
Due: Mar 10CSCI 5541 (S24) HW3: Generating & evaluating text from pretrained LMs page 1 of 7

The auto-regressive language models (e.g., GPT3 [BMR+20]) trained on human-written text can pro-
duce natural text as humans do. In this homework, you will implement and use various decoding
algorithms, generate text using the pre-trained large language models (LLMs) on different generation
tasks, evaluate the output text, and justify the limitations of current decoding methods. The lead TA
for this assignment is Karin de Langis (dento019@umn.edu). Please communicate with the lead TA
via Slack, email, or during office hours.

This assignment assumes that you have covered most of the search algorithms and evaluation metrics
in text generation on Language Models: Search Algorithms and Language Models: Search in Training,
Evaluation. Please read the reading materials and lecture notes if you missed class.

In this homework, you don’t actually need to implement anything from scratch; instead, you will make a
complete pipeline of text generation research including task selection, decoding, automatic evaluation,
human evaluation, and analysis of output text. Please follow the steps below, report outputs from the
Tasks of each step, and submit the spreadsheet, codebase, and report.

Step 1: Trying out different decoding algorithms using HuggingFace

1 from transformers import AutoTokenizer, AutoModelForCausalLM

2

3 tokenizer = AutoTokenizer.from_pretrained("gpt2")

4 model = AutoModelForCausalLM.from_pretrained("gpt2")

5

6 prompt = "Today I believe we can finally"

7 input_ids = tokenizer(prompt, return_tensors="pt").input_ids

8

9 /* generate up to 30 tokens */

10 outputs = model.generate(input_ids, do_sample=False, max_length=30)

11 tokenizer.batch_decode(outputs, skip_special_tokens=True)

12

13 /* step 1 */

14 outputs1 = model.YourDecodingAlgorithmToImplement1(input_ids)

15 outputs2 = model.YourDecodingAlgorithmToImplement2(input_ids)

16 ..

17

You can first go to (HuggingFace API on text generation) and run an example script to generate
text. For instance in the example above, once you load pre-trained autoregressive language models
like GPT2 [RWC+19], the HuggingFace library allows you to select a variety of decoding algorithms.

Task 1 You should report the outputs from four different decoding algorithms covered in the class:
greedy search, beam search, top-k sampling, and top-p sampling. You don’t actually need to implement
these algorithms by yourself. Instead, I encourage you to use pre-implemented decoding functions in
HuggingFace, like greedy search().

For a prompt like “Today, I believe we can finally,” you should report four output text from the
four different decoding algorithms with the specific parameters you used (e.g., beam size,
n-best, k, p). For this step, make up five prompts yourself – you can use any random prompts you
want. You must also calculate the perplexity or the likelihood of each output sequence by (log-

dento019@umn.edu
https://dykang.github.io/classes/csci5541/F23/slides/1003_lm_search.pdf
https://dykang.github.io/classes/csci5541/F23/slides/1010_lm_search_in_training_eval.pdf
https://dykang.github.io/classes/csci5541/F23/slides/1010_lm_search_in_training_eval.pdf
https://huggingface.co/docs/transformers/main/en/main_classes/text_generation#transformers.GenerationMixin
https://huggingface.co/docs/transformers/main/en/main_classes/text_generation#transformers.GenerationMixin.greedy_search


Due: Mar 10CSCI 5541 (S24) HW3: Generating & evaluating text from pretrained LMs page 2 of 7

Figure 1: HuggingFace Dataset Interface: https://huggingface.co/datasets?task categories=task
categories:summarization

)summing over every generated token logit. Please refer to this tutorial for the perplexity calculation
on generated tokens.

To report results, you must make a spreadsheet. In the first tab of your spreadsheet, have a row for
each prompt. In each row, we expect additional four columns of outputs from decoding algorithms
and two additional columns, one for parameters and the other for perplexity/likelihood. Concretely,
the first tab of spreadsheet should be N-by-7, where N is the number of prompts (5) and columns are
prompts, four outputs, hyper-parameters, and perplexity (or log-likelihood). You will fill in the other
tabs of the spreadsheet later in the assignment.

