CSCI 5541: Natural Language Processing

Lecture 7: Langage Models: RNN, LSTM, and Seq2Seq

Dongyeop Kang (DK), University of Minnesota

dongyeop@umn.edu | twitter.com/dongyeopkang | dykang.github.io



Neural LM against Ngram LM

Pros

- No sparsity problem
- Don't need to store all observed n-gram counts

Cons

- ☐ Fixed context window is too small (larger window, larger W)
 - Windows can never be large enough
- Different words are multiplied by completely different weights (W); no symmetry in how the inputs are processed.

Recap

□ Ngram LM → Neural LM : sparsity

□ Neural LM → RNN LM : input size is not scalable

 \square RNN LM \rightarrow LSTM LM:

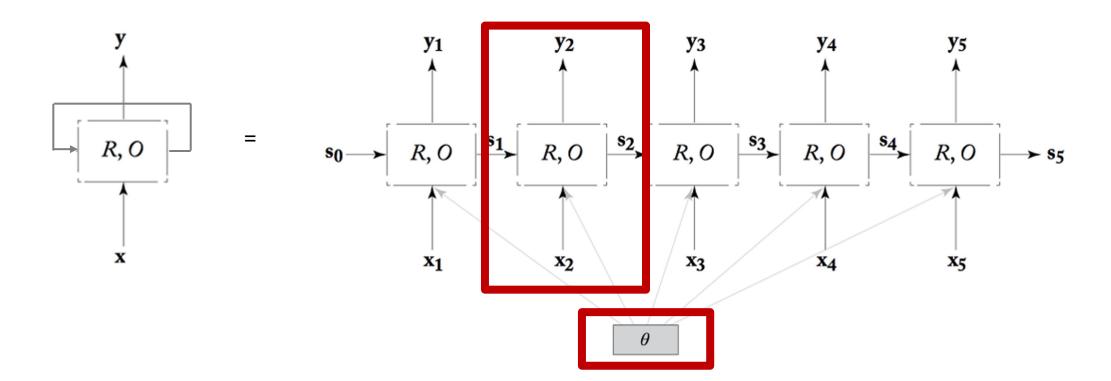
 \square LSTM LM \rightarrow Transformer :

Outline

- ☐ Recurrent Neural Network (RNN)
- ☐ Long Short-term Memory (LSTM)
- ☐ Implementation of RNN and LSTM using PyTorch
- Sequence-to-Sequence modeling
- ☐ Teaser: Transformer-based LMs
- ☐ Why language models are useful?

Recurrent Neural Network (RNN)

RNN allow arbitarily-sized conditioning contexts; condition on the entire sequence history.





Neural-LM:

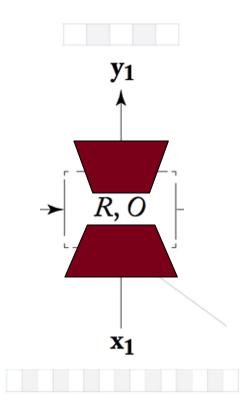
$$P(w) = P(w_i|w_{i-k}..w_{i-1}) = softmax (W \cdot h)$$

RNN:

$$P(w) = P(w_i|context)$$

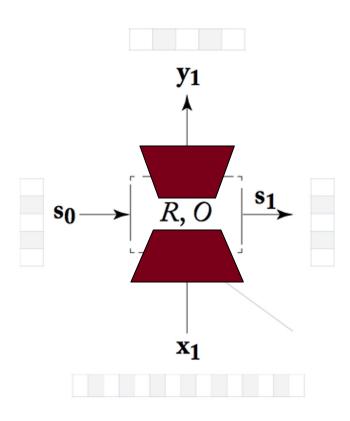
= $softmax(W \cdot h_i)$

- ☐ Each time set has two inputs:
- \square X_i (the observation at time step i):
 - One-hot vector, feature vector, or distributed representation of input token at i step



☐ Each time set has two inputs:

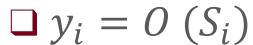
- $\square X_i$ (the observation at time step i):
 - One-hot vector, feature vector, or distribute representation of input token at i step
- \square S_{i-1} (the output of the previous state):
 - Base case: $S_0 = 0$ vector



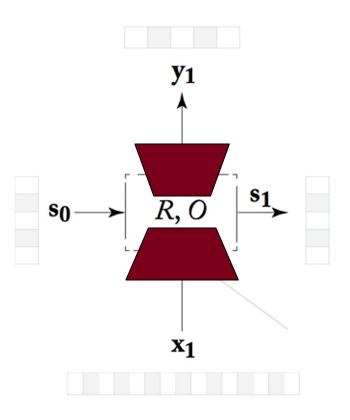
☐ Each time set has two outputs:

$$\square S_i = R(X_i, S_{i-1})$$

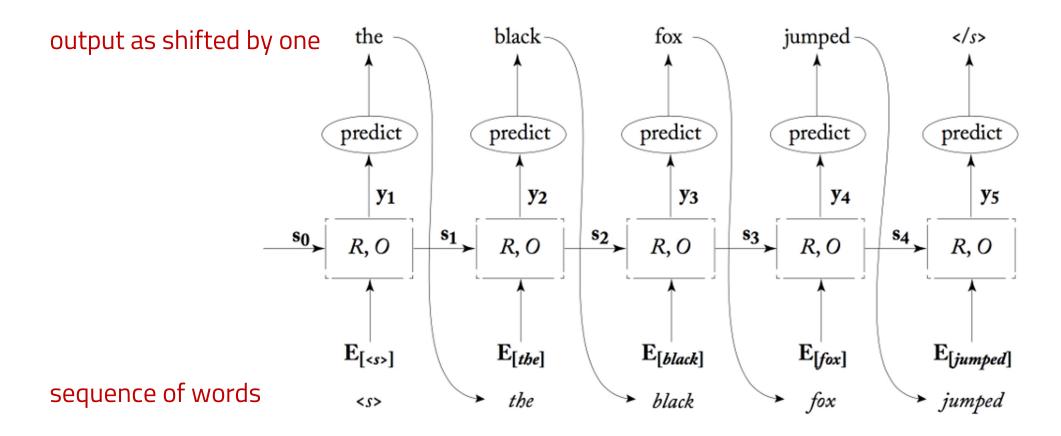
 R computes the output state as a function of the current input and previous state

