CSCI 5541: Natural Language Processing

Lecture XX: LLM Compute efficiency and engineering

James Mooney

With slides borrowed from Song Han (MIT)

What Is Efficiency and Why Does It Matter?

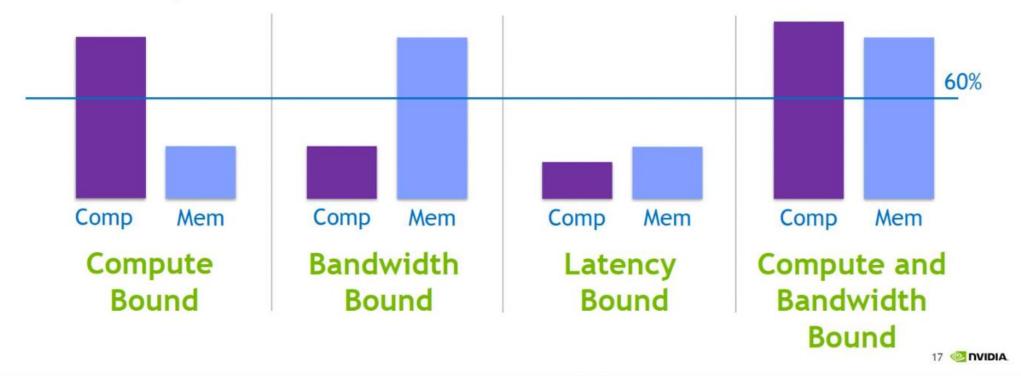
- Efficiency for NLP is concerned with delivering faster, cheaper, smaller, less energy intensive solutions to problems involving natural language
- Faster models means LLM model services (GPT3.5, Claude 2.0, etc.) can meet the demands of many clients more quickly
- Cheaper models reduce costs for LLM model service providers
- Smaller model sizes allow for service providers to use fewer resources and can allow for individuals to deploy LLMs to their own (smaller) devices
- Less energy intensive means lower cost and easier to deploy at the edge, where energy is harder to come by

What Is Efficiency and Why Does It Matter?

- Efficiency for NLP is concerned with delivering faster, cheaper, smaller, less energy intensive solutions to problems involving natural language
- □ **Faster** models means LLM model services (GPT3.5, Claude 2.0, etc.) can meet the demands of many clients more quickly
- □ **Cheaper** models reduce costs for LLM model service providers
- Smaller model sizes allow for service providers to use fewer resources and can allow for individuals to deploy LLMs to their own (smaller) devices
- Less energy intensive means lower cost and easier to deploy at the edge, where energy is harder to come by

Memory Utilization vs Compute Utilization

Four possible combinations:

