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Abstract

Developing controllable long text generation
model has been a challenging problem given
its relatively complex syntactic and semantic
structures comparing to short form text. In this
project, we aim to study approaches that can
manage the coherence and cohesion from gen-
erating long text and apply it to open domain
dialogue system. The targeted outcome will
be a model feasible to generate long coherent
dialogues with dynamic information flows and
imposed keywords related content. Our work
fundamentally rely on the stochastic modeling
paper (Wang et al., 2022). Within the scope
of course project, we firstly examine the char-
acteristics of the latent variables and produced
some explanations for our observations. We
also did extensive experiments checking how
the latent trajectories relates to the coherence of
generated text and developed or applied several
evaluation metrics for coherence to test it.

1 Motivation

Modern open dialogue systems can benefit from
the large amount of free corpus to train end-to-
end neural models(Budzianowski and Vulić, 2019),
however they also suffer from generating repetitive,
meaningless, sometimes irrelevant text due to their
over-simplified training objectives. On the other
hand, large language models have been proven to
generate short text effectively, but they are often
incoherent when it comes to longer text due to their
inability to plan-ahead and represent long-range
text dynamics. One recent work (Wang et al., 2022)
proposed a representation-learning based method,
named Time Control, to learn a latent space with
known, target-anchored fixed dynamics. The au-
thors made two explicit assumptions in the paper.
They begin by assuming the wandering text pro-
duced without a target can be modeled by Brownian
motion, which enforces the embeddings of neigh-
boring text to be similar to each other and distant
text to be dissimilar. The second assumption is that

goal-oriented generation can be achieved by fixing
start and end point. Thus the latent trajectories can
be guided by simple, closed-form dynamics. The
experiment results show promising tail end quality
in forced long text generation. We are hoping to ex-
tend this stochastic language modeling to be more
specific for dialogue generation and append other
information such dynamic flow and extra knowl-
edge to get more knob-tweaking ability during the
generation procedure.

2 Literature Survey

2.1 Coherent long text generation

There has been previous efforts that try to address
the uncontrolled aspects in long text generation.
One category is called prompt control where a con-
text is prepended to a model input. For example,
CTRL(Keskar et al., 2019) is a large conditional
transformer language model that combine control
codes and prompts to exhibit a style of text. How-
ever, prompt-based methods suffer from the inabil-
ity to iteratively improve the existing generated text.
Various works have used syntactic parse tree with
the transformer structure to gain discourse control
and enhance interpretability. RSTGen (Adewoyin
et al., 2022) applies RST theory to form a binary
tree structure of discourse unit and shows supe-
riority in long-form text generation task such as
argument generation and story generation. Plan-
ning based approaches has been used to generate
globally coherent text(Kiddon et al., 2016), but
they often requires domain-specific knowledge to
define dynamics. Learning latent representation
for controlling long text generation is also an ap-
proach that many works have been studied, but they
either cannot capture evolving dynamics over the
whole document (Nie et al., 2019) or difficult to
apply learned local dynamics to generate accurate
goal-conditioned trajectory(Oord et al., 2018).



2.2 Knowledge enriched text generation

The knowledge can be divided into two classes
based on the knowledge source. One is external
knowledge from outside such knowledge graph
or knowledge base. The other is internal knowl-
edge embedded in input text. Internal knowledge
sources can be further divided into topic, keyword,
linguistic features and internal graph structure (Yu
et al., 2022). In this project, we are going to fo-
cus on using topic and keyword to enhance natural
language generation.

In dialogue system, a vanilla Seq2Seq model
tends to output trivial replies with little information
and can often lead the conversation to an end easily.
Generative topic models were proposed to generate
on-topic response (Xing et al., 2017; Zhang et al.,
2016; Liu et al., 2019). They first generate topic
from a pretrained generative model, for example
Latent Dirichlet Allocation (LDA), and then feed
the topic representation to neural generation mod-
els. However, the topic generation process is sep-
arated from neural network training. It is difficult
for them to capture the complicated relationship
between input and output text. Instead, neural topic
models can be trained efficiently be backpropaga-
tion and provide better coherence (Cao et al., 2015;
Miao et al., 2017).