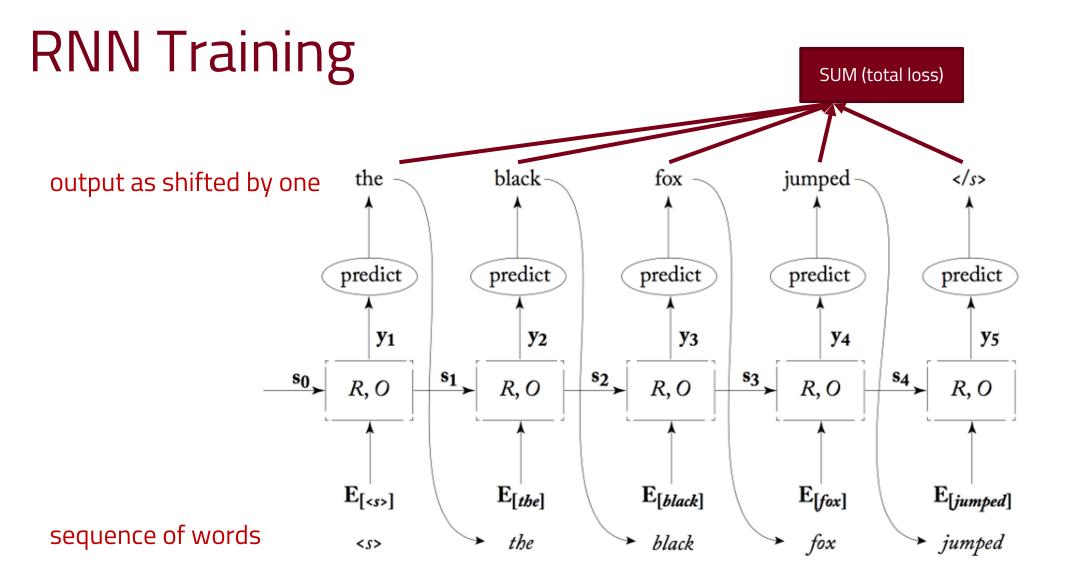


 O computes the output as a function of the current output state



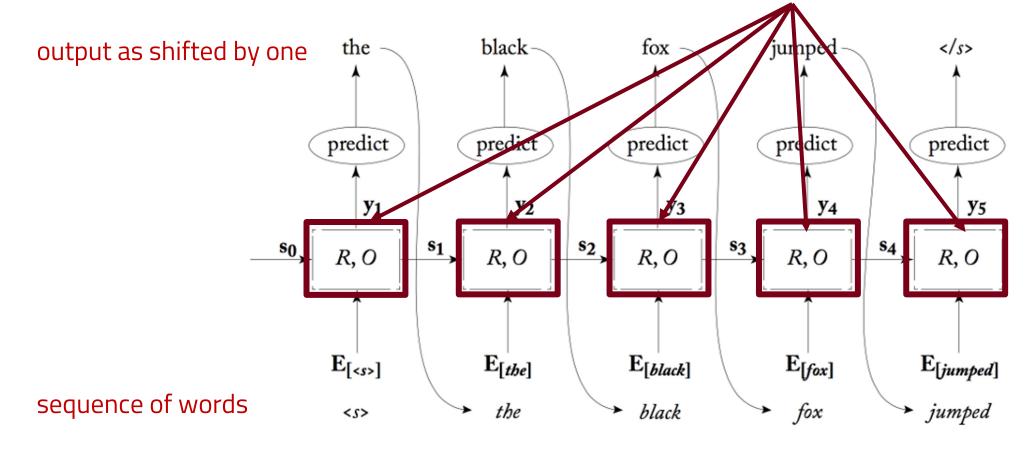
RNN Training





RNN Training

Parameters are shared! Derivatives are accumulated.

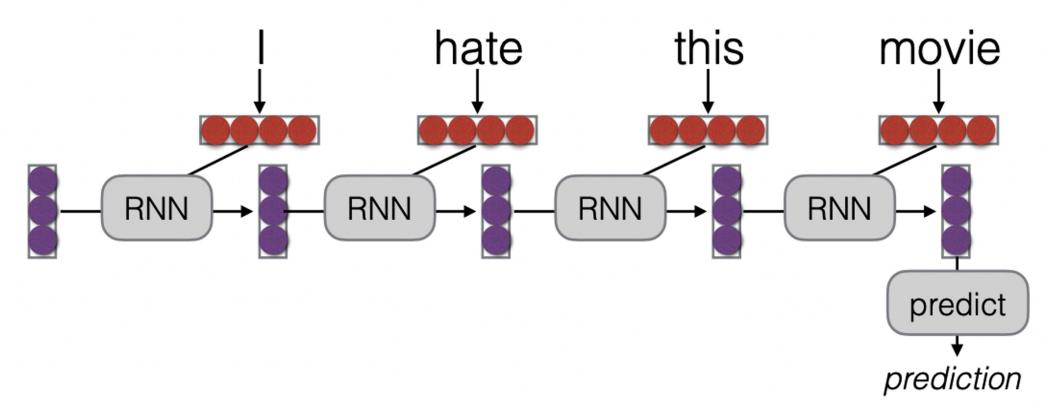


What can RNNs do?

