
CSCI 5541: Natural Language Processing
Lecture XX: LLM Compute efficiency and engineering
James Mooney

With slides borrowed from Song Han (MIT)



CSCI 5541 NLP

What Is Efficiency and Why Does It Matter?
❑ Efficiency for NLP is concerned with delivering faster, cheaper, smaller, less 

energy intensive solutions to problems involving natural language
❑ Faster models means LLM model services (GPT3.5, Claude 2.0, etc.) can 

meet the demands of many clients more quickly
❑ Cheaper models reduce costs for LLM model service providers
❑ Smaller model sizes allow for service providers to use fewer resources and 

can allow for individuals to deploy LLMs to their own (smaller) devices
❑ Less energy intensive means lower cost and easier to deploy at the edge, 

where energy is harder to come by

2



CSCI 5541 NLP

What Is Efficiency and Why Does It Matter?
❑ Efficiency for NLP is concerned with delivering faster, cheaper, smaller, 

less energy intensive solutions to problems involving natural language
❑ Faster models means LLM model services (GPT3.5, Claude 2.0, etc.) can 

meet the demands of many clients more quickly
❑ Cheaper models reduce costs for LLM model service providers
❑ Smaller model sizes allow for service providers to use fewer resources and 

can allow for individuals to deploy LLMs to their own (smaller) devices
❑ Less energy intensive means lower cost and easier to deploy at the edge, 

where energy is harder to come by

3



CSCI 5541 NLP

Model Speed
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Model Energy Use
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Computing’s Energy Problem (and What We Can Do About it) [Horowitz, M., IEEE ISSCC 2014 
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Model Size
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Model Cost
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Development Speed
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https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm
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Efficiency Tradeoff

9

❑ More efficient models (smaller, 
faster) typically come at a cost of 
some performance of the model 
itself

❑ In the other direction, getting more 
performance from a model 
architecture likely means it will be 
larger, and require more 
computation Efficiency (speed, size, etc.)
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How to Improve Model Efficiency?
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Hardware Software
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Efficient LLMs
❑ Quantization

o Background
o K-Means vs. Linear Quantization
o Quantization Granularity
o Quantization Aware Training (QAT) vs Post-Training Quantization (PTQ)
o LLM Quantization (LLM.int8(), SmoothQuant, AWQ, 1-bit LLMs)

❑ Sparsity (Mixture of Experts, Deja Vu: Contextual Sparsity)
❑ Efficient Inference Systems (vLLM, StreamingLLM, MHA/GQA/MQA)
❑ Parameter Efficient Fine-Tuning (BitFit, Adapter, Prompt Tuning, LoRA)
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Quantization

13

Reduce model size by 
replacing high bit-
width 
representations with 
low bit-width 
representations
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K-Means Quantization vs Linear Quantization
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K-Means Quantization vs Linear Quantization
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K-Means Quantization
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Deep Compression [Han et al., ICLR 2016]
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K-Means Quantization

18

Deep Compression [Han et al., ICLR 2016]

Original weights
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K-Means Quantization
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Deep Compression [Han et al., ICLR 2016]

Stored weights after 
clustering
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K-Means Quantization
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Deep Compression [Han et al., ICLR 2016]

Retrieved weights to 
be used at inference 

time 
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K-Means Quantization vs Linear Quantization
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Linear Quantization
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❑ Apply linear function on 
weights and hidden state 
activations from floating 
point values (r) to integer 
values (q)

❑ Original weights (black), 
Quantized bins (red)
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Linear Quantization
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Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [Jacobet al., CVPR 2018]
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Linear Quantization
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Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [Jacobet al., CVPR 2018]

Original 
Weights
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Linear Quantization

25

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [Jacobet al., CVPR 2018]

Stored Values
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Linear Quantization
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Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [Jacobet al., CVPR 2018]

Retrieved weights to 
be used at inference 

time
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Efficient LLMs
❑ Quantization

o Background
o K-Means vs. Linear Quantization
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❑ Efficient Inference Systems (vLLM, StreamingLLM, MHA/GQA/MQA)
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Weight Granularity

28

❑ Weight matrices will often have 
different variances along each 
output channel

❑ High variance in weights means 
that applying linear 
quantization will result in large 
performance degradation

❑ To fix this, we can perform 
linear quantization along each 
channel of the weight tensor 
separately

SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models[Xiao et. al., ICML 2023]
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Activation Granularity

29

❑ Activations can have a similar 
problem whereby the variance 
by channel can be quite 
different

❑ The variance by token can also 
differ dramatically

❑ When applying quantization, we 
should split up channels, tokens 
to take this into account

SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models[Xiao et. al., ICML 2023]
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Quantization Aware Training (QAT)
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Quantize while training

https://pytorch.org/blog/quantization-in-practice/
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Post Training Quantization (PTQ)
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Quantize after training

https://pytorch.org/blog/quantization-in-practice/
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LLM.int8() (W8A8)

34

LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale [Dettmers et. al., NeurIPS 2022]

