
Due: Feb 9 CSCI 5541 (S24) HW1: Finetuning Text Classifier using HuggingFace page 1 of 7

The lead TA for this assignment is Zae Myung Kim (kim01756@umn.edu). Please communicate with
the lead TA via Slack or during office hours. All questions MUST be discussed in the homework
channel (i.e., #HW1). Questions through emails, Direct Messages, and other channels will not be
answered.

Prerequisite. This assignment assumes that you have programming experience with PyTorch, Jupyter
Notebooks and Google Colab. In case you haven’t subscribed to Google Colab Pro, please follow the
instructions for subscription and get reimbursement at the end of the semester. You have learned
how to build a text classifier in the lectures. You may also learn the basic concept of pretraining and
finetuning from the lecture on Finetuning and tutorials on HuggingFace.

Overview. As part of this assignment, you will build your own text classifier using the HuggingFace
library. By fine-tuning the pre-trained model implemented in HuggingFace model libraries on your
dataset, you will replicate the high-performing text classifier and evaluate its performance against the
state-of-the-art models on the Papers-with-Code leaderboard.

Academic Honesty Policy. Make sure to (a) cite any tools or papers you reference/use, and
(b) credit anyone you’ve discussed the assignment with. It is considered academic dishonesty if you
reference any tool/paper/person without proper attribution.

Step 1: Getting used to HuggingFace library

Follow the basic instructions on inference, model loading, preprocessing, and fine-tuning in the Hug-
gingFace tutorial: https://huggingface.co/docs/transformers/quicktour. It is highly recommended
that you install the library and run the commands in the tutorial in your Google Colab1 or your local
machine using Jupyter Notebook.2 In the tutorial document, you can find some default classes imple-
mented by HuggingFace by scrolling down the left menu. You must first understand these abstract
classes in order to run their models. A tutorial on fine-tuning HuggingFace’s pre-trained model can
be found here: tutorial.

1https://colab.research.google.com/
2https://jupyter.org/

kim01756@umn.edu
https://colab.research.google.com/github/jckantor/CBE30338/blob/master/docs/01.01-Getting-Started-with-Python-and-Jupyter-Notebooks.ipynb
https://colab.research.google.com/github/jckantor/CBE30338/blob/master/docs/01.01-Getting-Started-with-Python-and-Jupyter-Notebooks.ipynb
https://colab.research.google.com/
https://docs.google.com/document/d/1Kdo6BN1h2yISYHTTSC6DVLWhNEaEcRxk/edit#heading=h.gjdgxs
https://dykang.github.io/classes/csci5541/S24/index.html#finetuning
https://dykang.github.io/classes/csci5541/S24/index.html#finetuning
https://huggingface.co/models
https://paperswithcode.com/
https://huggingface.co/docs/transformers/quicktour
https://huggingface.co/docs/transformers/tasks/sequence_classification
https://colab.research.google.com/
https://jupyter.org/

Due: Feb 9 CSCI 5541 (S24) HW1: Finetuning Text Classifier using HuggingFace page 2 of 7

Step 2: Choose a Task and Dataset

You can now select a task and dataset from the list in Table 1. Please contact the lead TA a week
before the deadline if you wish to choose another task and/or dataset. It is recommended that you
read the original paper that describes the dataset first. After that, you can download the raw dataset
or load it from the pre-formatted HuggingFace dataset. Below are links to the Papers-with-Code
leaderboard, original paper, raw dataset, and HuggingFace dataset. Check what model has currently
the best score on your dataset in the leaderboard.

Table 1: List of classification tasks and dataset. The following list contains links to the PapersWith-
Code leaderboard, HuggingFace formatted dataset, and the original paper. Question answering (QA)
tasks could be viewed as a classification task that predicts the appropriate start and end position of
your answer span given a question. Natural Language Inference (NLI) and Human-vs-GPT language
detection tasks could be viewed as classification tasks as well, as they predict the final labels (e.g.,
entail/contradict/neutral, human/GPT) given a pair of two texts. Some datasets may be too large to
train efficiently. In this case, it is fine to sample a sensible amount for each class label and include the
details in the report.