- ☐ Represent a sentence
 - o Read whole sentence, make a prediction
- Represent a context within a sentence
 - Read context up until that point

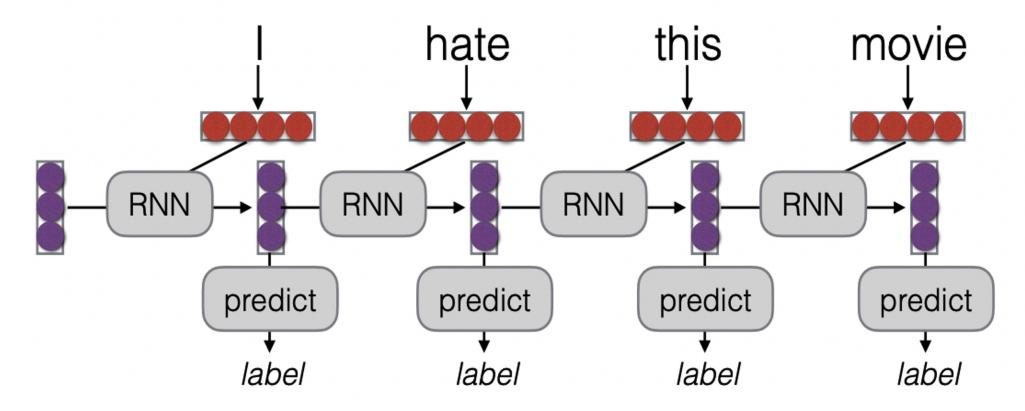
Representing Sentences

- Sentence classification
- Conditioned generation



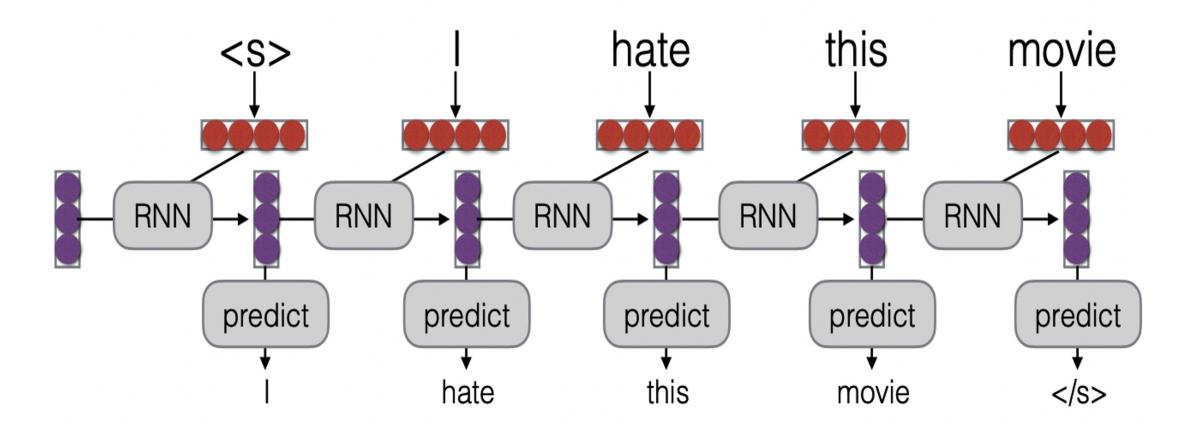
Representing Context within Sentence

- Tagging
- Language modeling

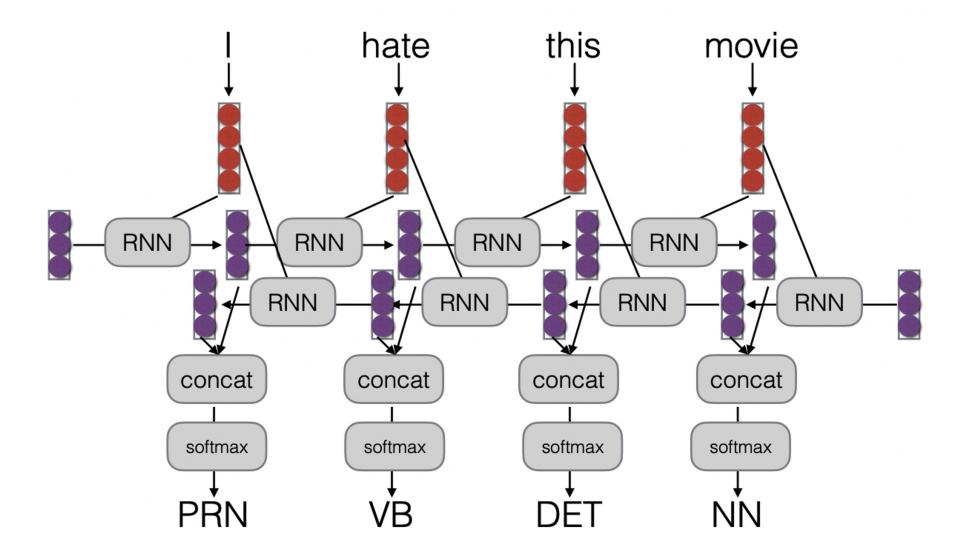


e.g., Language Modeling

Language modeling is like a tagging task, where each tag is the next word!



e.g., POS Tagging with Bi-RNNs



Vanishing Gradient

☐ Gradients decrease as they get pushed back

$$\frac{dl}{d_{h_0}} = \text{tiny} \quad \frac{dl}{d_{h_1}} = \text{small} \quad \frac{dl}{d_{h_2}} = \text{med.} \quad \frac{dl}{d_{h_3}} = \text{large}$$

$$\begin{array}{c|c} \mathbf{h_0} & \mathbf{RNN} & \mathbf{h_1} & \mathbf{RNN} & \mathbf{h_2} & \mathbf{RNN} & \mathbf{h_3} & \mathbf{square_err} & \mathbf{l} \\ \mathbf{x_1} & \mathbf{x_2} & \mathbf{x_3} & \mathbf{x_3} & \mathbf{y}^* \end{array}$$