Stored 8-bit 

weights
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SmoothQuant (W8A8)
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Observation: High variance 
channels are fixed in activations 
in LLM FFN layers-weights 
have relatively little difference 
in variance

SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models[Xiao et. al., ICML 2023]
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SmoothQuant (W8A8)
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SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models[Xiao et. al., ICML 2023]
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SmoothQuant (W8A8)
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SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models[Xiao et. al., ICML 2023]
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AWQ (W4A16)
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AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration [Lin et. al., arxiv 2023]
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AWQ (W4A16)
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AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration [Lin et. al., arxiv 2023]

Normal quantization on LLMs performs 

poorly due to outliers in the model’s hidden 

state 
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AWQ (W4A16)
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AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration [Lin et. al., arxiv 2023]

LLM.int8() can resolve these issues, but 

mixed precision matrix multiplication is 

hardware inefficient
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AWQ (W4A16)
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AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration [Lin et. al., arxiv 2023]

As in SmoothQuant, we can resolve this 

issue by shifting the difficulty to the weights 

using a scaling factor.  



CSCI 5541 NLP

AWQ (W4A16)
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AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration [Lin et. al., arxiv 2023]

Where Smoothquant quantizes both 

activations and weights, AWQ only quantizes 

the weights
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Era of 1-bit LLMs (W1.58A8)
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Weight-only QAT algorithm that uses only weights in {-1, 0, 1}

The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits [Ma et al., 2024]
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Era of 1-bit LLMs (W1.58A8)
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The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits [Ma et al., 2024]
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Efficient LLMs
❑ Quantization

o Background
o K-Means vs. Linear Quantization
o Quantization Granularity
o Quantization Aware Training (QAT) vs Post-Training Quantization (PTQ)
o LLM Quantization (LLM.int8(), SmoothQuant, AWQ, 1-bit LLMs)

❑ Sparsity (Mixture of Experts, Deja Vu: Contextual Sparsity)
❑ Efficient Inference Systems (vLLM, StreamingLLM, MHA/GQA/MQA)
❑ Parameter Efficient Fine-Tuning (BitFit, Adapter, Prompt Tuning, LoRA)
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Sparsity

46

Even though our model may 
have many parameters, we can 
get speedups by only using a 
much smaller number of those 
parameters for a given 
instance
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Mixture of Experts (MoE)
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Replace FFN layers in 
traditional 
transformers with a 
switching FFN layer 
(more generally called 
an MoE layer) 
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Mixture of Experts (MoE)
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Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity [Fedus et al., CoRR 2021]
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Mixture of Experts (MoE)
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Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity [Fedus et al., CoRR 2021]

Four FFN layers
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Mixture of Experts (MoE)
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Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity [Fedus et al., CoRR 2021]

Only one is used per token
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Mixture of Experts (MoE)
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Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity [Fedus et al., CoRR 2021]

Only 25% of the FFN parameters 
are used for a single token
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Deja Vu: Contextual Sparsity
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Observation 1: Model activations 
change very little between 
consecutive layers of a network

Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time [Liu et al., 2023]
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Deja Vu: Contextual Sparsity
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Observation 2: Most attention heads 
and most neurons are not used 

Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time [Liu et al., 2023]



CSCI 5541 NLP

Deja Vu: Contextual Sparsity
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Sparsification: Use predictors in each 
layer to determine which neurons to 
activate and which attention heads to 
use – ignore all unpredicted 
heads/neurons

Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time [Liu et al., 2023]
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Efficient LLMs
❑ Quantization

o Background
o K-Means vs. Linear Quantization
o Quantization Granularity
o Quantization Aware Training (QAT) vs Post-Training Quantization (PTQ)
o LLM Quantization (LLM.int8(), SmoothQuant, AWQ, 1-bit LLMs)

❑ Sparsity (Mixture of Experts, Deja Vu: Contextual Sparsity)
❑ Efficient Inference Systems (vLLM, StreamingLLM, MHA/GQA/MQA)
❑ Parameter Efficient Fine-Tuning (BitFit, Adapter, Prompt Tuning, LoRA)
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The KV-Cache

56

The transformer needs to have access to the keys and values for all 
previous tokens in all layers for all heads when

https://awsdocs-neuron.readthedocs-hosted.com/en/latest/general/appnotes/transformers-neuronx/generative-llm-inference-with-neuron.html
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The KV-Cache
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In total, we must store 

Batch_size  *  seq_len * num_heads * num_layers * emb_dim * 2

separate values in the kv cache
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vLLM
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How does a large LLM service (large ChatGPT) handle multiple incoming 
requests with respect to the KV-cache?
-Originally, most systems just assign fixed sized blocks of memory to each 
incoming request. How to improve?

Efficient Memory Management for Large Language Model Serving with PagedAttention (Kwon et al., 2023)



CSCI 5541 NLP

vLLM

59

Let’s adopt a similar approach to that found in virtual memory!