Keyword enhanced methods can be categorized
in to keyword assignment methods and keyword
extraction methods. While keyword extraction se-
lects the existing words in input text as keyword,
keyword assignment uses a classifier to assign one
word in predefined vocabulary to be keyword (Sid-
diqi and Sharan, 2015). Keyword extraction was
shown to be suitable for keeping important informa-
tion in text such as summarization and paraphrase
(Yu et al., 2022). Keyword assignment is more
popular in dialogue system. It has been used to
incorporate emotion or persona into generated re-
sponse and get superior performance (Li and Sun,
2018; Song et al., 2019a,b; Xu et al., 2020).

2.3 Utilize dialogue history

Currently, the dialogue history model for open-
domain dialogue can be generally classified to the
following two types: 1) Flat pattern model: the
predicted response is generated by concatenate the
dialogue history as the model input (Zhang et al.,
2020). This method is commonly used in the large-
scale pre-training. 2) Hierarchical model: to gen-
erated the predicted response, one needs to first

encode each utterance separately and then the pre-
dicted response is generated by feeding all these
encoded utterances into an utterance-level encoder
(Gu et al., 2021).

There are some drawbacks of the above two mod-
els. For the flat pattern model, it is likely to ignore
the conversational dynamics across the utterances
in the dialogue history (Sankar et al., 2019). For
the hierarchical model, in the utterance encoder, it
fails to make use of the history information, and
instead, encode each utterance individually. To
overcome this two deficiencies, inspired by human
cognitive process, (Li et al., 2021b) put forward the
DialoFlow to model the dynamic information flow
in the dialogue history by addressing the semantic
influence brought about by each utterance.

Besides, considering history information is of-
ten be long and noisy, it may be a waste of time
and energy to work on all of the information and
such redundant information may lead to system to
a sub-optimal solution. Instead, a refined dialogue
history information set may enhance the model per-
formance, among the method to refine the history
information, one can use the keywords(Li et al.,
2021a), tokens (Zhong et al., 2022) and other con-
textual knowledge.

2.4 Evaluation metrics

Based on our literature review, there exists several
automatic metrics for measuring local coherence of
the text. However, since most of these metrics were
developed for machine translations, it requires a ref-
erence text to be compared with. In our generation
process from latent space, the learned embedding
does not necessarily produce matched text with the
input ground truth in any details throughout the
dialogue, so lots of existing automatic metrics are
not suitable for our settings and is also our major
challenge. In our experiments, we will use two
model-based approaches to evaluate our test cases
(chatGPT as an extra in the appendix). We will also
provide human evaluations and discuss its correla-
tion with the chosen automatic evaluation metrics.

2.4.1 Automatic Evaluation
To automatically evaluate the text coherence prob-
lem is a long standing problem. In our task, we
don’t have reference to do the evaluation, so the
currently popular score, such as BLEU(Papineni
et al., 2002), METEOR(Banerjee and Lavie, 2005),
NIST or BERTScore(Zhang* et al., 2020) cannot
be used in our task. Besides, since our dialogue



generation model has a preset topic, therefore, we
can use some topic-related automatic evaluation
metric. Due to the time limitation, here we only
show on automatic evaluation metric for text co-
herence. Here, we use the automatic text coher-
ence evaluation put forward in (Röder et al., 2015).
In this paper, they put forward a framework that
make use of the existing conformation measures
which can be used to evaluate the text coherence.
In our paper, we select three difference conforma-
tion measures: UCI coherence, U-Mass coherence
and Normalized pointwise mutual information.

2.5 Datasets

We will consider the following datasets in our ex-
periments.

Datasets Training size
Wikisection 1420 articles
Wikihow 1566 articles
Taskmaster-2 2000 conversations
TicketTalk 2000 conversations

3 Proposed Ideas

3.1 Problem definition

Here we want to address the research questions
from three aspects:
RQ1: Can Time Control robustly generate long
and coherent dialogues?
RQ2: Will incorporate dialogue history help im-
prove the generation performance?
RQ3: Can we further impose keyword or topic to
guide the content generation?

3.2 Topic and keyword model

We can use neural topic model to generate latent
topic and feed it into the decoder along with latent
text to get on-topic responses. Keyword assignment
methods can also be adopted to incorporate person-
alized information such as emotion and persona to
responses.

