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Neural LM against Ngram LM o

Pros

A No sparsity problem
A Don't need to store all observed n-gram counts

Cons

a Fixed context window is too small (larger window, larger W)
o Windows can never be large enough

a Different words are multiplied by completely different weights (W); no
symmetry in how the inputs are processed.
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£
Recap o™
A Ngram LM — Neural LM : sparsity
d Neural LM — RNN LM : input size is not scalable

3 RNN LM — LSTM LM:

3 LSTM LM — Transformer :
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Outline

1 Recurrent Neural Network (RNN)

 Long Short-term Memory (LSTM)

4 Implementation of RNN and LSTM using PyTorch
1 Sequence-to-Sequence modeling

1 Teaser: Transformer-based LMs

A Why language models are useful?
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Recurrent Neural Network (RNN)

RNN allow arbitarily-sized conditioning contexts;
condition on the entire sequence history.

y Y4 ys
A A A
— R, 0O J - S0 S3> R, O S4> R, 0O > S5
A i i
. X4 X5

Goldberg 2017
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Recurrent Neural Network

Neural-LM: P(w) = P(w;|lwj_g..w;—1) = softmax (W - h)

— RNN: P(w) = P(w;|context)
= softmax (W - h;)

Goldberg 2017
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Recurrent Neural Network

1 Each time set has two inputs: y1

4 X; (the observation at time step i): : :
o One-hot vector, feature vector, or distributed 4 R, O ’

representation of input token at i step *

X1
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Recurrent Neural Network

d Each time set has two inputs: y1

1 X; (the observation at time step i): %
S
o One-hot vector, feature vector, or distribute ’ L J
representation of input token at i step *
X1

2 S;_, (the output of the previous state):
o Base case: S, = 0 vector
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Recurrent Neural Network

1 Each time set has two outputs:

Y1

a5 =R (X, 5i-1)
o R computes the output state as a function
of the current input and previous state

dy; =0 (S5;)
o O computes the output as a function of
the current output state
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RNN Training

output as shifted b\/ one the — black ~ fox — jumped — </s>
A A A A \ A
Cpredict ) | Cpredict ) | (predict ) | ( predict " predict )
7 A | 7 A | 7 A 7 ‘ A 7 | V
Y1 | Y2 Y3 Y4 | T Y5
— %0, RO #—%‘ RO %2, rRo %8, rRo /% RO
T R R S R T *
Efcs Biw |\ Buwkl | Byl | Efjumpea)
<5> > the > black S Jfox > jumped

sequence of words
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SUM (total loss)

RNN Training

output as shifted by one  the — black — fox — jumped —. </s>
A A A A | A
predict ) | ( predict Cpredict ) | ( predict “predict )
A . . Ak | |
yi | y2 Y3 Y4 TYS
. : N :
~ %, RO } i, RO 2 RO 3> RO 7 RO
Y S A A A T ‘
Efe] E{zhe] E{btack] Effox] Efjumped)
<5> > the > black o Jfox > jumped

sequence of words
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RNN Training

Parameters are shared!
Derivatives are accumulated.

output as shifted by one t}:e black ~

C prediét predicf

sequence of words w et e bk v fox o jumped
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What can RNNs do?

1 Represent a sentence
o Read whole sentence, make a prediction

] Represent a context within a sentence
o Read context up until that point
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Representing Sentences

 Sentence classification
1 Conditioned generation

this movie

prediction
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Representing Context within Sentence

1 Tagging
 Language modeling

hate this movie

[predlct] (predlct) [predmt] (predlctj

/abe/ /abe/ /abe/ /abe/
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e.g., Language Modeling

] Language modeling is like a tagging task, where each tag is the next word!

<S> | hate this movie
| ) )
> RNN RNN RNN &

[predlct] [predmt] [predlct) (predlctj [predlct)

hate thls mowe </s>

CSCI 5541 NLP




e.g., POS Tagging with Bi-RNNSs

I hate this movie

>«
concat concat concat concat

PRN VB DET NN
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\/anishing Gradient

A Gradients decrease as they get pushed back

g—:o: tiny (;L: =small g—’i =med. g—i =large
h, — RNN (= h, = RNN | h, > RNN | h, > square_err —>| [
) ) } i
% X, X, y*

ad Why? “Squashed” by non-linearities or small weights in matrices
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A Solution: Long Short-term Memory (LSTM)

(Hochreiter and Schmidhuber 1997)

1 Make additive connections between time steps
A Addition does not modify the gradient, no vanishing

1 Gates to control the information flow
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RNN vs LSTM Structure

tanh

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

VN
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http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM Structure O = > <

Neural Network Pointwise Vector
Layer Operation Transfer Congatenate Copy

] Forget gate: what value do we try to @
add/forget to the memory cell?

