CSCI 5541: Natural Language Processing

Lecture 5: Distributional Semantics and Word Embeddings

Dongyeop Kang (DK), University of Minnesota

dongyeop@umn.edu | twitter.com/dongyeopkang | dykang.github.io

Decompositional semantics

Shape:

Color: green, blue, black, etc

Distributional semantics

Ontological semantics

"You shall know a word by the company it keeps"

Firth, J. R. 1957:11

$$cos(x,y) = \frac{\sum_{i=1}^{F} x_i y_i}{\sqrt{\sum_{i=1}^{F} x_i^2} \sqrt{\sum_{i=1}^{F} y_i^2}}$$
$$tfidf(t,d) = tf_{t,d} \times \log \frac{N}{D_t}$$

Distributed prediction-based (type) embeddings

- Count-based method (e.g., Latent Semantic Analysis)
- Prediction-based method (e.g., Skip-gram, CBOW)
- □ Types of evaluation
- Limitation of word embeddings

Different kinds of encoding "context"

Count-based

O PMI, TF-IDF

Distributed prediction-based (type) embeddings

- o Word2vec, GloVe, Fasttext
- Distributed contextual (token) embeddings from language models
 - O ELMo, BERT, GPT

Many more variants

o Multilingual / multi-sense / syntactic embeddings, etc

Sparse vectors

"aardvark"

V-dimensional vector, single 1 for the identity of the element

a	0
a	0
aa	0
aal	0
aalii	0
aam	0
Aani	0
aardvark	1
aardwolf	0
zythem	0
Zythia	0
zythum	0
Zyzomys	0
Zyzzogeton	0

Sparse vectors -> Dense vectors

	Hamlet	Macbeth	Romeo & Juliet	Richard III	Julius Caesar	Tempest
knife	1	1	4	2		2
dog				6	12	2
sword	2	2	7	5		5
love	64		135	63		12
like	75	38	34	36	34	41

=

 $n \times d$

Any $n \times d$ matrix X can be decomposed into the product of three matrices

• where *m* is the number of linearly independent rows

We can approximate the full matrix by only considering the leftmost k terms in the diagonal matrix

We can approximate the full matrix by only considering the leftmost k terms in the diagonal matrix

We can approximate the full matrix by only considering the leftmost k terms in the diagonal matrix

	Hamlet	Macbeth	Romeo & Juliet	Richard III	Julius Caesar	Tempest
knife	1	1	4	2		2
dog				6	12	2
sword	2	2	7	5		5
love	64		135	63		12
like	75	38	34	36	34	41

0.2	0.42	0.22
0.5	1.2	8.6
-0.2	0.7	-2.2
9.3	-0.5	0.5
0.2	4.3	0.9
	0.2 0.5 -0.2 9.3 0.2	0.20.420.51.2-0.20.79.3-0.50.24.3

 $m \times m$

X

×

Hamlet	Macbet h	Romeo & Juliet	Richard III	Julius Caesar	Tempe st
-0.2	0.7	-2.2	-0.2	0.7	-2.2
-0.2	0.7	-2.2	9.3	-0.5	0.5
9.3	-0.5	0.5	-0.5	0.5	9.3

 $m \times d$

$n \times m$

Low-dimensional representation for terms (here 3 dimensions)

Low-dimensional representation for documents (here 3 dimensions)

-					
	knife	0.2	0.42	0.22	
	dog	0.5	1.2	8.6	
	sword	-0.2	0.7	-2.2	
	love	9.3	-0.5	0.5	
	like	0.2	4.3	0.9	

0.5		
	0.3	
		2.5

			-		-
Hamle t	Macbe th	Romeo & Juliet	Richar d III	Julius Caesar	Tempe st
-0.2	0.7	-2.2	-0.2	0.7	-2.2
-0.2	0.7	-2.2	9.3	-0.5	0.5
9.3	-0.5	0.5	-0.5	0.5	9.3

Latent semantic analysis

- Latent Semantic Analysis/Indexing is this process of applying SVD to the term-document co-occurrence matrix
 - o Terms typically weighted by tf-idf
- This is a form of dimensionality reduction
 - o for terms, from a D-dimensional sparse vector to a Kdimensional dense one where K << D.</p>
- Similar kinds:
 - Probabilistic Latent Semantic Indexing (pLSI) (Hofmann, 1999)
 - Nonnegative Matrix Factorization (NMF) (Lee & Seung, 1999)
 - o Latent Dirichlet Allocation (LDA) (Blei et al., 2003)