3.3 Enhanced model performance by dialogue
history

In (Wang et al., 2022)’s Time Control model, when
they predict the trajectory {zt}Tt=0 in the latent
space, the only history information they use is the
starting point z0 and the ending point zT 1. Due to

1If the real end-point does not exist, this point will be
generated randomly.

this problem, their dialogue model easily forgets
what the people were just talking about, for exam-
ple, [U]: "I want five tickets" [A]: "Okay, I found
..." [U]:"..." [A]: "How many tickers would you
like to purchase?" (Wang et al., 2022). Another
problem in this dialogue model which is probably
caused by this issue is the lack of a coherent theme,
for example, the user started the dialogue by say-
ing he wants to buy a ticket to movie A, but as the
dialogue continues, they seems forget their original
idea and talked about the movie B.

We attribute these problems to insufficient use of
historical information. To enhance the model per-
formance, we will try to add the history information
to the response generation part. However, consid-
ering the intrinsic problem cause by the Brownian
bridge assumption, that the predicted latent vari-
ables {zt}T−1

t=1 only depends on z0 and zT , we can
only add an intermediate model to process all the
predicted latent variables before inputting them to
the decoder, instead of working on the generation
mechanism of the latent variables. However, this
can be regarded as a hierarchical model, which
faces the same problem we discussed in the litera-
ture part. To overcome this problem, we may adopt
idea from the DialoFlow model (Li et al., 2021b),
that is to construct another model to capture the
overall history information and the dynamic of the
dialogue. Furthermore, such idea will be refined as
the project progresses, for example, we may refine
the history information set with the keywords.

Figure 1: Paper Example

4 Proposed Analysis

We dive into the latent space learned through a
Brownian bridge and explore how the change in
shape of the latent space can affect the coherence
of generated text. Though our anticipated outcome
for the project is to develop a text generation sys-
tem suitable for open-domain chit-chat talk, the
example1 shown on the original paper is dedicated
to a static latent space trained on certain dataset
(i.e. TicketTalk), so our initial exploration focus
on task-oriented long text generation and assess



its coherence. But eventually we aim to employ
stochastic process language model approach into
traditional sequence to sequence model in inter-
active dialogue mode which we think is a greater
potential to be used and has greater flexibility in
real life. The high level idea for language model
via stochastic process is to map raw text into a la-
tent space via an encoder, which utilizes Brownian
bridge as part of the loss function. To examine
the relations between long text coherence and the
shape of the latent space, we plan to address from
the following aspects. In section 4.1, we describe
how the latent space is learned in detail. Addition-
ally, in section 4.2, we will discuss how to set up
experiments to quantify the latent variable through
visualization, and whether sampling different tra-
jectories from the latent space impact the coherence
of the generated text. We present our results in sec-
tion 4.3.

4.1 Latent space construction
The intuition of using stochastic process to model
the text generation is to learn the smooth temporal
dynamics of a latent space. The original paper uses
a GPT2 encoder with a multi-layer perceptron on
top of it. According to the paper(Wang et al., 2022),
the encoder architecture is trained via a non-linear
function to map sentences to a Brownian bridge
latent space, fθ : X → Z . That way we can map
high dimensional sequence into arbitrarily lower
dimension. Given a arbitrary starting point z0 and
end point zT , the Brownian bridge is defined as:

p(zt|z0, zT ) = N
(
(1 −

t

T
)z0 +

t

T
zT ,

t(T − t)

T

)

The density can be viewed as a noisy linear in-
terpolation between two anchored points, where
the variance grows towards the middle region and
shrinks towards the end.

In terms of the training steps, let (x1, x2, x3)
be a triplet observations from the training set, the
objective is to ensure fθ(x1), fθ(x2), fθ(x3) fol-
low the transition probability defined in Brownian
bridge. Positive triples (x0, xt, xT ) can be ran-
domly sampled from a whole sequence of data
points X = {x1, x2, .., xn} as long as 0 < t < T
on the original order and the loss function to opti-
mize is:

LN = EX [−log
exp(d(x0, xt, xT ; fθ))∑

(x0,x
t
′ ,xT )∈B exp(d(x0, x

t
′ , xT ; fθ))

]

d(x0, xt, xT ; fθ) = −
1

2σ2
||fθ(xt) − (1 −

t

T
)fθ(x0) −

t

T
fθ(xT )||

It is worth to note in the denominator of the loss
function, it is summing over all negative middle
contrast xt′ , which can be seen as the mid-point
sample drawn from another alternative sequence.