Step 2: Decoding for downstream generation tasks

Perplexity is an intrinsic method to evaluate your language model. Now, we evaluate the language
model with an extrinsic evaluation. First, select a specific task for evaluating decoding algorithms
where the task provides reference text. For instance, you can choose a dataset called XSUM [NCL18]
from the summarization task in the HuggingFace dataset repository, as depicted in Figure 1. You can
see some example instances from Dataset Preview and download the dataset easily from a few lines of
code:

https://huggingface.co/datasets?task_categories=task_categories:summarization
https://huggingface.co/datasets?task_categories=task_categories:summarization
https://huggingface.co/docs/transformers/main/en/perplexity
https://huggingface.co/datasets/xsum


Due: Mar 10CSCI 5541 (S24) HW3: Generating & evaluating text from pretrained LMs page 3 of 7

Figure 2: Loading the pre-trained T5 model fine-tuned on XSUM dataset

1 from datasets import load_dataset

2 dataset = load_dataset("xsum")

Various tasks are available, such as machine translation, abstraction summarization, dialogue genera-
tion, paraphrasing, and style transfer, where the input and output text (reference text) are provided.
Please check available tasks and fine-tuned models in HuggingFace Tasks.

Once you choose a specific task and dataset for your text generation, you then need to get actual
outputs from the generation model. This homework does not require you to train your own generation
models from scratch on the target dataset. Instead, on the dataset page, you can find the existing
fine-tuned models (blue box in Figure 1).1 For instance, you can load the small T5 model already
fine-tuned on XSUM dataset https://huggingface.co/gniemiec/t5-small-finetuned-xsum, as shown in
Figure 2. On the top right, click the Use in Transformers button to access lines of code for loading
the model into HuggingFace.

Task 2 On the test set (or development set if there is no test set given) of the dataset you choose,
you can simply generate the output summary or responses using the default decoding functions in
HuggingFace, like greedy search(). In this step, you have to write your own script to load the fine-
tuned model and decode output text given input text from the test samples. Below is an example
script to load the model and decode a batch of test input:

1If the dataset page does not include the model list, you can search the dataset name in the model cards.

https://huggingface.co/tasks
https://huggingface.co/gniemiec/t5-small-finetuned-xsum
https://huggingface.co/docs/transformers/main/en/main_classes/text_generation#transformers.GenerationMixin.greedy_search


Due: Mar 10CSCI 5541 (S24) HW3: Generating & evaluating text from pretrained LMs page 4 of 7

1 from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

2

3 tokenizer = AutoTokenizer.from_pretrained("gniemiec/t5-small-finetuned-xsum")

4

5 model = AutoModelForSeq2SeqLM.from_pretrained("gniemiec/t5-small-finetuned-xsum")

6

7 /* generate your own summary using different decoding algorithms */

8 outputs1 = model.YourDecodingAlgorithmToImplement1(input_ids)

9 outputs2 = model.YourDecodingAlgorithmToImplement2(input_ids)

10 ..

11 tokenizer.batch_decode(outputs1, skip_special_tokens=True)

12 ..

Specifically, you will use the four decoding algorithms implemented in Step #1 and generate output
texts on the test set of your target task. If your test set is more than 50 samples, please only use the
first 50 samples in the following evaluation.

In the second tab of your spreadsheet, make a row for a text sample in the test set. Make four
columns of outputs from the decoding algorithms, with one column of reference text provided in the
test set. In other words, the second tab of your spreadsheet should be N-by-6, where N is the number
of the test set (maximum 50) and columns are input text, four outputs, and reference text.

Step 3: Automatic and Human Evaluation

Lastly, you evaluate quality of your generated text by choosing the right evaluation metric for your
task. Since this is not an open-ended generation task, you can use reference-based evaluation metrics
to determine how similar your generated outputs are to the reference text.

1

2 /* generate your own summary using different decoding algorithms */

3 outputs1 = model.YourDecodingAlgorithmToImplement1(input_ids)

4 outputs2 = model.YourDecodingAlgorithmToImplement2(input_ids)

5 ..