J Input gate: how much of the update
do we allow to go through?

Forget gate

Cell state

] Output gate: how much of the cell do
we reflect in the next state?

ft = Ug(Wf(Bt -1 Ufht_l -t- bf)
O’Q(I/V,jmt + U;hy 1 + b,)
o,(Woxy +Ushi—1 + b,) Input gate Output gate

Ct — ft O Ct—1 + 'it, O 0(:(m:$t + Ucht—l + bc) ®

hi = o4 o Uh.(Ct)

o~ .
o~
|

L
|

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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LSTM variant: Gated Recurrent Unit (GRU)

(Cho et al., 2014)

1 Combines the forget and input gates into a
single “update gate.”
] Merges the cell state and hidden state

J And, other small changes

2t = O'Q(Wza?t + Uzht_l + bz)

re = 0g(Wrzy + U hi—1 + by)

hy :1(1 — z¢){o hy—1 ﬂao on(Whzy + Up(re 0 hy—1) + by)
Additive or Non-linear

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

VN
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O PyTorch
class RNN(nn.Module):

def __init__(self, input_size: int, hidden_size: int, output_size: int) -> None:
super()._ _init__()

self.i2h = nn.Linear(input_size, hidden _size, bias=False) @

self.h2h = nn.Linear(hidden _size, hidden_size)

self.h20 = nn.Linear(hidden_size, output_size) (@ r

> »

def forward(self, x, hidden _state): l

X = self.i2h(x) 4

hidden _state = self.h2h(hidden _state) o

hidden_state = torch.tanh(x + hidden _state)

out = self.h2o(hidden _state) @

return out, hidden _state

def init_zero_hidden(self, batch _size=1) -> torch.Tensor:
return torch.zeros(batch_size, self.hidden_size, requires_grad=False)
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class RNN(nn.Module):
def __init__(self, input_size, output_size, hidden_dim, n_layers):
super(RNN, self)._ _init_ _()

self.rnn = nn.RNN(input_size, hidden_dim, n_layers, batch_first=True)
self.fc = nn.Linear(hidden_dim, output_size)

O PyTorch

def forward(self, x, hidden):

r _out, hidden = self.rnn(x, hidden) 4

\ 4
%J i

r_out =r_out.view(-1, self.hidden_dim)

®_

return self.fc(r_out), hidden

# x (batch_size, seq_length, input_size)
# hidden (n_layers, batch_size, hidden_dim)
#r_out (batch_size, time_step, hidden_size)

CSCI 5541 NLP




class LSTM (nn.Module): ¢ PyTorch
def __init_ _(self, num_classes, input_size, hidden_size, num_layers,
seq_length):
super(LSTM1, self)._ _init_ _()

self.Istm = nn.LSTM(input_size=input_size, hidden_size=hidden _size,
num _layers=num_layers, batch_first=True)

self.fc = nn.Linear(hidden _size, num _classes)

self.relu = nn.ReLU()

def forward(self,x):

h_0 = Variable(torch.zeros(self.num_layers, x.size(0), self.hidden_size)) #hidden
state

c_0 = Variable(torch.zeros(self.num _layers, x.size(0), self.hidden _size)) #internal
state

output, (hn, cn) = self.Istm(x, (h_0, c_0))

hn = hn.view(-1, self.hidden _size)

return self.fc (self.relu(hn))
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Connecting RNN to RNN for sequence-to-
sequence (seq2seqg) modeling
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RNN (decoder) for language modeling

Randomly initialized hidden
state h; attimestept =0

<S> | hate this movie

1 - 1 1

RNN RNN — &

[predlct] [predmt) [predlct) (predlctj [predmt]

hate thls mowe </s>
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RNN (decoder) for language modeling

What if we encode some
specific context, instead
of random state?

hate this movie
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RNN (encoder) - RNN (decoder)
for machine translation

"Lt= Ol 7t &0 K"
“Odio esta pelicula” hate this movie
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RNN (encoder) - RNN (decoder)
for dialogue generation

"Lt= 0] B2t &0 K"
"Odio esta pelicula” <S>

hate this movie

“what do you think about
Avengers: Endgame?