Once the encoder is optimized, a decode is sup-
posed to be trained for learning generation. Basi-
cally the decoder is a fine tuned GPT2 and generate
text conditioned all past context and the learned
latent plan. For now, we are only going to study
the attributes of the latent plan created by the en-
coder, thus skip the detailed decoder and generation
sections .

4.2 Experiment setup
To study the latent plan and its correlation with the
coherence of the text, we first designed 3 experi-
ments as the exploratory analysis:

• Quantify the distribution of latent variable
through visualizing different dimensions.

• Explore the relations between latent space dis-
tribution and text coherence by altering the
distribution of the latent space.

• Explore the effect of extreme cases by pining
the trajectory and examine the text coherence.

We trained encoders from scratch and fine tuned
decoders using four different dataset: Wikisec-
tion, Wikihow, TicketTalk and TicketMaster2. We
used 16 latent dimensions for training Wikihow,
TicketTalk and TicketMaster2 dataset while for
Wikisection we used 32 latent dimensions dur-
ing training. We kept other hyperparameters dur-
ing encoder training consistent across four dataset
and they are set as the followings:{model_params:
{num_layers: 2, hidden_size: 128, eps: 1e−6},
optimiz_params:{batch_size:32, decay_step: 5e4,
decay_factor: 0.1, learning_rate: 0.0001, mov-
ing_average_decay: 0.9999, momentum: 0.9},
expriment_params:{num_epochs:100}}. And all
the training was ran using a single GPU NVIDIA
GeForce RTX 3090 Ti.

For evaluations, we generated 5 documents for
each experiment settings from 2 different conversa-
tion dataset. Specifically, those experiment settings
are: 1. True embeddings of the sample 2. Brow-
nian bridge embeddings sampled from a learned
Brownian Bridge process with fixed starting and
ending point. 3. Brownian bridge embeddings with
foced trajectories (enlarge the variance by factor
of 2 and 3) 4. Random embeddings sampled from
Gaussian distributions with the same dimension.



4.3 Results
4.3.1 Visualization of the latents
To show whether the latents follow Brownian
bridge process, we plot the trajectories of latents
generated by trained Time Control encoders. Since
the Time Control model assumes that all dimen-
sions of the latent variable is independent of each
other, we can draw each dimension separately and
then analyze their distributions. Figure 2 shows
the plots of each dimension of latents generated
from one text in TicketTalk training set. Surpris-
ingly all dimensions share similar values. Every
dimension is either close to dimension 0, or close
to the negative of dimension 0. Also we observe
that, there is a big jump near the end of the text,
which is a common phenomenon in all the plots
from different dataset or data points. If we remove
the last several latents from the plots, the remain-
ing trajectory looks like coming from a Brownian
bridge process.

Figure 2: Plots of Each Dimension of Latents

To analyze why there are big jumps in latent tra-
jectories, we present several latent trajectories and
corresponding raw texts. Three common patterns
of big jumps is shown in Figure 3. They are all
near the end of trajectories and usually come from
the sentences about confirmation of booked tickets
and concluding the conversation.

As we can see in Figure 4, the latent trajectories
generated from other datasets, including Wikisec-
tion and TicketMaster2, also have similar behaviors
as above.

4.3.2 Extreme trajectory
In this subsection, we test the model behavior by
manually selecting the latent trajectory to be some

(a) Big Jump in Last Sentence

(b) Big Jump in Last Two Sentence

(c) Big Jump Near the End

Figure 3: Raw Texts with Word-level and Sentence-level
Latent Trajectories

(a) TicketMaster2

(b) Wikisection

Figure 4: Latent Trajectories from Other Datasets



extreme trajectory (boundary of sampling region).
Here we show one example in Figure 5 where the
trajectory is manually selected to be boundary of
the initial sampling region, and the rest tests can be
found in the appendix 7.

Figure 5: The region enclosed by the red curve is the sam-
pling region of latent trajectory. The trajectory consists of
black crosses is the latent sequence corresponds to the text.