☐ Why? "Squashed" by non-linearities or small weights in matrices

A Solution: Long Short-term Memory (LSTM)

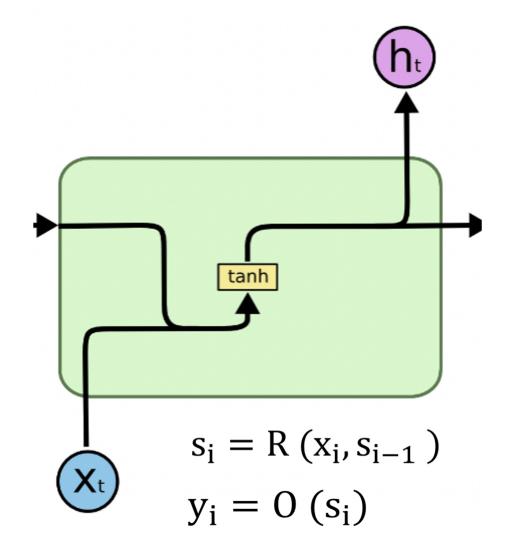
(Hochreiter and Schmidhuber 1997)

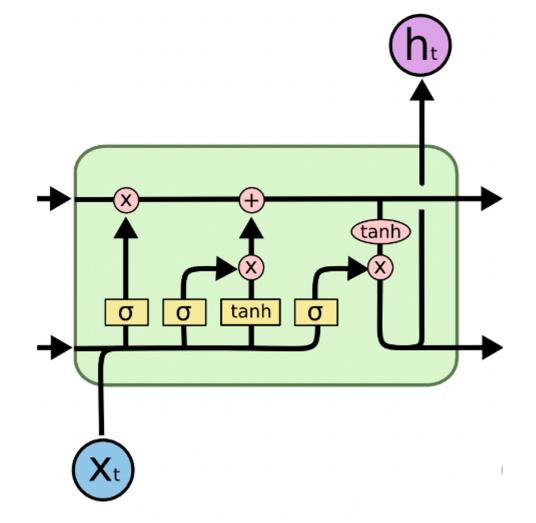
☐ Make **additive connections** between time steps

Addition does not modify the gradient, no vanishing

☐ Gates to control the information flow

RNN vs LSTM Structure





http://colah.github.io/posts/2015-08-Understanding-LSTMs/

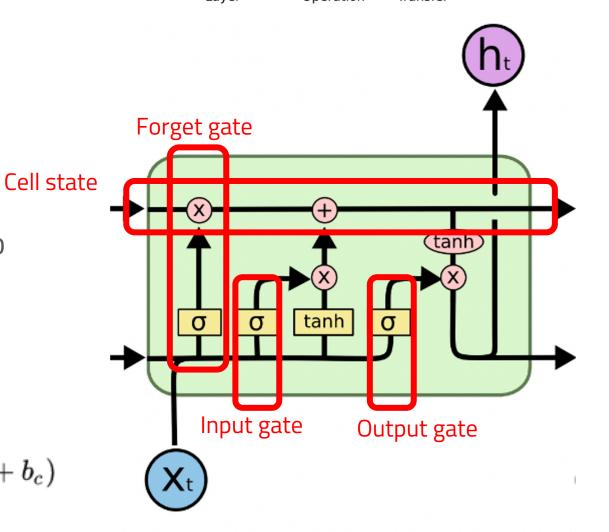
LSTM Structure

Neural Network Pointwise Vector Concatenate Copy

Transfer

- ☐ Forget gate: what value do we try to add/forget to the memory cell?
- ☐ Input gate: how much of the update do we allow to go through?
- **Output gate**: how much of the cell do we reflect in the next state?

$$egin{aligned} f_t &= \sigma_g(W_f x_t + U_f h_{t-1} + b_f) \ i_t &= \sigma_g(W_i x_t + U_i h_{t-1} + b_i) \ o_t &= \sigma_g(W_o x_t + U_o h_{t-1} + b_o) \ c_t &= f_t \circ c_{t-1} + i_t \circ \sigma_c(W_c x_t + U_c h_{t-1} + b_c) \ h_t &= o_t \circ \sigma_h(c_t) \end{aligned}$$



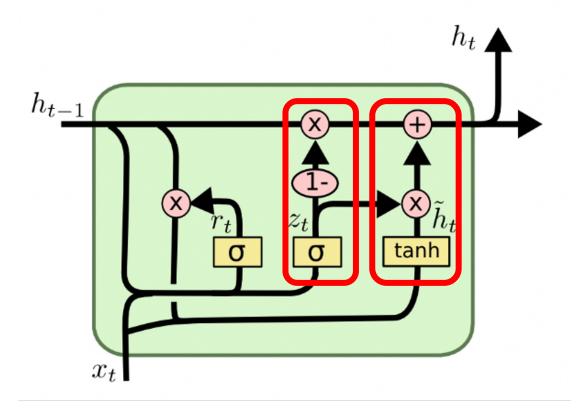
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM variant: Gated Recurrent Unit (GRU)

(Cho et al., 2014)

- Combines the forget and input gates into a single "update gate."
- Merges the cell state and hidden state
- ☐ And, other small changes