	#1	#2	#3
knife	0.2	0.42	0.22
dog	0.5	1.2	8.6
sword	-0.2	0.7	-2.2
love	9.3	-0.5	0.5
like	0.2	4.3	0.9

#1	#2	#3	#4
music	how	program	10
film	what	project	30
theater	about	russian	11
mr	their	space	12
this	or	russia	15

⁽Deerwester et al. 1998)

Count-based vs Prediction-based Methods

LSA, HAL (Lund & Burgess) Hellinger-PCA (Rohde et al, Lebret & Collobert)

	Hamlet	Macbeth
knife	1	1
dog		
sword	2	2
love	64	
like	75	38

Recap: Text Classification

x = "Today's weather is great"

, pooniro

|Y| = **2**

x_{<t} = "Today's weather is"

 $x_t = \{a, aa .. apple .. banana .. great .. good .. zebra .. }$ $\hat{x} = great$

|X| = V (vocabulary size)

 $x_{<t} =$ "Today 's [] is great" **X**+-7.t-1

x_t = {a, aa .. apple .. banana .. great .. good .. zebra ..}

 \hat{x} = weather

|X| = V (vocabulary size)

the cat sat on the mat

Skipgram model: given a single word in a sentence, predict the words in a context window around it.

CSCI 5541 NLP

Minimize the objective function $J(\theta)$ using gradient descent

Idea: for current value of θ , calculate gradient of $J(\theta)$ then take small step in direction of negative gradient. Repeat this until convergence

Two kinds of training data

□ The labeled data for specific tasks

- Labeled sentiment for movie reviews (~2K labels/reviews, ~1.5 words)
- o Used for supervised models

Unlabeled text for representation learning

- Trillions of words (Wikipedia, web text, books, etc)
- Used for word distributed representations

Why dog and cat are in similar positions

the

black

shoe

the	black	dog	jumped	on	the	table
the	black	cat	jumped	on	the	table
the	black	рирру	jumped	on	the	table
the	black	wrench	jumped	on	the	table

jumped

on

the

table

Dimensionality reduction

V-dimensional space (1-hot) Representations for all words are completely independent

3-dimensional space Representations are not structured

v("King") – v("Man") – v("Woman") =

Mikolov et al. 2013 show that vector representations have some potential for analogical reasoning through vector arithmetic.

v("King") – v("Man") - v("Woman") =

Mikolov et al. 2013 show that vector representations have some potential for analogical reasoning through vector arithmetic.

Mikolov et al., (2013), "Linguistic Regularities in Continuous Space Word Representations" (NAACL)

Figure 3: Words plotted in our 3D semantic space. Male words appear in the positive (left) half of the x-axis; female words in the negative (right) half. Adult words are in the positive (top) half of the y-axis; youth words in the negative (bottom) half. The third dimension is the "semantic residual", explained in the main text.

Interactive Visualizations of Word Embeddings for K-12 Students. AAAI-22

Figure 5: Analogy by vector arithmetic: "man" is to "king" as "woman" is to "king - man + woman" = "queen".

Low-dimensional, distributed representations

Two similar words (e.g., synonyms or words under the same class) have similar distributional properties

In neural models, replace the initial V-dimensional sparse vector with much smaller k-dimensional dense vectors

Low-dimensional, dense word representations are extraordinarily powerful and are a large part of why neural network models have been so successful for NLP

Count-based vs Prediction-based Methods

- LSA, HAL (Lund & Burgess)
- Hellinger-PCA (Rohde et al, Lebret & Collobert)
- □ Fast training
- Efficient usage of statistics
- Primarily used to capture word similarity
- Disproportionate importance given to large counts

Skip-gram/b (Mikolovet al)

- **NLM, HLBL, RNN** (Bengioet al; Collobert & Weston; Huang et al; Mnih & Hinton)
- Scales with corpus size
- □ Inefficient usage of statistics
- Generated improved performance on other tasks
- Can capture complex patterns beyond word similarity

Count-based and Prediction-based Methods

Strong connection between count-based methods and prediction-based methods (Levy and Goldberg 2014)

