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Neural LM against Ngram LM

Pros 
❑ No sparsity problem
❑ Don’t need to store all observed n-gram counts

Cons
❑ Fixed context window is too small (larger window, larger W)

o Windows can never be large enough
❑ Different words are multiplied by completely different weights (W); no 

symmetry in how the inputs are processed.
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Recap

❑ Ngram LM → Neural LM : sparsity

❑ Neural LM → RNN LM : input size is not scalable

❑ RNN LM → LSTM LM:

❑ LSTM LM → Transformer :
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Outline

❑ Recurrent Neural Network (RNN)
❑ Long Short-term Memory (LSTM)
❑ Implementation of RNN and LSTM using PyTorch
❑ Sequence-to-Sequence modeling
❑ Teaser: Transformer-based LMs 
❑ Why language models are useful?



CSCI 5541 NLP 5

Recurrent Neural Network (RNN)

RNN allow arbitarily-sized conditioning contexts; 
condition on the entire sequence history.

Goldberg 2017

=
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Recurrent Neural Network

Goldberg 2017

Neural-LM: 

RNN:
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Recurrent Neural Network

❑ Each time set has two inputs:

❑ 𝑋! (the observation at time step 𝑖):
o One-hot vector, feature vector, or distributed 

representation of input token at 𝑖 step
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Recurrent Neural Network

❑ Each time set has two inputs:

❑ 𝑋! (the observation at time step 𝑖):
o One-hot vector, feature vector, or distributed 

representation of input token at 𝑖 step

❑ 𝑆!"# (the output of the previous state):
o Base case: 𝑆" = 0 vector
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Recurrent Neural Network

❑ Each time set has two outputs:

❑ 𝑆! = 𝑅 (𝑋! , 𝑆!"#)
o R computes the output state as a function 

of the current input and previous state

❑ 𝑦! = 𝑂 (𝑆!)
o O computes the output as a function of 

the current output state
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RNN Training

sequence of words

output as shifted by one
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RNN Training SUM (total loss)

sequence of words

output as shifted by one
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RNN Training Parameters are shared! 
Derivatives are accumulated.

sequence of words

output as shifted by one
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What can RNNs do?

❑ Represent a sentence
o Read whole sentence, make a prediction

❑ Represent a context within a sentence
o Read context up until that point
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Representing Sentences

❑ Sentence classification
❑ Conditioned generation
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Representing Context within Sentence

❑ Tagging
❑ Language modeling
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e.g., Language Modeling

❑ Language modeling is like a tagging task, where each tag is the next word!
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e.g., POS Tagging with Bi-RNNs
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Vanishing Gradient

❑ Gradients decrease as they get pushed back

❑ Why? “Squashed” by non-linearities or small weights in matrices
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A Solution: Long Short-term Memory (LSTM)

❑ Make additive connections between time steps 

❑ Addition does not modify the gradient, no vanishing

❑ Gates to control the information flow

(Hochreiter and Schmidhuber 1997)
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RNN vs LSTM Structure

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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LSTM Structure

❑ Forget gate: what value do we try to 
add/forget to the memory cell?

❑ Input gate: how much of the update 
do we allow to go through?

❑ Output gate: how much of the cell do 
we reflect in the next state?

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Cell state

Forget gate

Input gate Output gate

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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LSTM variant: Gated Recurrent Unit (GRU)

❑ Combines the forget and input gates into a 
single “update gate.”

❑ Merges the cell state and hidden state
❑ And, other small changes

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

(Cho et al., 2014)

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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class RNN(nn.Module):
def __init__(self, input_size: int, hidden_size: int, output_size: int) -> None:

super().__init__()
…
self.i2h = nn.Linear(input_size, hidden_size, bias=False)
self.h2h = nn.Linear(hidden_size, hidden_size)
self.h2o = nn.Linear(hidden_size, output_size)

def forward(self, x, hidden_state) :
x = self.i2h(x)
hidden_state = self.h2h(hidden_state)
hidden_state = torch.tanh(x + hidden_state)
out = self.h2o(hidden_state)
return out, hidden_state

def init_zero_hidden(self, batch_size=1) -> torch.Tensor:
return torch.zeros(batch_size, self.hidden_size, requires_grad=False)
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class RNN(nn.Module):
def __init__(self, input_size, output_size, hidden_dim, n_layers):

super(RNN, self).__init__()
…
self.rnn = nn.RNN(input_size, hidden_dim, n_layers, batch_first=True)
self.fc = nn.Linear(hidden_dim, output_size)

def forward(self, x, hidden):
r_out, hidden = self.rnn(x, hidden)
r_out = r_out.view(-1, self.hidden_dim)

