
CSCI 5541: Natural Language Processing

Lecture 7: Langage Models: RNN, LSTM, and Seq2Seq

Dongyeop Kang (DK), University of Minnesota

dongyeop@umn.edu | twitter.com/dongyeopkang | dykang.github.io

mailto:dongyeop@umn.edu
https://twitter.com/dongyeopkang
https://dykang.github.io/

CSCI 5541 NLP 2

Neural LM against Ngram LM

Pros
❑ No sparsity problem
❑ Don’t need to store all observed n-gram counts

Cons
❑ Fixed context window is too small (larger window, larger W)

o Windows can never be large enough
❑ Different words are multiplied by completely different weights (W); no

symmetry in how the inputs are processed.

CSCI 5541 NLP 3

Recap

❑ Ngram LM → Neural LM : sparsity

❑ Neural LM → RNN LM : input size is not scalable

❑ RNN LM → LSTM LM:

❑ LSTM LM → Transformer :

CSCI 5541 NLP

Outline

❑ Recurrent Neural Network (RNN)
❑ Long Short-term Memory (LSTM)
❑ Implementation of RNN and LSTM using PyTorch
❑ Sequence-to-Sequence modeling
❑ Teaser: Transformer-based LMs
❑ Why language models are useful?

CSCI 5541 NLP 5

Recurrent Neural Network (RNN)

RNN allow arbitarily-sized conditioning contexts;
condition on the entire sequence history.

Goldberg 2017

=

CSCI 5541 NLP 6

Recurrent Neural Network

Goldberg 2017

Neural-LM:

RNN:

CSCI 5541 NLP 7

Recurrent Neural Network

❑ Each time set has two inputs:

❑ 𝑋! (the observation at time step 𝑖):
o One-hot vector, feature vector, or distributed

representation of input token at 𝑖 step

CSCI 5541 NLP 8

Recurrent Neural Network

❑ Each time set has two inputs:

❑ 𝑋! (the observation at time step 𝑖):
o One-hot vector, feature vector, or distributed

representation of input token at 𝑖 step

❑ 𝑆!"# (the output of the previous state):
o Base case: 𝑆" = 0 vector

CSCI 5541 NLP 9

Recurrent Neural Network

❑ Each time set has two outputs:

❑ 𝑆! = 𝑅 (𝑋! , 𝑆!"#)
o R computes the output state as a function

of the current input and previous state

❑ 𝑦! = 𝑂 (𝑆!)
o O computes the output as a function of

the current output state

CSCI 5541 NLP 10

RNN Training

sequence of words

output as shifted by one

CSCI 5541 NLP 11

RNN Training SUM (total loss)

sequence of words

output as shifted by one

CSCI 5541 NLP 12

RNN Training Parameters are shared!
Derivatives are accumulated.

sequence of words

output as shifted by one

CSCI 5541 NLP

What can RNNs do?

❑ Represent a sentence
o Read whole sentence, make a prediction

❑ Represent a context within a sentence
o Read context up until that point

CSCI 5541 NLP

Representing Sentences

❑ Sentence classification
❑ Conditioned generation

CSCI 5541 NLP

Representing Context within Sentence

❑ Tagging
❑ Language modeling

CSCI 5541 NLP

e.g., Language Modeling

❑ Language modeling is like a tagging task, where each tag is the next word!

CSCI 5541 NLP

e.g., POS Tagging with Bi-RNNs

CSCI 5541 NLP

Vanishing Gradient

❑ Gradients decrease as they get pushed back

❑ Why? “Squashed” by non-linearities or small weights in matrices

CSCI 5541 NLP

A Solution: Long Short-term Memory (LSTM)

❑ Make additive connections between time steps

❑ Addition does not modify the gradient, no vanishing

❑ Gates to control the information flow

(Hochreiter and Schmidhuber 1997)

CSCI 5541 NLP

RNN vs LSTM Structure

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

CSCI 5541 NLP

LSTM Structure

❑ Forget gate: what value do we try to
add/forget to the memory cell?

❑ Input gate: how much of the update
do we allow to go through?

❑ Output gate: how much of the cell do
we reflect in the next state?

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Cell state

Forget gate

Input gate Output gate

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

CSCI 5541 NLP

LSTM variant: Gated Recurrent Unit (GRU)

❑ Combines the forget and input gates into a
single “update gate.”

❑ Merges the cell state and hidden state
❑ And, other small changes

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

(Cho et al., 2014)

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

CSCI 5541 NLP 23

class RNN(nn.Module):
def __init__(self, input_size: int, hidden_size: int, output_size: int) -> None:

super().__init__()
…
self.i2h = nn.Linear(input_size, hidden_size, bias=False)
self.h2h = nn.Linear(hidden_size, hidden_size)
self.h2o = nn.Linear(hidden_size, output_size)

def forward(self, x, hidden_state) :
x = self.i2h(x)
hidden_state = self.h2h(hidden_state)
hidden_state = torch.tanh(x + hidden_state)
out = self.h2o(hidden_state)
return out, hidden_state

def init_zero_hidden(self, batch_size=1) -> torch.Tensor:
return torch.zeros(batch_size, self.hidden_size, requires_grad=False)