In fact, the boundary are possibly the worst cases
when sampling in the corresponding sampling re-
gion. By analyzing these worst cases, even though
these extreme cases are less likely to be generated
in application, we can still get a very shallow in-
tuition on the model stability and are able to find
a faint relation between latent space and text co-
herence. To further justify this intuition, we do the
following tests in section 4.3.3.

4.3.3 Extended sampling region
In this subsection, we evaluate the relation between
size of sampling region and text coherence. Here
we show one example in Figure 6, and the rest
can be found in the appendix 7. In this test, the
sampling region is expanded to twice the original
region, and the latent sequences are sampling in
this region. As we can see, the text coherence is
worse than the example shown in Figure 8 which
is corresponding to the initial sampling region.

Figure 6: The region enclosed by the red full curve is the
initial sampling region. The region enclosed by the red dash
curve is the extended sampling region of this test.

By simply comparing these results, we can find
a preliminary result that the initial region without
any extension generates the most coherent text, and
if the size of sampling region increases, the text
coherence will decrease. However, even though
we have already generated many other cases that
also show this property, we still need a non-human
evaluation so that we can test on a large amount of
cases to eliminate the impact of randomness.

4.4 Evaluation results
4.4.1 Semantic Coherence
Inspired by the method of using clustering algo-
rithms on pre-trained word embeddings to find top-
ics (Sia et al., 2020), we want to use clusters of
pre-trained sentence embeddings to represent the
semantic centers of the text. Given a text, We use
Sentence BERT model2 (Reimers and Gurevych,
2019) to get sentence embeddings and then use
K-means to compute two clusters. Semantic coher-
ence is measured by the cosine similarity between
the two clusters. The more similar the clusters are,
the more coherent the text is.

Testcase TicketTalk TM2
BB 0.5279 0.6973

Forced 2 BB 0.5512 0.6862
Forced 3 BB 0.5579 0.6645

Random 0.5771 0.6625
Truth 0.6095 0.5804

Table 1: Cosine Similarities Between Clusters of Sen-
tence Embeddings. (Higher score means higher similar-
ity.)

Texts generated by the following five models are
evaluated,

• Normal Brownian bridge model (BB),

• Brownian bridge model with expanded sam-
pling region to twice (Forced 2 BB),

• Brownian bridge model with expanded sam-
pling region to third (Forced 3 BB),

• Random sampling model (Random),

• Ground truth model (Truth).

The results of cosine similarities are reported in Ta-
ble 1. While the Brownian bridge model has better
semantic coherence on TM2 dataset, the random
sampling model performs better on the TicketTalk
dataset.

4.4.2 Automatic topic coherence
In Table 2, we show the topic coherence evaluation
of the model trained with TicketTalk dataset and
in Table 3, we show the result trained with TM2
dataset.

In these result, the higher the score is, the more
coherent the model is. Therefore, as we can see in

2https://huggingface.co/
sentence-transformers/all-mpnet-base-v2

https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/sentence-transformers/all-mpnet-base-v2


Testcase CUCI CNPMI CUMass

BB 0.4033 0.0188 -26.30
Forced 2 BB 0.4034 0.0181 -26.69
Forced 3 BB 0.3619 0.0175 -26.56

Random 0.9692 0.0366 -26.44
Truth 0.8109 0.0323 -26.55

Table 2: Topic coherence evaluation, TicketTalk

Testcase CUCI CNPMI CUMass

BB 6.303 0.2342 -20.95
Forced 2 BB 4.653 0.1758 -22.45
Forced 3 BB 3.410 0.1271 -23.87

Random 7.276 0.2674 -20.03
Truth 3.558 0.1290 -24.04

Table 3: Topic coherence evaluation, TM2

both these two topic, the random model and ground
truth result is the most coherent one. For the rest
Brownian bridge model, apparently, those forced
model shows worse result compared with the nor-
mal Brownian bridge model, which corresponds
with our expectation.

4.4.3 Human Evaluation

In order to test the efficiency of our evaluation met-
rics, we also conducted human evaluations on the
same text. Three evaluators assess the coherence
of the given text independently and assign a score
from 0 to 10 for each document. Then the average
score (1-10) was calculated for each experiment
setting, as shown in Table 4. Figure 7 shows the
UCI coherence correlates with our human evalu-
ation in TicketTalk dataset. We observed similar
correlation from TM2 dataset as well.