return self.fc(r_out) , hidden
# x (batch_size, seq_length, input_size)
# hidden (n_layers, batch_size, hidden_dim)
# r_out (batch_size, time_step, hidden_size)
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class LSTM (nn.Module):
def __init__(self, num_classes, input_size, hidden_size, num_layers, 

seq_length):
super(LSTM1, self).__init__()
…
self.lstm = nn.LSTM(input_size=input_size, hidden_size=hidden_size, 

num_layers=num_layers, batch_first=True)
self.fc =  nn.Linear(hidden_size, num_classes)
self.relu = nn.ReLU()

def forward(self,x):
h_0 = Variable(torch.zeros(self.num_layers, x.size(0), self.hidden_size)) #hidden 

state
c_0 = Variable(torch.zeros(self.num_layers, x.size(0), self.hidden_size)) #internal 

state
output, (hn, cn) = self.lstm(x, (h_0, c_0))
hn = hn.view(-1, self.hidden_size)
return self.fc (self.relu(hn))
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Connecting RNN to RNN for sequence-to-
sequence (seq2seq) modeling



CSCI 5541 NLP 27

RNN (decoder) for language modeling
Randomly initialized hidden 
state ℎ! at time step 𝑡 = 0



CSCI 5541 NLP 28

RNN (decoder) for language modeling

What if we encode some 
specific context, instead 
of random state?



CSCI 5541 NLP 29

RNN (encoder) - RNN (decoder) 
for machine translation

“나는이영화가싫어요”
“Odio esta película”
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RNN (encoder) - RNN (decoder) 
for dialogue generation

“나는이영화가싫어요”
“Odio esta película”

“what do you think about 
Avengers: Endgame? 
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Sequence-to-sequence modeling using
RNN (encoder) - RNN (decoder)

“나는이영화가싫어요”
“what do you think about Avengers: Endgame? 

Encoder: encoding 
input sequence

Decoder: decoding 
output sequenceInput context
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Problem: forgetting input context as 
input gets longer

“나는이영화가싫어요”
“what do you think about Avengers: Endgame? 

Input context
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Solution (teaser): Seq2seq with attention

“나는이영화가싫어요”
“what do you think about Avengers: Endgame? 

Attention layer = Input context 
attended on all previous context
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State-of-the-art Language Models
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Teaser: Transformer-based LMs

❑ SOTA LMs: GPT-2, Radford et al. 2018;  GPT-3, Brown et al. 2020

Trigram LSTM

109 58.3

GPT2 GPT3

35.8 20.5
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Ngram
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Ngram

1990s 20031997 2014

LSTM
RNN

GRU

2018 2019 2020 2021
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Teaser: Two Objectives for Language Model Pretraining

Slides from Zihang Dai

Next-token prediction Reconstruct masked tokens

Auto-regressive LM (GPT3) Denoising autoencoding (BERT)
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Recap

❑ Ngram LM → Neural LM : sparsity
❑ Neural LM → RNN LM : input size is not scalable
❑ RNN LM → LSTM LM: vanishing gradients over time steps
❑ LSTM LM → Transformer : still vanishing gradients
❑ Transformer → Scaling up Transformer : scaling law!
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Why better language models are useful?
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The director of  2001: A Space Odyssey is _____________

Language models can directly encode knowledge
present in the training corpus.
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Language models can directly encode knowledge
present in the training corpus.

Petroni et al. (2019), "Language Models as Knowledge Bases?” (ACL)
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Language models can directly encode knowledge
present in the training corpus.

Petroni et al. (2019), "Language Models as Knowledge Bases?” (ACL)
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ChatGPT Is a Blurry JPEG of the Web, By Ted Chiang February 9, 2023

https://www.newyorker.com/tech/annals-of-technology/chatgpt-is-a-blurry-jpeg-of-the-web
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Language models can be a foundation for various 
tasks across different modalities

Bommasani et al. (2021), "On the Opportunities and Risks of Foundation Models”
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Language models are stochastic parrots

Bender et al. (2021), "On the Dangers of Stochastic Parrots: Can Language Models Be Too Big?”
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Questions

❑ GPT3 is 100x bigger than GPT2. If GPT-K is developed, how can we handle 
such a large-scale model without industry-level computing powers. Can we 
compress the models while not sacrificing performance? 

❑ What if those companies can only replicate the results, monopolize their 
usages, and make them as a paid service? Is it fair?

❑ Are there different ways of storing the predictive/knowledge power of 
LMs?

❑ Can LMs be called as general intelligence or foundational knowledge? If not, 
what are missing there?