6 token_outputs1 = tokenizer.batch_decode(outputs1, skip_special_tokens=True)

7 ..

Task 3.1 There are two categories of automatic evaluation: content overlap-based metrics (e.g.,
BLEU [PRWZ02], ROUGE [LH03]) and model-based metrics (e.g., Word Mover’s distance [KSKW15],
BERT score [ZKW+20]). You should choose at least one content-overlap metric and at least one
model-based metric, and measure these metric scores of your decoded outputs in Step #2
with respect to the reference text. Please consider which automatic metrics would be appropriate
for your task and provide a justification in the report. By reading the original papers of the dataset
or task you are using, you can find which evaluation metrics are used on which tasks. Again, it is not
necessary to implement these metrics from scratch; instead, you can find pre-implemented evaluation
metrics at Huggingface’s evaluate-metric. For instance, below is an example usage of Huggingface’s
evaluate function for BLEU metric:

https://huggingface.co/evaluate-metric
https://huggingface.co/spaces/evaluate-metric/bleu


Due: Mar 10CSCI 5541 (S24) HW3: Generating & evaluating text from pretrained LMs page 5 of 7

1

2 >>> predictions = ["hello there general kenobi", "foo bar foobar"]

3 >>> references = [

4 ... ["hello there general kenobi", "hello there !"],

5 ... ["foo bar foobar"]

6 ... ]

7 >>> bleu = evaluate.load("bleu")

8 >>> results = bleu.compute(predictions=predictions, references=references)

9 >>> print(results)

10 {"bleu": 1.0, "precisions": [1.0, 1.0, 1.0, 1.0], "brevity_penalty": 1.0,

11 "length_ratio": 1.1666666666666667, "translation_length": 7,

12 "reference_length": 6}

As you decode your outputs, you need to report the metric score of each sample in a new column
in the spreadsheet made in Step #2. The report should include the averaged metric scores across
all samples (e.g., 50 test samples) and a comparison of the decoding algorithms that work.

Task 3.2 You may notice that automatic evaluation does not always accurately measure your task’s
performance. In this task, you will devise two or three aspects of human evaluation related
to your target task; please check out what types of aspects (e.g., fluency, coherence, formality,
typicality) could be used in the human evaluation of generated text in the lecture on Language Model
Evaluation. Include a justification for these choices in your report. After this, each person in your
team will manually annotate scores of each aspect with a Likert scale (1-5) and rate the level
of agreement between the human evaluation scores of all of the team members.

This step aims to identify the gap between automatic evaluation metrics and human evaluations and
show their difference in your report. Because human evaluation is time-consuming and costly, you can
only select the first 20 samples from your test set.

To avoid any biases from the predicted outputs, you should make a third tab in your spreadsheet with
a row for each of the first 20 test samples. Since you are not an expert judge, or your judgment could be
subjective, each team member in your team should annotate each sample. Each team member should
have a additional column for each of their annotations (for example, factuality john, factuality jane,
factuality joe). You will aggregate the scores across team members by majority voting or averaging.
For example, if your team members’ Likert scores on factuality are 4, 3, and 5, your average score is 4.
Your spreadsheet should include the first 20 test samples and all annotations. Report the averaged
automatic and human evaluation scores for the first 20 sentences and describe how they
differ in practice in your report.

Since humans are inconsistent and subjective, we next need to evaluate how consistent annotators
were with one another. You can use the nltk’s nltk.metrics library to calculate the inter-annotator
agreement (IAA) scores such as Krippendorff’s alpha.2 Below is an example code for the calculation
of Krippendorff’s alpha to measure the inter-annotator agreement.

2The detailed agreement measurement on human annotations will be covered on an upcoming lecture on Dataset,
Annotation, and Evaluation.