Skip-gram objective is equivalent to matrix factorization with PMI and discount for number of samples k

$$M_{w,c} = PMI(w,c) - \log(k)$$

Other techniques and embeddings not covered

- Contrastive learning with negative samples
- Other variants
 - ⊖ Word2Vec (Mikolove et al., 14)

https://code.google.com/archive/p/word2vec/

o GloVe (Pennington et al., 14)

http://nlp.stanford.edu/projects/glove/

• FastText (Bojanowski et al.' 17)

http://www.fasttext.cc/

Word2Vec Demo

Pre-trained word2vec models:

<u>https://code.google.com/archive/p/word2vec/</u>

Gensim:

o <u>https://radimrehurek.com/gensim/auto_examples/tutorials/run_word2vec.html</u>

Online demos:

- <u>http://nlp.polytechnique.fr/word2vec</u>
- o <u>http://vectors.nlpl.eu/explore/embeddings/en/</u>
- o <u>https://remykarem.github.io/word2vec-demo/</u>

Types of Evaluation

Types of Evaluation

Intrinsic vs Extrinsic

- o Intrinsic: How good is it based on its features?
- o Extrinsic: How useful is it downstream?

Qualitative vs. Quantitative

- Qualitative: Examine the characteristics of examples.
- Quantitative: Calculate statistics

Visualization of Embeddings

Visualization of Embeddings

Linear and Non-linear Projection

□ Non-linear projections group things that are close in high-dimensional space

o e.g. SNE/t-SNE (van der Maaten and Hinton 2008) group things that give each other a high probability according to a Gaussian

Image from Derksen (2016)

t-SNE Visualization can be Misleading! (Wattenberg et al. 2016)

Linear correlations cannot be interpreted

Intrinsic Evaluation of Embeddings

Relatedness: The correlation between embedding cosine similarity and human eval of similarity?

Analogy: Find x for "a is to b, as x is to y".

Categorization: Create clusters based on the embeddings, and measure purity of clusters.

Selectional Preference: Determine whether a noun is a typical argument of a verb.

Intrinsic evaluation:

Ask humans how similar two words are

Relatedness:

correlation (Spearman/Pearson) between vector similarity of pair of words and human judgments

Word 1	Word 2	similarity
vanish	Disappear	9.8
behave	obey	7.3
belief	Impression	5.95
muscle	Bone	3.65
modest	Flexible	0.98
hole	agreement	0.3

SimLex-999 dataset (Hill et al., 2015)

WordSim-353 dataset (Finkelstein et al., 2002)

Intrinsic evaluation:

Analogical reasoning (Mikolov et al., 2013).

For analogy Germany : Berlin :: France : ?, find closest vector to v("Berlin") – v("Germany")+v("France")

possibly	impossibly	Certain	Uncertain
generating	generated	Shrinking	Shrank
think	thinking	Look	Looking
Baltimore	Maryland	Minneapolis	Minnesota
shrinking	shrank	Slowing	Slowed
Rabat	Morocco	Astana	Kazakhstan

Intrinsic evaluation:

Analogical reasoning (Mikolov et al., 2013).

Analogical reasoning test

Type of relationship	Word Pair 1		Word Pair 2		
Common capital city	Athens	Greece	Oslo	Norway	
All capital cities	Astana	Kazakhstan	Harare	Zimbabwe	
Currency	Angola	kwanza	Iran	rial	
City-in-state	Chicago	Illinois	Stockton	California	
Man-Woman	brother	sister	grandson	granddaughter	
Adjective to adverb	apparent	apparently	rapid	rapidly	
Opposite	possibly	impossibly	ethical	unethical	
Comparative	great	greater	tough	tougher	
Superlative	easy	easiest	lucky	luckiest	
Present Participle	think	thinking	read	reading	
Nationality adjective	Switzerland	Swiss	Cambodia	Cambodian	
Past tense	walking	walked	swimming	swam	
Plural nouns	mouse	mice	dollar	dollars	
Plural verbs	work	works	speak	speaks	

Mikolov et al. 2013

Analogical reasoning test

Model	Vector	Training	Accuracy [%]		
	Dimensionality	words			
			Semantic	Syntactic	Total
CBOW	300	783M	15.5	53.1	36.1
Skip-gram	300	783M	50.0	55.9	53.3