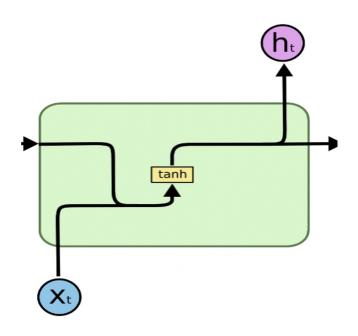
$$egin{aligned} z_t &= \sigma_g(W_z x_t + U_z h_{t-1} + b_z) \ r_t &= \sigma_g(W_r x_t + U_r h_{t-1} + b_r) \ h_t &= \boxed{(1-z_t)} \circ h_{t-1} + \boxed{z_t} \circ \sigma_h(W_h x_t + U_h(r_t \circ h_{t-1}) + b_h) \end{aligned}$$
 Additive or Non-linear



http://colah.github.io/posts/2015-08-Understanding-LSTMs/

O PyTorch

```
class RNN(nn.Module):
  def __init__(self, input_size: int, hidden_size: int, output_size: int) -> None:
    super().__init__()
    self.i2h = nn.Linear(input_size, hidden_size, bias=False)
    self.h2h = nn.Linear(hidden_size, hidden_size)
    self.h2o = nn.Linear(hidden_size, output_size)
  def forward(self, x, hidden_state) :
    x = self.i2h(x)
    hidden_state = self.h2h(hidden_state)
    hidden_state = torch.tanh(x + hidden_state)
    out = self.h2o(hidden_state)
    return out, hidden_state
  def init_zero_hidden(self, batch_size=1) -> torch.Tensor:
    return torch.zeros(batch_size, self.hidden_size, requires_grad=False)
```



```
class RNN(nn.Module):
```

O PyTorch

def __init__(self, input_size, output_size, hidden_dim, n_layers):
 super(RNN, self).__init__()

. . .

self.rnn = **nn.RNN**(input_size, hidden_dim, n_layers, batch_first=**True**)

self.fc = **nn.Linear**(hidden_dim, output_size)

def forward(self, x, hidden):

r_out, hidden = **self.rnn(x, hidden)**

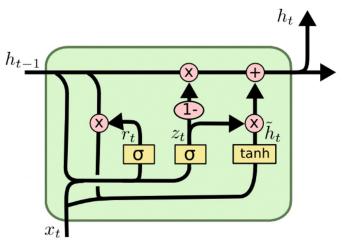
r_out = r_out.view(-1, self.hidden_dim)

return **self.fc(r_out)** , **hidden**

```
tanh
```

x (batch_size, seq_length, input_size)
hidden (n_layers, batch_size, hidden_dim)
r_out (batch_size, time_step, hidden_size)

class LSTM (nn.Module): **def** __init__(self, num_classes, input_size, hidden_size, num_layers, seq length): super(LSTM1, self).__init__() self.lstm = **nn.LSTM**(input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, batch_first=True) self.fc = nn.Linear(hidden_size, num_classes) self.relu = **nn.ReLU**() **def** forward(self,x): h_0 = Variable(torch.zeros(self.num_layers, x.size(0), self.hidden_size)) #hidden state c_0 = Variable(torch.zeros(self.num_layers, x.size(0), self.hidden_size)) #internal state output, $(hn, cn) = self.lstm(x, (h_0, c_0))$



hn = hn.view(-1, self.hidden_size)

return self.fc (self.relu(hn))

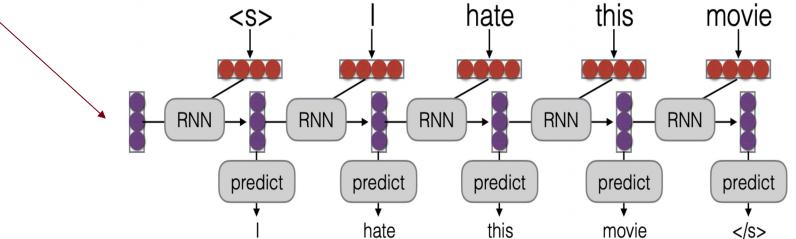
Connecting RNN to RNN for sequence-tosequence (seq2seq) modeling

RNN (decoder) for language modeling

Randomly initialized hidden state h_t at time step t = 0this hate movie <S> **RNN RNN RNN RNN RNN** predict predict predict predict predict this </s> hate movie

RNN (decoder) for language modeling

What if we encode some specific context, instead of random state?



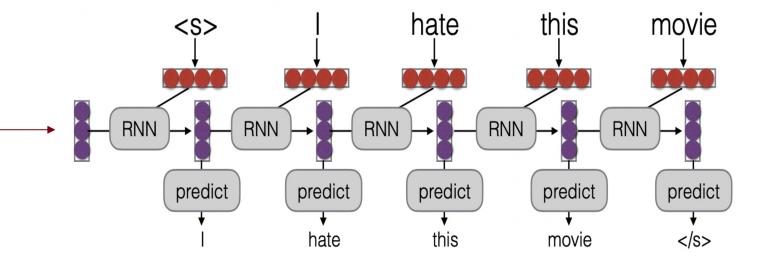
RNN (encoder) - RNN (decoder) for machine translation

"나는 이 영화가 싫어요" "Odio esta película" this hate movie <S> **RNN** RNN RNN RNN RNN predict predict predict predict predict hate this movie </s>