Due: Mar 10CSCI 5541 (S24) HW3: Generating & evaluating text from pretrained LMs page 6 of 7

1 from nltk import agreement

2 rater1 = [1,1,1]

3 rater2 = [1,1,0]

4 rater3 = [0,1,1]

5

6 taskdata=[[0,str(i),str(rater1[i])] for i in range(0,len(rater1))]+[[1,str(i),str(rater2[I])]

7 for i in range(0,len(rater2))]+[[2,str(i),str(rater3[i])] for i in range(0,len(rater3))]

8 ratingtask = agreement.AnnotationTask(data=taskdata)

9 print("alpha " +str(ratingtask.alpha()))

Please report the agreement score in your report and explain how you think of it.

Deliverables

Please upload your (1) spreadsheet (e.g., CVS, Excel files, Google Spreadsheet) of your decoded outputs
with evaluation scores from both automatic and human measurements in Step #2 and #3, (2) zipped
code of the decoding algorithms with evaluation script, and (3) technical report (maximum 5 pages,
excluding reference) to Canvas by Mar 10, 11:59pm.

Rubric (25 points)

• Task 1 : Implementation of Decoding Algorithms (12 points)
– All 4 decoding algorithms implemented, outputs in spreadsheet (+2 x 4 algorithms = +8)
– Parameters of the algorithms included in spreadsheet (+1)
– Prompt is consistent across all algorithms (+1)
– Perplexity/Likelihood of each output is calculated and in spreadsheet (+2)

• Task 2: Decoding for extrinsic evaluation (2 points)
– Nx6 spreadsheet correctly generated with inputs, four outputs, and reference text (+1)
– No mistakes in results or code (+1)

• Task 3.1 Automatic Evaluation (4 points)
– At least one overlap-based metric is implemented and justification included (+1)
– At least one model-based metric is implemented and justification included (+1)
– Metrics are calculated between reference text and decoded outputs (+1)
– Average metric score across all samples is reported (+1)

• Task 3.2 Human Evaluation (5 points)
– At least 2-3 aspects of human evaluation for the target task devised (+1)
– Reasoning given behind choice of aspects (+1)
– Majority/Average voting is implemented (+1)
– Difference between human and automatic evaluation is highlighted in report (+1)
– Inter-annotator agreement is calculated (+1)

• Report (2 points)
– Report contains full information about models and dataset chosen, the requested spreadsheets

and associated metric results, a comparison of decoding algorithms, and justification of design
decisions. (+2)

– Partial report submitted (i.e., some pieces of the report are missing) (+1)
• Bonus Point (Max: +2 points)

– Trying out other advanced decoding algorithms implemneted in HuggingFace (+1)
– Multiple evaluation metrics (2 of each category(content overlap and model-metric) are imple-

mented) (+1)

https://canvas.umn.edu/courses/413172/assignments/3605206


Due: Mar 10CSCI 5541 (S24) HW3: Generating & evaluating text from pretrained LMs page 7 of 7

References

[BMR+20] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini
Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya
Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner,
Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are
few-shot learners, 2020.

[KSKW15] Matt Kusner, Yu Sun, Nicholas Kolkin, and Kilian Weinberger. From word embeddings to
document distances. In Francis Bach and David Blei, editors, Proceedings of the 32nd Inter-
national Conference on Machine Learning, volume 37 of Proceedings of Machine Learning
Research, pages 957–966, Lille, France, 07–09 Jul 2015. PMLR.

[LH03] Chin-Yew Lin and Eduard Hovy. Automatic evaluation of summaries using n-gram co-
occurrence statistics. In Proceedings of the 2003 Human Language Technology Conference
of the North American Chapter of the Association for Computational Linguistics, pages
150–157, 2003.

[NCL18] Shashi Narayan, Shay B. Cohen, and Mirella Lapata. Don’t give me the details, just the
summary! topic-aware convolutional neural networks for extreme summarization. ArXiv,
abs/1808.08745, 2018.

[PRWZ02] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for
automatic evaluation of machine translation. In Proceedings of the 40th Annual Meeting of
the Association for Computational Linguistics, pages 311–318, Philadelphia, Pennsylvania,
USA, July 2002. Association for Computational Linguistics.

[RWC+19] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language models are unsupervised multitask learners. 2019.

[ZKW+20] Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav Artzi. Bertscore:
Evaluating text generation with bert, 2020.