I hate this movie <[s>
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Sequence-to-sequence modeling using
RNN (encoder) - RNN (decoder)

‘L= 0] B2} slo g

1} ) 7
what do you think about Avengers: Endgame: S | hate ihis Ly

hate this movie

| |
Encoder: encoding Decoder: decoding

Input sequence Input context output sequence
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Problem: forgetting input context as
input gets longer

‘L= 0] B2} slo g

1} ) 7
what do you think about Avengers: Endgame: S | hate ihis Ly

hate this movie <[s>

Input context
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Solution (teaser): Seg2seq with attention

‘L= 0] B2} slo g

1} ) 7
what do you think about Avengers: Endgame: S | hate ihis Ly

I
I
I
I hate
I
I
I
I

_____________________________ , Attention layer = Input context
attended on all previous context
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State-of-the-art Language Models
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Teaser: Transformer-based LMs

1 SOTA LMs: GPT-2, Radford et al. 2018: GPT

LSTM
58.3

GPT2
35.8

GPT3
20.5

Trigram

109

Mar 19  Transformers (1) [
Project proposal due

o Attention is All you Need
e Tutorial on lllustrated Transformer
e L anguage Models are Unsupervised Multitask L earners

e Language Models are Few-Shot | earners
o Exploring the Limits of Transfer Learning with a Unified Text-to-Text

Mar 24 Transformers (2) [

Transformer
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Figure 1: The Transformer - model architecture.
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Perplexity

Ngram
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RNN
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Teaser: Two Objectives for Language Model Pretraining

Auto-regressive LM (GPT3) Denoising autoencoding (BERT)
York is a city  [EOS| York is
Unidirectional Transformer Bidirectional Transformer
New  York is a city New |MASK][MASK| a city
log p(x Z log p(¢[x<¢) log p(% Z mask; log p(z;|X)
=l
Next-token prediction Reconstruct masked tokens

Slides from Zihang Dai

33 AR
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Recap

Ngram LM — Neural LM : sparsity

Neural LM — RNN LM : input size is not scalable

RNN LM — LSTM LM: vanishing gradients over time steps
_STM LM — Transformer : still vanishing gradients

A Transformer — Scaling up Transformer : scaling law!

U U O U
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Why better language models are useful?
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Language models can directly encode knowledge
present in the training corpus.

The director of 2001: A Space Odyssey is

CSCI 5541 NLP




Language models can directly encode knowledge
present in the training corpus.

Query Answer Generation

Francesco Bartolomeo Conti was born in . Florence Rome [-1.8], Florence [-1.8], Naples

Petroni et al. (2019), "Language Models as Knowledge Bases?" (ACL)
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Language models can directly encode knowledge
present in the training corpus.

Query Answer Generation

Francesco Bartolomeo Conti was bornin . Florence Rome [-1.8], Florence [-1.8], Naples
Adolphe Adam diedin . Paris Paris [-0.5], London [-3.5], Vienna
English bulldog is a subclass of . dog dogs [-0.3], breeds [-2.2], dog

The official language of Mauritiusis . English English [-0.6], French [-0.9], Arabic
Patrick Oboya playsin __ position. midfielder centre [-2.0], center [-2.2], midfielder
Hamburg Airport is named after Hamburg  Hess [-7.0], Hermann [-7.1], Schmidt
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ChatGPT Is a Blurry JPEG of the Web, By Ted Chiang February 9, 2023
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https://www.newyorker.com/tech/annals-of-technology/chatgpt-is-a-blurry-jpeg-of-the-web
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Language models can be a foundation for various
tasks across different modalities

Tasks
Question 7
% Answering /’,.
Data 4 Sentiment
%’—b . . Analysis

Text I\Pl « V - / )

r“ | | k‘ > Information _.
J/.- Images %ﬂ 'I Extraction \
(‘f\[\/\ ané 2 i Adaptation '
i A’
Speech

, T raining Foundation

o

Image

4 Model Captioning o /
\
_ Structured \\/
¥ . Data
% 4 Object
= 4\, ‘
3D Signals =D ; Recognition

Instruction
Following .. "!

™~
Bommasani et al. (2021), "On the Opportunities and Risks of Founda %odels



Language models are stochastic parrots

Bender et al. (2021), "On the Dangers of Stochastic Parrots: Can Language Models Be Too Big?”
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Questions

A GPT3is 100x bigger than GPT2. If GPT-K is developed, how can we handle
such a large-scale model without industry-level computing powers. Can we
compress the models while not sacrificing performance?

A What if those companies can only replicate the results, monopolize their
usages, and make them as a paid service? Is it fair?

A Are there different ways of storing the predictive/knowledge power of
LMs?

1 Can LMs be called as general intelligence or foundational knowledge? If not,
what are missing there?
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