RNN (encoder) - RNN (decoder) for dialogue generation

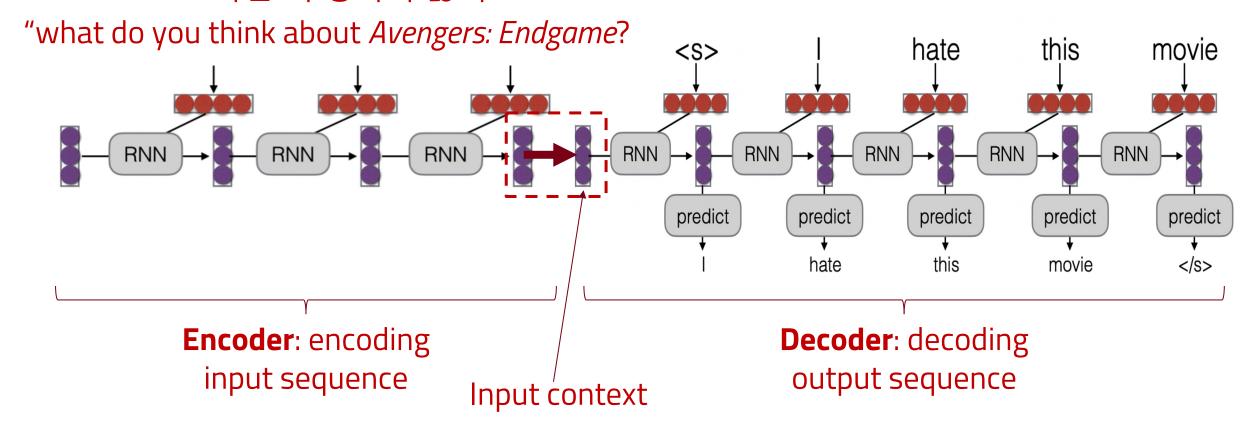
"나는 이 영화가 싫어요" "Odio esta película"

"what do you think about *Avengers: Endgame*?



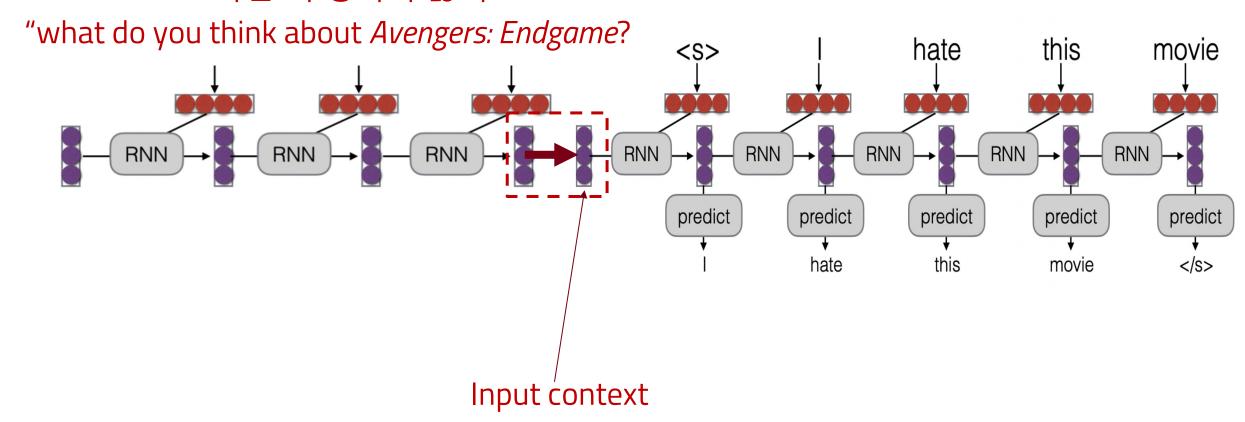
Sequence-to-sequence modeling using RNN (encoder) - RNN (decoder)

"나는 이 영화가 싫어요"

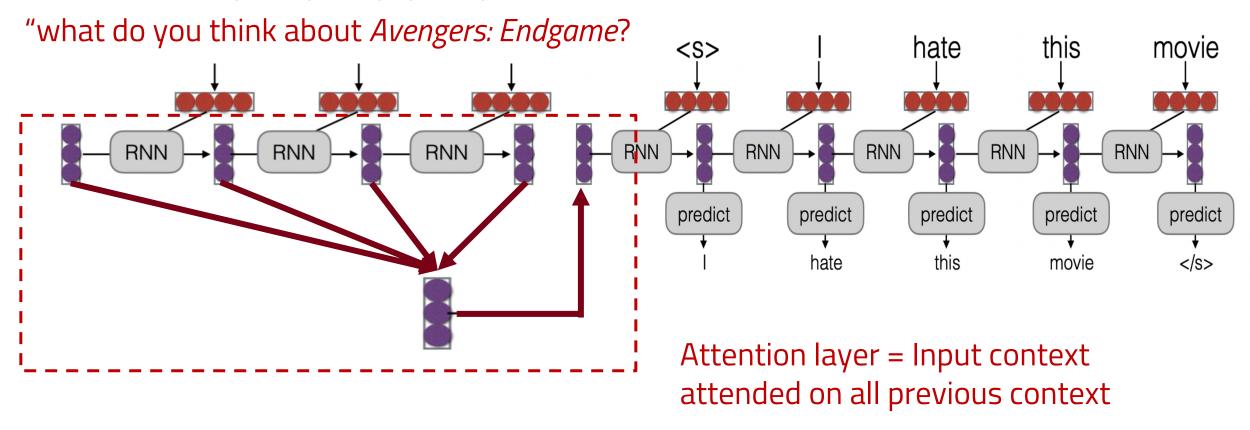


Problem: forgetting input context as input gets longer

"나는 이 영화가 싫어요"



Solution (teaser): Seq2seq with attention



State-of-the-art Language Models

Teaser: Transformer-based LMs

□ SOTA LMs: GPT-2, Radford et al. 2018; GPT

Trigram	LSTM
109	58.3

GPT2	GPT3
35.8	20.5

Mar 19	Transformers (1) PDE. Project proposal due	 Attention is All you Need Tutorial on Illustrated Transformer Language Models are Unsupervised Multitask Learners
Mar 24	Transformers (2) PDF	 <u>Language Models are Few-Shot Learners</u> <u>Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer</u>