CSCI 5541 NLP 24

class RNN(nn.Module):
def __init__(self, input_size, output_size, hidden_dim, n_layers):

super(RNN, self).__init__()
…
self.rnn = nn.RNN(input_size, hidden_dim, n_layers, batch_first=True)
self.fc = nn.Linear(hidden_dim, output_size)

def forward(self, x, hidden):
r_out, hidden = self.rnn(x, hidden)
r_out = r_out.view(-1, self.hidden_dim)

return self.fc(r_out) , hidden
x (batch_size, seq_length, input_size)
hidden (n_layers, batch_size, hidden_dim)
r_out (batch_size, time_step, hidden_size)

CSCI 5541 NLP 25

class LSTM (nn.Module):
def __init__(self, num_classes, input_size, hidden_size, num_layers,

seq_length):
super(LSTM1, self).__init__()
…
self.lstm = nn.LSTM(input_size=input_size, hidden_size=hidden_size,

num_layers=num_layers, batch_first=True)
self.fc = nn.Linear(hidden_size, num_classes)
self.relu = nn.ReLU()

def forward(self,x):
h_0 = Variable(torch.zeros(self.num_layers, x.size(0), self.hidden_size)) #hidden

state
c_0 = Variable(torch.zeros(self.num_layers, x.size(0), self.hidden_size)) #internal

state
output, (hn, cn) = self.lstm(x, (h_0, c_0))
hn = hn.view(-1, self.hidden_size)
return self.fc (self.relu(hn))

CSCI 5541 NLP 26

Connecting RNN to RNN for sequence-to-
sequence (seq2seq) modeling

CSCI 5541 NLP 27

RNN (decoder) for language modeling
Randomly initialized hidden
state ℎ! at time step 𝑡 = 0

CSCI 5541 NLP 28

RNN (decoder) for language modeling

What if we encode some
specific context, instead
of random state?

CSCI 5541 NLP 29

RNN (encoder) - RNN (decoder)
for machine translation

“나는이영화가싫어요”
“Odio esta película”

CSCI 5541 NLP 30

RNN (encoder) - RNN (decoder)
for dialogue generation

“나는이영화가싫어요”
“Odio esta película”

“what do you think about
Avengers: Endgame?

CSCI 5541 NLP 31

Sequence-to-sequence modeling using
RNN (encoder) - RNN (decoder)

“나는이영화가싫어요”
“what do you think about Avengers: Endgame?

Encoder: encoding
input sequence

Decoder: decoding
output sequenceInput context

CSCI 5541 NLP 32

Problem: forgetting input context as
input gets longer

“나는이영화가싫어요”
“what do you think about Avengers: Endgame?

Input context

CSCI 5541 NLP 33

Solution (teaser): Seq2seq with attention

“나는이영화가싫어요”
“what do you think about Avengers: Endgame?

Attention layer = Input context
attended on all previous context

CSCI 5541 NLP 34

State-of-the-art Language Models

CSCI 5541 NLP 35

Teaser: Transformer-based LMs

❑ SOTA LMs: GPT-2, Radford et al. 2018; GPT-3, Brown et al. 2020

Trigram LSTM

109 58.3

GPT2 GPT3

35.8 20.5

CSCI 5541 NLP 36

Ngram

1990s 20031997 2014

LSTM
RNN

GRU

2018 2019 2020 2021

Pe
rp

le
xit

y

CSCI 5541 NLP 37

Ngram

1990s 20031997 2014

LSTM
RNN

GRU

2018 2019 2020 2021

ELMo GPT BERT GPT2 GPT3

Pe
rp

le
xit

y

CSCI 5541 NLP 38

Teaser: Two Objectives for Language Model Pretraining

Slides from Zihang Dai

Next-token prediction Reconstruct masked tokens

Auto-regressive LM (GPT3) Denoising autoencoding (BERT)

CSCI 5541 NLP 39

Recap

❑ Ngram LM → Neural LM : sparsity
❑ Neural LM → RNN LM : input size is not scalable
❑ RNN LM → LSTM LM: vanishing gradients over time steps
❑ LSTM LM → Transformer : still vanishing gradients
❑ Transformer → Scaling up Transformer : scaling law!

CSCI 5541 NLP 40

Why better language models are useful?

CSCI 5541 NLP 41

The director of 2001: A Space Odyssey is _____________

Language models can directly encode knowledge
present in the training corpus.

CSCI 5541 NLP 42

Language models can directly encode knowledge
present in the training corpus.

Petroni et al. (2019), "Language Models as Knowledge Bases?” (ACL)

CSCI 5541 NLP 43

Language models can directly encode knowledge
present in the training corpus.

Petroni et al. (2019), "Language Models as Knowledge Bases?” (ACL)

CSCI 5541 NLP 44

ChatGPT Is a Blurry JPEG of the Web, By Ted Chiang February 9, 2023

https://www.newyorker.com/tech/annals-of-technology/chatgpt-is-a-blurry-jpeg-of-the-web

CSCI 5541 NLP 45

Language models can be a foundation for various
tasks across different modalities

Bommasani et al. (2021), "On the Opportunities and Risks of Foundation Models”

CSCI 5541 NLP 46

Language models are stochastic parrots

Bender et al. (2021), "On the Dangers of Stochastic Parrots: Can Language Models Be Too Big?”

CSCI 5541 NLP 47

Questions

❑ GPT3 is 100x bigger than GPT2. If GPT-K is developed, how can we handle
such a large-scale model without industry-level computing powers. Can we
compress the models while not sacrificing performance?

❑ What if those companies can only replicate the results, monopolize their
usages, and make them as a paid service? Is it fair?

❑ Are there different ways of storing the predictive/knowledge power of
LMs?

❑ Can LMs be called as general intelligence or foundational knowledge? If not,
what are missing there?