Tasks Datasets

Sentiment classification
SST2 (leaderboard, HF dataset, paper)

DynaSent (leaderboard, HF dataset, paper)

Paper acceptance classification PeerRead (dataset, HF dataset, paper)

Politeness classification StanfordPoliteness (dataset, paper)

Social classification
Social Bias Inference (SBIC) (leaderboard, HF dataset, paper)
Hate Speech Detection (HSD) leaderboard, HF dataset, paper)

Natural Language Inference
SNLI (leaderboard, HF dataset, paper)
MNLI (leaderboard, HF dataset, paper)
MRPC (leaderboard, HF dataset, paper)

Commonsense Reasoning
Winograd Challenge (leaderboard, HF dataset, paper)
CommonsenseQA (leaderboard, HF dataset, paper)

(Visual) Question Answering

HotpotQA (leaderboard, HF dataset, paper)
SQuAD 2.0 (leaderboard, HF dataset, paper

GQA (leaderboard, HF dataset, paper)
VQA 2.0 (leaderboard, HF dataset, paper)

Human-vs-GPT language detection DeepfakeTextDetect (HF dataset, paper)

Step 3: Choose a Model and Replicate it

The next step is to choose a model to replicate. You can (1) choose one of HuggingFace’s pre-trained
models, such as BERT, GPT2, or RoBERTa3 (See Figure 1 (right)), and (2) fine-tune it. You have to
“train” the model, by writing your own training script for fine-tuning the pre-trained model on your
target dataset. Note: you are not allowed to use the default Trainer function in HuggingFace like
below.

trainer = Trainer(

3I understand you have no idea what BERT/GPT is. We will cover them soon in the class so stay tuned.

https://paperswithcode.com/sota/sentiment-analysis-on-sst-2-binary
https://huggingface.co/datasets/gpt3mix/sst2
https://nlp.stanford.edu/sentiment/
https://paperswithcode.com/sota/sentiment-analysis-on-dynasent
https://huggingface.co/datasets/dynabench/dynasent
https://arxiv.org/abs/2012.15349
https://github.com/allenai/PeerRead
https://huggingface.co/datasets/allenai/peer_read
https://arxiv.org/pdf/1804.09635v1.pdf
https://www.cs.cornell.edu/~cristian/Politeness.html
https://aclanthology.org/P13-1025/
https://paperswithcode.com/dataset/sbic
https://huggingface.co/datasets/social_bias_frames
https://maartensap.com/social-bias-frames/index.html
https://paperswithcode.com/task/hate-speech-detection
https://huggingface.co/datasets/hate_speech_offensive
https://arxiv.org/pdf/1703.04009v1.pdf
https://paperswithcode.com/sota/natural-language-inference-on-snli
https://huggingface.co/datasets/snli
https://nlp.stanford.edu/projects/snli/
https://paperswithcode.com/sota/natural-language-inference-on-multinli
https://huggingface.co/datasets/LysandreJik/glue-mnli-train
https://cims.nyu.edu/~sbowman/multinli/
https://paperswithcode.com/sota/semantic-textual-similarity-on-mrpc
https://huggingface.co/datasets/SetFit/mrpc
https://aclanthology.org/I05-5002/
https://paperswithcode.com/dataset/wsc
https://huggingface.co/datasets/winogrande
https://cs.nyu.edu/~davise/papers/WinogradSchemas/WS.html
https://paperswithcode.com/sota/common-sense-reasoning-on-commonsenseqa
https://huggingface.co/datasets/commonsense_qa
https://www.tau-nlp.sites.tau.ac.il/commonsenseqa
https://paperswithcode.com/sota/question-answering-on-hotpotqa
https://huggingface.co/datasets/hotpot_qa
https://hotpotqa.github.io/
https://paperswithcode.com/sota/question-answering-on-squad20
https://huggingface.co/datasets/squad_v2
https://rajpurkar.github.io/SQuAD-explorer/
https://paperswithcode.com/sota/visual-question-answering-on-gqa-test2019
https://huggingface.co/datasets/Graphcore/gqa
https://cs.stanford.edu/people/dorarad/gqa/download.html
https://paperswithcode.com/sota/visual-question-answering-on-vqa-v2-test-std
https://huggingface.co/datasets/HuggingFaceM4/VQAv2/viewer/default/train
https://visualqa.org/download.html
https://huggingface.co/datasets/yaful/DeepfakeTextDetect
https://arxiv.org/pdf/2305.13242.pdf

Due: Feb 9 CSCI 5541 (S24) HW1: Finetuning Text Classifier using HuggingFace page 3 of 7

Figure 1: The Papers-with-Code leaderboard of the dataset SST-2 for binary classification task (left)
and HuggingFace’s model cards on pre-trained language models, like bert-base-uncased (right)

model=model ,

args=training_args ,

train_dataset=tokenized_imdb["train"],

eval_dataset=tokenized_imdb["test"],

tokenizer=tokenizer ,

data_collator=data_collator ,

)

trainer.train ()

Instead, you need to implement your own Trainer like CustomTrainer and then inherit the default
Trainer except for inner training loop function. You can check how the default inner training loop

is implemented. In your customized inner training loop function, you can just copy the code in
the default inner training loop function, but please understand how your training process is imple-
mented as discussed in class, such as multiple epochs of training, forward and backward propagation,
gradient update methods, gradient clipping, and parameter updating.