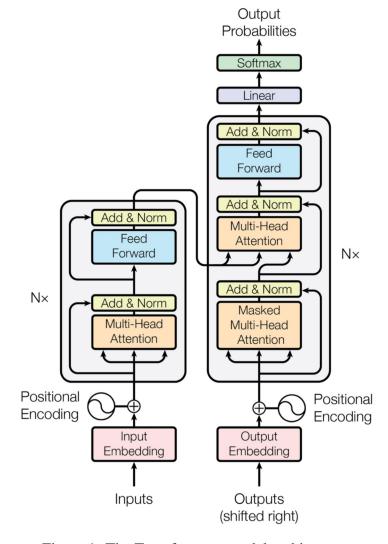
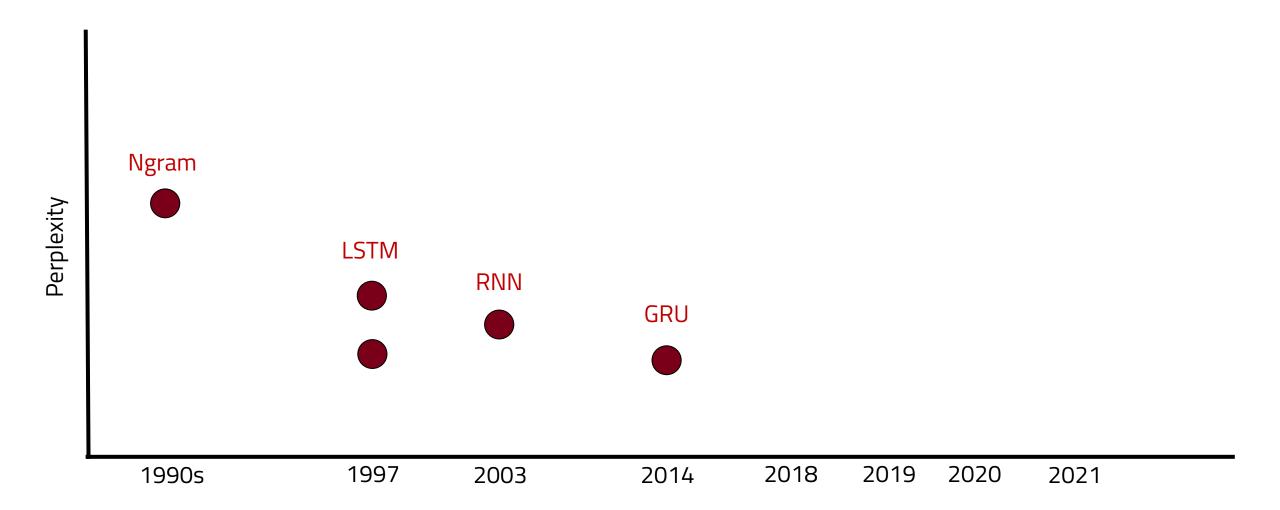
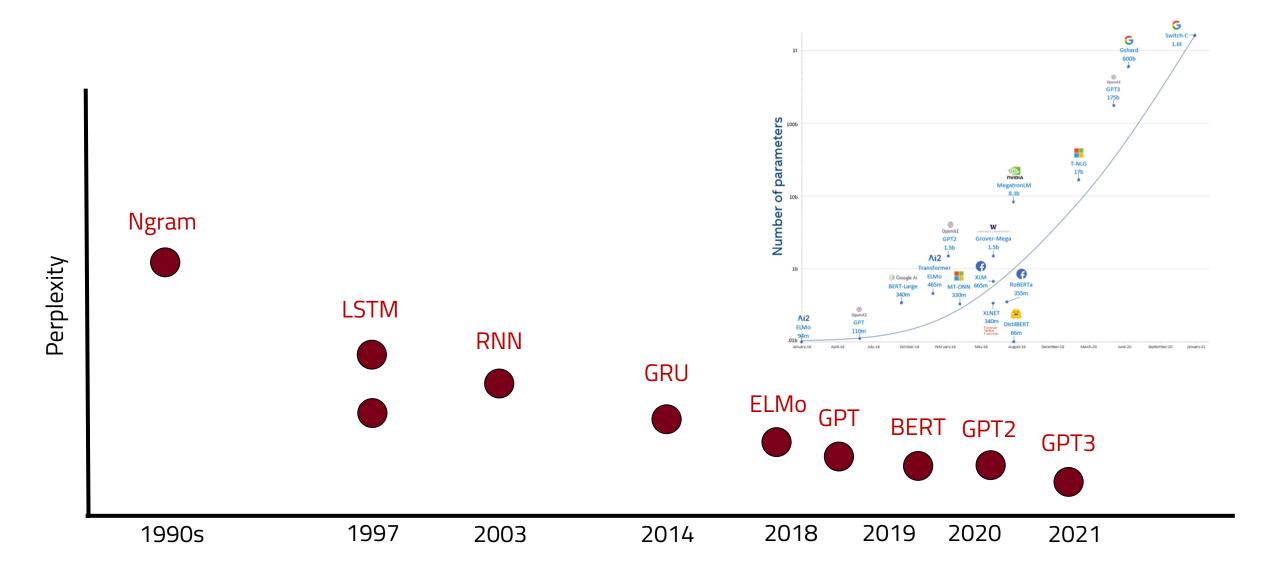


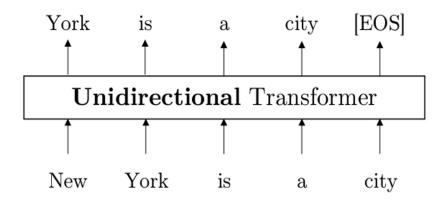
Figure 1: The Transformer - model architecture.