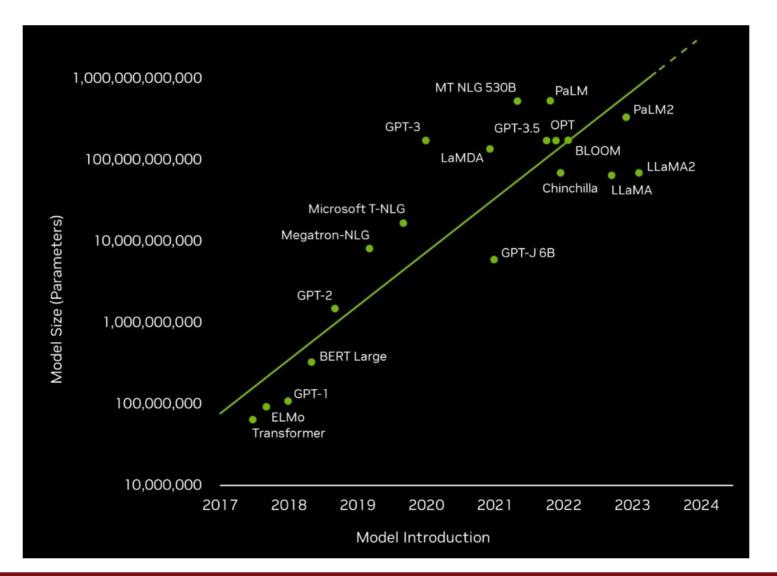


Model Energy Use

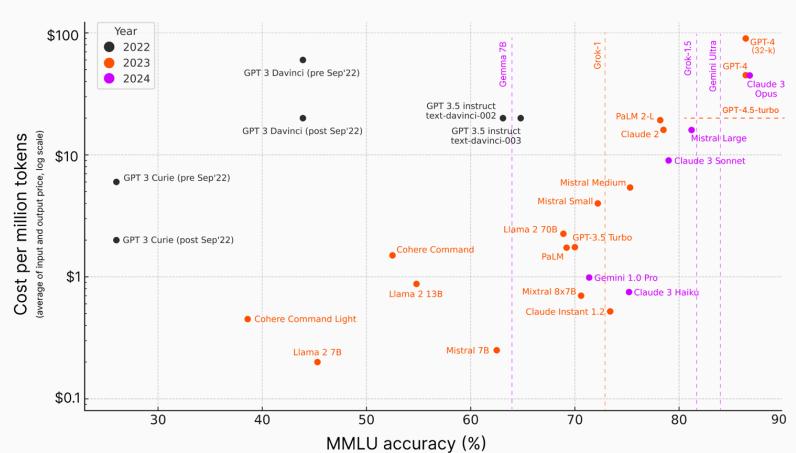
Operation	Energy [pJ]	Relative Energy Cost
32 bit int ADD	0.1	
32 bit float ADD	0.9	
32 bit Register File	1	
32 bit int MULT	3.1	200 ×
32 bit float MULT	3.7	
32 bit SRAM Cache	5	
32 bit DRAM Memory	640	
Rough Energy Cost For Various C	Operations in 45nm 0.9V	1 10 100 100 10

Computing's Energy Problem (and What We Can Do About it) [Horowitz, M., IEEE ISSCC 2014

Model Size

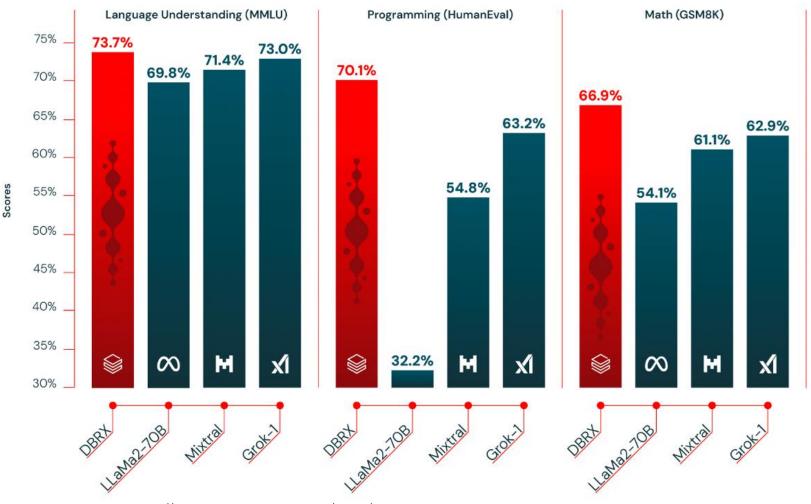


Model Cost



MMLU Performance vs. Cost Over Time (2022-2024)

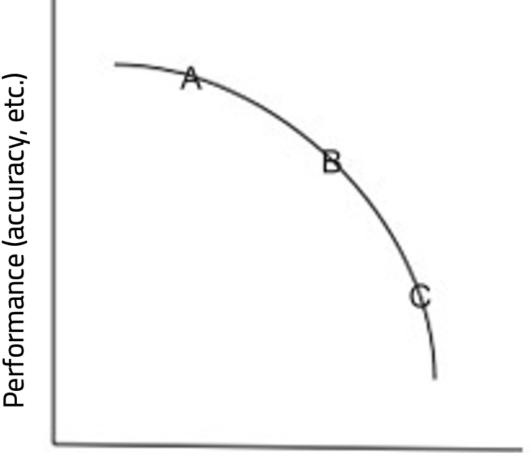
Development Speed



https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm

Efficiency Tradeoff

- More efficient models (smaller, faster) typically come at a cost of some performance of the model itself
- In the other direction, getting more performance from a model architecture likely means it will be larger, and require more computation