Figure 7: correlation with human

Testcase TicketTalk TM2
BB 2.13 1.47

Forced 2 BB 1.53 1.13
Forced 3 BB 1.40 1.00

Random 5.67 1.53
Truth 4.87 5.93

Table 4: Human Evaluation

5 Discussion

To sum up, in this project we study the latent space
characterized by Brownian Bridge process and an-
alyze its relationship with text coherence. We ob-
served that all the dimension of the latent space
have similar shape driven by the objective func-
tion, which is expected. Also, we found that lots of
latent trajectories have big jump towards the end
of the conversation, which is because the start and
the end of a conversation are generally easier to
identified while the signal from the middle of the
conversations are not very strong. Interestingly, we
also found that among the different embedding de-
sign, the random embeddings seem to perform well
on the TicketTalk dataset, even better than the true
embedding settings. However, this finding does not
hold in the TM2 dataset. From our experiments,
true embeddings do give good performances across
different settings and pinned the trajectories at the
tails of the distribution do destroy the coherence.
Overall, we found employing the idea of stochastic
process in learning the representation help us better
understand how to generate the coherent text and
achived the goal of anchoring the end target. With
that being said, how to further improve this model-
ing approach and control the length, topics or other
aspects for dialogue generation still worth investi-
gation. Our code for this project can be found at
Github.

6 Future Directions

Based on the preliminary results, there are still
lots of remaining questions to be answered. For
example, we are still looking for a suitable statis-
tical inference tool to test the similarity between a
random generated stochastic sequence with the av-
erage Brownian bridge trajectory calculated from
the true parameters. Additionally, we are going to
further study the mechanism of the decoder from
the original paper because the model seems to be
generating inconsistent length of text when tuning
the variance of the Brownian bridge even if we set

https://github.com/zcsheng95/stochastic-coherence


it upfront. We suspects this behavior is related to
the decoder.

Specifically, we would like to further eliminate
the effect from the decoder, and replace the decoder
part by some other transformer models such as Di-
aloGPT and DialoFlow. Moreover, we would also
like to conduct larger scale of experiments and find
ways to quantify coherence for the generated text.
Currently we are using human evaluation but hope-
fully can utilize some automatic evaluation metrics
such as perplexity to help increase the scalabil-
ity. Furthermore, we can also design some hand-
craft metric like ordering, absence, redundancy and
topic-diversifying cut point to evaluate the coher-
ence of generated text.

Ultimately, we are hoping to add more features
such flow index, external knowledge such as emo-
tion and personality into the learned latent embed-
dings to get more control over the generation pro-
cedure. However, it almost surely will surpass the
scope of this semester.

7 Broader Impact

Distinguished from task-oriented dialogue system,
open-domain dialogue system aims to establish
long-term connections with users to satisfy the need
for social belongings or communications(Huang
et al., 2019). Under certain conditions, open-
domain conversational agent is also expected to
solve certain task. Through this project, we hope to
develop a method that can generate consistent and
coherent long dialogues from limited prior knowl-
edge. Ideally, the product out of the project can
help writers gain more ideas from machine gener-
ated dialogues and help developers to build more
versatile chat robots. Last but not the least, it can
also help generate humongous training materials to
better train other types of language models.
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Appendix

Extreme trajectory
As shown in Figure 8, the trajectory is manually se-
lected to be boundary of the initial sampling region.

Figure 8: Extreme Trajectory: case 1

As shown in Figure 9, the trajectory is manually
selected to be boundary of the sampling region
which is expanded to twice the original region.

Figure 9: Extreme Trajectory: case 2

As shown in Figure 10, the trajectory is manually
selected to be boundary of the sampling region
which is expanded to three times the original region.

Figure 10: Extreme Trajectory: case 3

Extended sampling region
As shown in Figure 11, the size of sampling region
is the same as the initial region used in trained
model:

As shown in Figure 12, the sampling region is
expanded to twice the original region.

As shown in Figure 13, the sampling region is
expanded to three times the original region.

For evaluation, we added another artificial agent
as our annotator and collected its assessments for
our experiment materials. Figure 14 shows an in-
stance of how to design the prompt and the corre-
sponding response from ChatGPT.

Figure 11: Extended sampling region: case 1

Figure 12: Extended sampling region: case 2

Figure 13: Extended sampling region: case 3

Figure 14: ChatGPT screenshot