Teaser: Two Objectives for Language Model Pretraining

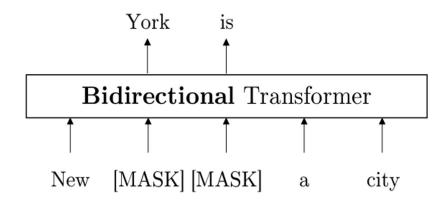
Auto-regressive LM (GPT3)



$$\log p(\mathbf{x}) = \sum_{t=1}^{T} \log p(x_t | \mathbf{x}_{< t})$$

Next-token prediction

Denoising autoencoding (BERT)



$$\log p(\bar{\mathbf{x}}|\hat{\mathbf{x}}) = \sum_{t=1}^{T} \operatorname{mask}_{t} \log p(x_{t}|\hat{\mathbf{x}})$$

Reconstruct masked tokens

Recap

- □ Ngram LM → Neural LM : sparsity
- □ Neural LM → RNN LM : input size is not scalable
- □ RNN LM → LSTM LM: vanishing gradients over time steps
- □ LSTM LM → Transformer : still vanishing gradients
- □ Transformer → Scaling up Transformer : scaling law!

Why better language models are useful?

Language models can directly encode knowledge present in the training corpus.

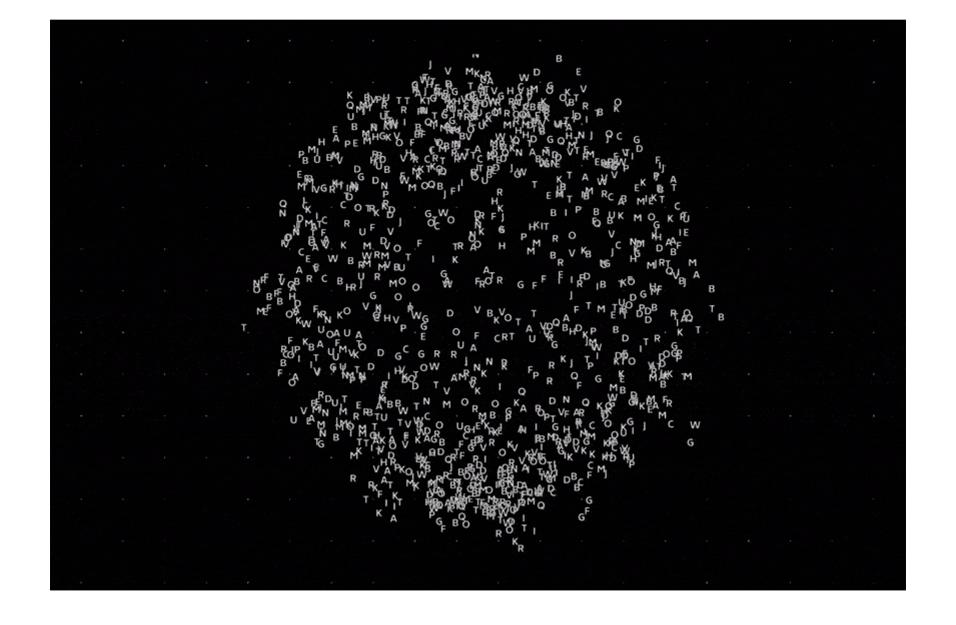
The director of 2001: A Space Odyssey is ______

Language models can directly encode knowledge present in the training corpus.

Query	Answer	Generation
Francesco Bartolomeo Conti was born in	Florence	Rome [-1.8], Florence [-1.8], Naples

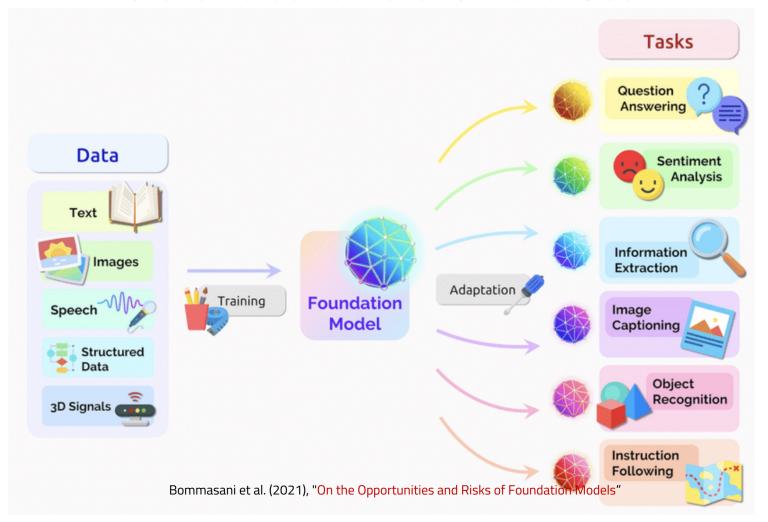
Language models can directly encode knowledge present in the training corpus.

Query	Answer	Generation
Francesco Bartolomeo Conti was born in	Florence	Rome [-1.8], Florence [-1.8], Naples
Adolphe Adam died in	Paris	Paris [-0.5], London [-3.5], Vienna
English bulldog is a subclass of	dog	dogs [-0.3], breeds [-2.2], dog
The official language of Mauritius is	English	English [-0.6], French [-0.9], Arabic
Patrick Oboya plays in position.	midfielder	centre [-2.0], center [-2.2], midfielder
Hamburg Airport is named after	Hamburg	Hess [-7.0], Hermann [-7.1], Schmidt



ChatGPT Is a Blurry JPEG of the Web, By Ted Chiang February 9, 2023

Language models can be a foundation for various tasks across different modalities



Language models are stochastic parrots

Bender et al. (2021), "On the Dangers of Stochastic Parrots: Can Language Models Be Too Big?"

Questions

- ☐ GPT3 is 100x bigger than GPT2. If GPT-K is developed, how can we handle such a large-scale model without industry-level computing powers. Can we compress the models while not sacrificing performance?
- ☐ What if those companies can only replicate the results, monopolize their usages, and make them as a paid service? Is it fair?
- ☐ Are there different ways of storing the predictive/knowledge power of LMs?
- ☐ Can LMs be called as general intelligence or foundational knowledge? If not, what are missing there?