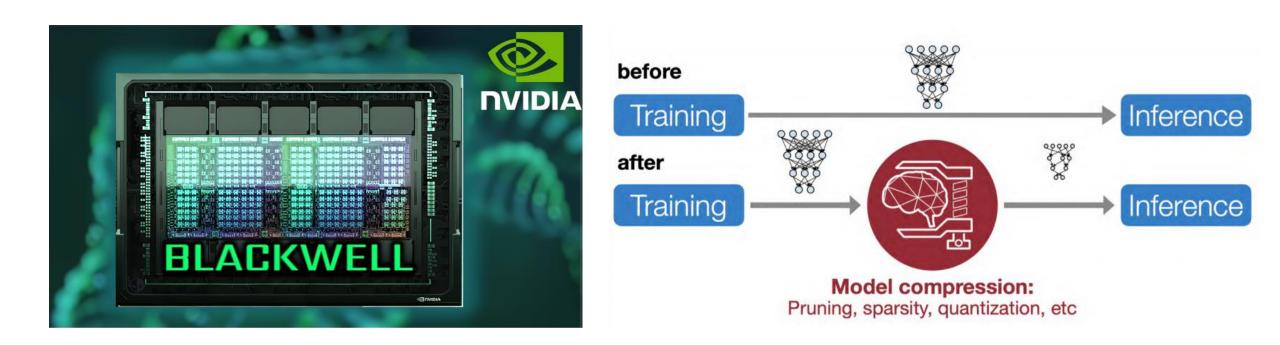


Efficiency (speed, size, etc.)

How to Improve Model Efficiency?

Hardware

Software



Efficient LLMs

Quantization

- o Background
- o K-Means vs. Linear Quantization
- o Quantization Granularity
- Quantization Aware Training (QAT) vs Post-Training Quantization (PTQ)
- LLM Quantization (LLM.int8(), SmoothQuant, AWQ, 1-bit LLMs)
- Sparsity (Mixture of Experts, Deja Vu: Contextual Sparsity)
- Efficient Inference Systems (vLLM, StreamingLLM, MHA/GQA/MQA)
- Parameter Efficient Fine-Tuning (BitFit, Adapter, Prompt Tuning, LoRA)