From the TA’s HuggingFace tutorial, here is an example CustomTrainer.

class CustomTrainer(Trainer):

def _inner_training_loop(

self , batch_size=None , args=None , resume_from_checkpoint=None , trial=None ,

ignore_keys_for_eval=None

):

number_of_epochs = args.num_train_epochs

start = time.time()

train_loss=[]

train_acc=[]

eval_acc=[]

criterion = torch.nn.CrossEntropyLoss ().to(device)

self.optimizer = torch.optim.Adam(model.parameters (), lr=args.learning_rate)

self.scheduler = torch.optim.lr_scheduler.StepLR(self.optimizer , 1, gamma=0.9)

train_dataloader = self.get_train_dataloader ()

eval_dataloader = self.get_eval_dataloader ()

max_steps = math.ceil(args.num_train_epochs * len(train_dataloader))

for epoch in range(number_of_epochs):

train_loss_per_epoch = 0

train_acc_per_epoch = 0

https://github.com/huggingface/transformers/blob/main/src/transformers/trainer.py#L1581

Due: Feb 9 CSCI 5541 (S24) HW1: Finetuning Text Classifier using HuggingFace page 4 of 7

with tqdm(train_dataloader , unit="batch") as training_epoch:

training_epoch.set_description(f"Training Epoch {epoch}")

for step , inputs in enumerate(training_epoch):

inputs = inputs.to(device)

labels = inputs['labels ']

forward pass

self.optimizer.zero_grad ()

output = ... # TODO Implement by yourself

get the loss

loss = criterion ((output [?], labels) # TODO Implement by

yourself

train_loss_per_epoch += loss.item()

calculate gradients

loss.backward ()

#update weights

self.optimizer.step()

train_acc_per_epoch += (output['logits '].argmax(1) == labels).sum

().item()

adjust the learning rate

self.scheduler.step()

train_loss_per_epoch /= len(train_dataloader)

train_acc_per_epoch /= (len(train_dataloader)*batch_size)

eval_loss_per_epoch = 0

eval_acc_per_epoch = 0

with tqdm(eval_dataloader , unit="batch") as eval_epoch:

eval_epoch.set_description(f"Evaluation Epoch {epoch}")

... TODO Implement by yourself

eval_loss_per_epoch /= (len(eval_dataloader))

eval_acc_per_epoch /= (len(eval_dataloader)*batch_size)

print(f'\tTrain Loss: {train_loss_per_epoch :.3f} | Train Acc: {

train_acc_per_epoch*100:.2f}%')
print(f'\tEval Loss: {eval_loss_per_epoch :.3f} | Eval Acc: {

eval_acc_per_epoch*100:.2f}%')

print(f'Time: {(time.time()-start)/60:.3f} minutes ')

As part of your assignment or class project, you may have to change some parts of this training function
or modify outputs from forward propagation. Your submitted code should include this customized
CustomTrainer with the copied (or modified) version of inner training loop function.

Step 4: Analyze your classifier’s training and evaluate it on test set

Read carefully below what experiments and additional analyses should be included in your report.
Missing items will result in point deductions.

• Description of the task and models with references to the original papers and model cards/repos-
itory.

• The kind of hardware you run your model on.
• How do you ensure your model has been trained correctly? Do you have a learning curve graph
of your training losses from forward propagation? What does it look like? We highly recommend
you use a tracking tool such as “Weights & Biases” (W&B). With a few lines of code, this lets
you automatically track the progress of training and plot learning curves. You can then export the
plots and add them to your report.

https://docs.wandb.ai/quickstart
https://wandb.ai/wandb_fc/articles/reports/Export-Your-Data-from-W-B--Vmlldzo1NDMyODE1
https://wandb.ai/wandb_fc/articles/reports/Export-Your-Data-from-W-B--Vmlldzo1NDMyODE1

Due: Feb 9 CSCI 5541 (S24) HW1: Finetuning Text Classifier using HuggingFace page 5 of 7

• Evaluation metrics used in your experiment.
• Test set performance and comparison with score reported in original paper AND leaderboard. A
justification is needed if it differs from the reported scores.

• Training and inference time.
• Hyperparameters used in your experiment (e.g., number of epochs, learning parameter, dropout
rate, hidden size of your model) and other details.

• Hypothesize what kinds of samples you might think your model would struggle with and report
a minimum of ten incorrectly predicted test samples with their ground-truth labels. If you also
report the confidence score of the predicted labels (the last Linear layer’s softmax score) on the
samples, you will receive a bonus point.