Mikolov et al. 2013

Analogy evaluation and hyper-parameters

□ More data helps

 Wikipedia is better than news text

Analogy evaluation and hyper-parameters

Dimensionality

 \square Good dimension is ~300

Extrinsic Evaluation

Be aware and use the best one for the task

Input words' embeddings

Method	Fine-grained	Binary
DAN		
- Word2vec	46.2	84.5
- GloVe	46.9	85.7

Sentiment classification

Model	Dev	Test	ACE	MUC7	
Discrete	91.0	854	774	73.4	
SVD	90.8	85.7	77.3	73.7	
SVD-S	91.0	85.5	77.6	74.3	
SVD-L	90.5	84.8	73.6	71.5	
HPCA	92.6	88.7	81.7	80.7	
HSMN	90.5	85.7	78.7	74.7	
CW	92.2	87.4	81.7	80.2	
CBOW	93.1	88.2	82.2	81.1	
GloVe	93.2	88.3	82.9	82.2	

Named Entity Recognition: identifying references to a person, organization or location:

When are Pre-trained Embeddings Useful?

Basically, when training data is insufficient

- o E.g. Low-resource languages
- U Very useful: tagging, parsing, text classification
- Less useful: machine translation
- Basically not useful: language modeling

Limitations of Word Embeddings

Limitations of Embeddings

□ Sensitive to **superficial differences** (dog / dogs)

- o E.g. misspellings: "minuscule" \rightarrow "miniscule"
- E.g. compounded/prefixed/suffixed words split into "wrong" subwords "descheduled" ⇒ ["des", "##ched", "##uled"]

□ Not necessarily coordinated with knowledge or across languages

Can encode **bias** (encode stereotypical gender roles, racial biases)

Sub-word Embeddings

Morpheme-based (Luong et al. 2013)

Character-based (Ling et al. 2015)

Multilingual Coordination of Embeddings using dictionaries

Improving Vector Space Word Representations Using Multilingual Correlation (Faruqui & Dyer, 2014)

Monolingual (top) and multilingual (bottom) word projections of the antonyms (shown in red) and synonyms of "beautiful"

Unsupervised Coordination of Embeddings

□ In some cases, we can do it with no dictionary at all!

- o Just use identical words, e.g. the digits (Artexte et al. 2017)
- o Or, just match distributions (Zhang et al. 2017)

Retrofitting of Embeddings to Existing Lexicons

Make word vectors to match with existing lexicon like WordNet (Faruqui et al. 2015)

De-biasing Word Embeddings

Word embeddings reflect bias in statistics

	Extreme she occupa	ations
1. homemaker	2. nurse	3. receptionist
4. librarian	5. socialite	6. hairdresser
7. nanny	8. bookkeeper	9. stylist
10. housekeeper	11. interior designer	12. guidance counselor

Extreme he occupations

1. maestro	2. skipper	3. protege
4. philosopher	5. captain	6. architect
7. financier	8. warrior	9. broadcaster
10. magician	11. figher pilot	12. boss

De-biasing Word Embeddings

Gender stereotype *she-he* analogies.

sewing-carpentry nurse-surgeon blond-burly giggle-chuckle sassy-snappy volleyball-football register-nurse-physician interior designer-architect feminism-conservatism vocalist-guitarist diva-superstar cupcakes-pizzas

housewife-shopkeeper softball-baseball cosmetics-pharmaceuticals petite-lanky charming-affable hairdresser-barber

Gender appropriate she-he analogies.

queen-king waitress-waiter sister-brother mother-father ovarian cancer-prostate cancer convent-monastery

Identify pairs to "neutralize", find the direction of the trait to neutralize, and ensure that they are neutral in that direction

(Bolukbasi et al. 2016)

semantic to model temporal word analogy or relatedness (Szymanski, 2017; Rosin et al., 2017) or to capture the dynamics of semantic relations (Kutuzov et al., 2017)

Different kinds of encoding "context"

Count-based

- O PMI, TF-IDF
- Distributed prediction-based (type) embeddings
 - o Word2vec, GloVe, Fasttext

Distributed contextual (token) embeddings from language models

- O ELMo, BERT, GPT
- Many more variants
 - o Multilingual / multi-sense / syntactic embeddings, etc

Questions

- We've just learned how to learn the meaning of "bank" from data as a dense vector. What if meaning of "bank" can be different by context? Can we learn the vectors dynamically adaptable by context?
- How do you interpret the vector? You only know the "relationship" between words but not meaning of word itself. Does each dimension of the vector in distributional semantics correspond to "component" in the decompositional semantics?
- Some words like "war" include various information. Can we quantify the abstract nature of words in distributed representations?

o.7 shape
1.3 color
-4.5 texture