
others.

7 Conclusion

In this project, we implemented VSLNet (Zhang
et al., 2020a) for the task of natural language
episodic memory, in which the input is a video
and natural language query, and the output is a start

and end time within the video in which the answer
to the query can be found. We tested our hypoth-
esis, that introducing natural language features in
addition to the visual features can lead to stronger
performance, through using video narrations and
image captions.

To validate our hypothesis, we first performed
proof-of-concept experiments using a nearest
neighbor method to match narration and caption
embeddings to query embeddings. We found that,
while captions did not introduce significant helpful
information, the narrations did. Using this knowl-
edge, we used the narration features as input to the
VSLNet (Zhang et al., 2020a) model. We found
the use of these narrations so beneficial to the task
that using only narration features led to a better per-
formance than the original video only model. We
combined the visual and natural language features
a couple of different ways, with varying success.
Concatenating the features led to a performance
similar to the narration only method, processing
the video and narration streams using three suc-
cessive Conv1D operations before concatenating
along the feature dimension which led to a perfor-
mance close to the original video only method, and
finally, introducing an ensemble method, leading to
the best performance by far. Thus, we proved our
hypothesis correct, that natural language cues in
addition to visual cues lead to the best performance
on the task of natural language episodic memory.

As mentioned in the introduction, this work is
a step towards machines perceiving and under-
standing scenes through visual and natural lan-
guage cues. This perception is necessary for future
projects, such as the development of robotic assis-
tants. Given an understanding of a scene, we can
then introduce instructions for robots to assist in
the scene, train them in making useful suggestions
to a user, and more. While we don’t expect that
performances on this task will immediately lead to
the production of such assistants, the prospect of
training models on in-the-wild video that is cheaply
obtained along with expensive, albeit sparse expert
annotations is very exciting.
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