Efficient Memory Management for Large Language Model Serving with PagedAttention (Kwon et al., 2023)
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vLLM
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Efficient Memory Management for Large Language Model Serving with PagedAttention (Kwon et al., 2023)
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StreamingLLM
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How can we extend models to have much longer context length at minimal cost?

Efficient Streaming Language Models with Attention Sinks [Xiao et al., 2023]
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StreamingLLM
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How can we extend models to have much longer context length at minimal cost?

Efficient Streaming Language Models with Attention Sinks [Xiao et al., 2023]

Too 
much 

storage
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StreamingLLM
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How can we extend models to have much longer context length at minimal cost?

Efficient Streaming Language Models with Attention Sinks [Xiao et al., 2023]

Bad 
performance
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StreamingLLM
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How can we extend models to have much longer context length at minimal cost?

Efficient Streaming Language Models with Attention Sinks [Xiao et al., 2023]

Too much 
recomputation
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StreamingLLM
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Observation: Most attention is either placed on the first token or to tokens that 
the model has recently seen.

Efficient Streaming Language Models with Attention Sinks [Xiao et al., 2023]
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StreamingLLM
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Efficient Streaming Language Models with Attention Sinks [Xiao et al., 2023]
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MHA/GQA/MQA
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GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints
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MHA/GQA/MQA
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GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints

Each attention head calculates separate 
keys and values for each token
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MHA/GQA/MQA
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GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints

Attention heads are split into groups. 
Each group has one key/value per token.



CSCI 5541 NLP

MHA/GQA/MQA
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GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints

Attention heads share the same keys 
and values for each token
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Efficient LLMs
❑ Quantization

o Background
o K-Means vs. Linear Quantization
o Quantization Granularity
o Quantization Aware Training (QAT) vs Post-Training Quantization (PTQ)
o LLM Quantization (LLM.int8(), SmoothQuant, AWQ, 1-bit LLMs)

❑ Sparsity (Mixture of Experts, Deja Vu: Contextual Sparsity)
❑ Efficient Inference Systems (vLLM, StreamingLLM, MHA/GQA/MQA)
❑ Parameter Efficient Fine-Tuning (BitFit, Adapter, Prompt Tuning, LoRA)
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BitFit

72

Update only the 
bias parameters

BitFit: Simple Parameter-efficient Fine-tuning for Transformer-based Masked Language-models [Zeken et al, ACL 2021]
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Adapter
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Add trainable 
layers after each 
feedforward layer

Parameter-Efficient Transfer Learning for NLP [Houlsby et al, ICML 2019]
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Prompt Tuning (Soft Prompting)
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Train a continuous, learnable prompt in embedding space for each task we 
are training on

The Power of Scale for Parameter-Efficient Prompt Tuning [Lester, ACL 2021]
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LoRA
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❑ Hypothesizes that fine-tuning 
results in only low rank updates

❑ Thus, we may approximate the 
updates themselves as low-rank 
and train on this low-rank 
approximation directly

The Power of Scale for Parameter-Efficient Prompt Tuning [Lester, ACL 2021]
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LoRA
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The Power of Scale for Parameter-Efficient Prompt Tuning [Lester, ACL 2021]

h = Wx

h = Wx + BAx
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LoRA
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The Power of Scale for Parameter-Efficient Prompt Tuning [Lester, ACL 2021]
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Summary
❑ Efficient inference algorithms in LLMs lead to lower cost, faster inference, 

and smaller models
❑ Quantization and sparsity are the primary techniques for realizing these 

efficiencies
❑ PEFT techniques allow for faster fine-tuning with smaller storage 

requirements

78
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Open Source Models
❑ Llama (Meta) →

https://huggingface.co/docs/transformers/en/model_doc/llama
❑ Mixtral (Mistral) →

https://huggingface.co/docs/transformers/en/model_doc/mixtral
❑ DBRX (Databricks) → https://huggingface.co/databricks/dbrx-base
❑ Grok (xai)→ https://huggingface.co/xai-org/grok-1
❑ Gemma (Google) → https://huggingface.co/google/gemma-2b-it

79

https://huggingface.co/docs/transformers/en/model_doc/llama
https://huggingface.co/docs/transformers/en/model_doc/mixtral
https://huggingface.co/databricks/dbrx-base
https://huggingface.co/xai-org/grok-1
https://huggingface.co/xai-org/grok-1
https://huggingface.co/google/gemma-2b-it
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Repos to Make Models More Efficient
❑ Megablocks (MoE library)→ https://github.com/databricks/megablocks
❑ LLM.int8() → https://huggingface.co/blog/hf-bitsandbytes-integration
❑ AutoAWQ (AWQ integration) → https://github.com/casper-

hansen/AutoAWQ
❑ LoRA → https://huggingface.co/docs/diffusers/en/training/lora
❑ QLoRA (not covered here) → https://huggingface.co/blog/4bit-

transformers-bitsandbytes

80

https://github.com/databricks/megablocks
https://huggingface.co/blog/hf-bitsandbytes-integration
https://github.com/casper-hansen/AutoAWQ
https://github.com/casper-hansen/AutoAWQ
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