• Potential modeling or representation ideas to improve the errors.
• (optional) What was the most challenging part of this homework?

It is optional to complete the following two steps, but completing them will earn you bonus points.

(Bonus +1) Step 5: Annotate error types and ideas to fix them

Figure 2: Example error annotations (top), example error causes (bottom left), and fixes (bottom
right) from the test set for the term-definition detection task. The ground-truth test set has no term
and definition annotated, while the model predicts Reuters-21579 and SAn exception as terms, and
been widely used in text classification v. and unlabeled texts pre-determined categories as definitions.

Run your model on the test set and collect incorrectly predicted samples (no more than 1004) from
the test set. If your task has a specific test set from the benchmark, you can use them. You now
create a Google spreadsheet and store each error sample in each row with the following information in
separate columns:

4If your test set size is smaller than 100, it is fine to report errors less than 100

Due: Feb 9 CSCI 5541 (S24) HW1: Finetuning Text Classifier using HuggingFace page 6 of 7

• Input text
• Ground-truth label (from the original data)
• Predicted label with a confidence score (i.e., softmax output from your classifier with respect to
the ground-truth label)

Go through each row and manually label them in the following categories:

• Types of errors, e.g., false positive or false negative
• Types or causes, e.g., over-generalization, surface pattern bias
• Potential solutions to fix the cause, e.g., more training samples5, linguistic features, some rules
• Rank your annotations by frequencies and show two tables of distributions of error types and
solutions

Figure 2 shows example error annotations with their causes and fixes for the term-definition detection
task.6 Please note that these types of causes and fixes are specific to the term-definition detection
task, so they are not applicable to your task. You should figure out your own error types, causes, and
fixes.

(Bonus +1) Step 6: Visualize errors and perform qualitative analysis

Visualize the errors with other correctly predicted samples (randomly chosen up to 500) in a 2-
dimensional semantic space and explore an overall view of how they are projected. Figure 3 shows an
example visualization.

Figure 3: An example t-SNE projection of QNLI dataset: red square and blue circles indicate the
QNLI labels whether or not the question is answerable. Incorrectly predicted samples (black) are
almost randomly located in the classifier’s embedding space.

Semantic space: Take vector representations of correct and incorrect samples from the classifier’s
output (HuggingFace’s model output class). Project them onto reduced dimensions (i.e., 768 dimension

5Simply labeling most examples with “more training data” without any justification will lose points
6The task that detects spans of scientific terms and definitions defined in text

https://huggingface.co/docs/transformers/main_classes/output

Due: Feb 9 CSCI 5541 (S24) HW1: Finetuning Text Classifier using HuggingFace page 7 of 7

→ 2 dimensions) using dimension reduction methods like PCA (code) or t-SNE [vdMH08] (code). Show
the 2-dimensional scatter plot in your report with the observation you found.

When you visualize the scatter plot, please consider the following tips:

• Use Matplotlib (link) or other visualization library for visualization.
• Choose different colors and/or shapes for correct and incorrect samples to distinguish them.
• Use a legend to indicate the type of items.
• Display the model’s confidence in each sample as transparency using alpha variable (example).

Deliverables

Please upload your code and report to Canvas by Feb 9, 11:59pm.

Code: You should submit a zipped file containing your training/inference scripts or a link to your
GitHub repository.

Report: Maximum six pages PDF and other supplementary documents such as spreadsheets for
error analysis. The page limit of homework doesn’t include references and an appendix with additional
information.

Rubric (15 points)

• Code looks good, i.e., each cell in the Jupyter Notebook runs without error and outputs intended
results. (+3)

• Description of the task, dataset, models, and hardware used (+1)
• Includes appropriate references (+1)
• Explains how they checked their model was trained correctly using learning curve graphs or other
appropriate information (+2)

• Specifies evaluation metrics used in the experiment (+1)
• Discusses test set performance and comparison with score reported in original paper or leaderboard.
Includes justification if it differs from the reported scores. (+2)

• Includes training and inference time (+1)
• Includes hyperparameters used in the experiment (+1)
• Hypothesis of model performance and/or some kind of discussion about what they found in their
incorrectly labeled samples (+1)

• Minimum of ten incorrectly predicted test samples with their ground-truth labels (+1)
• Discusses potential modeling or representation ideas to improve the errors (+1)
• Annotation of error types and potential fixes (Step 5: +1 extra credit)
• Error visualizations and qualitative Analysis (Step 6: +1 extra credit)

References

[vdMH08] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal of
Machine Learning Research, 9:2579–2605, 2008.

https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
https://matplotlib.org/
https://stackoverflow.com/questions/24767355/individual-alpha-values-in-scatter-plot
https://canvas.umn.edu/courses/413172/assignments/3605204