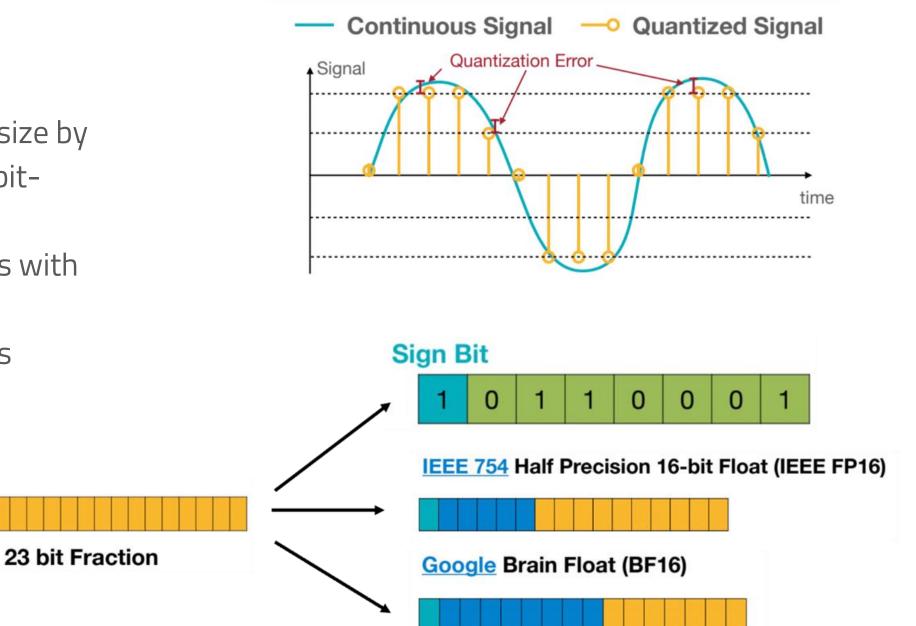
Efficient LLMs

Quantization

- o Background
- o K-Means vs. Linear Quantization
- o Quantization Granularity
- Quantization Aware Training (QAT) vs Post-Training Quantization (PTQ)
- LLM Quantization (LLM.int8(), SmoothQuant, AWQ, 1-bit LLMs)
- Sparsity (Mixture of Experts, Deja Vu: Contextual Sparsity)
- Efficient Inference Systems (vLLM, StreamingLLM, MHA/GQA/MQA)
- Parameter Efficient Fine-Tuning (BitFit, Adapter, Prompt Tuning, LoRA)

Quantization

Reduce model size by replacing high bitwidth representations with low bit-width representations



Sign 8 bit Exponent

Efficient LLMs

Quantization

- o Background
- K-Means vs. Linear Quantization
- o Quantization Granularity
- Quantization Aware Training (QAT) vs Post-Training Quantization (PTQ)
- LLM Quantization (LLM.int8(), SmoothQuant, AWQ, 1-bit LLMs)
- Sparsity (Mixture of Experts, Deja Vu: Contextual Sparsity)
- Efficient Inference Systems (vLLM, StreamingLLM, MHA/GQA/MQA)
- Parameter Efficient Fine-Tuning (BitFit, Adapter, Prompt Tuning, LoRA)

K-Means Quantization vs Linear Quantization

	2.09-0.981.480.090.05-0.14-1.082.12-0.911.920-1.031.8701.531.49	3 0 2 1 3: 2.00 1 1 0 3 2: 1.50 0 3 1 0 1: 0.00 3 1 2 2 0: -1.00	$ \begin{pmatrix} 1 & -2 & 0 & -1 \\ -1 & -1 & -2 & 1 \\ -2 & 1 & -1 & -2 \\ 1 & -1 & 0 & 0 \end{pmatrix}1) \times 1.07 $
		K-Means-based Quantization	Linear Quantization
Storage	Floating-Point Weights	Integer Weights; Floating-Point Codebook	Integer Weights
Computation	Floating-Point Arithmetic	Floating-Point Arithmetic	Integer Arithmetic

K-Means Quantization vs Linear Quantization

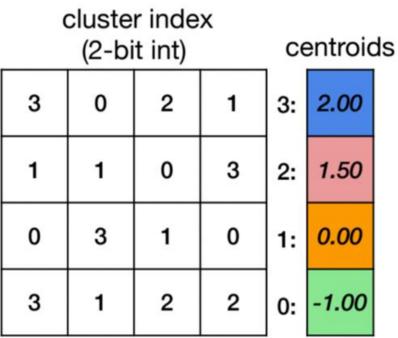
	2.09-0.981.480.090.05-0.14-1.082.12-0.911.920-1.031.8701.531.49	3 0 2 1 3: 2.00 1 1 0 3 2: 1.50 0 3 1 0 1: 0.00 3 1 2 2 0: -1.00	$ \begin{pmatrix} 1 & -2 & 0 & -1 \\ -1 & -1 & -2 & 1 \\ -2 & 1 & -1 & -2 \\ 1 & -1 & 0 & 0 \end{pmatrix}1) \times 1.07 $
		K-Means-based Quantization	Linear Quantization
Storage	Floating-Point Weights	Integer Weights; Floating-Point Codebook	Integer Weights
Computation	Floating-Point Arithmetic	Floating-Point Arithmetic	Integer Arithmetic

reconstructed weights (32-bit float)

2.00	-1.00	1.50	0.00
0.00	0.00	-1.00	2.00
-1.00	2.00	0.00	-1.00
2.00	0.00	1.50	1.50

Original weights

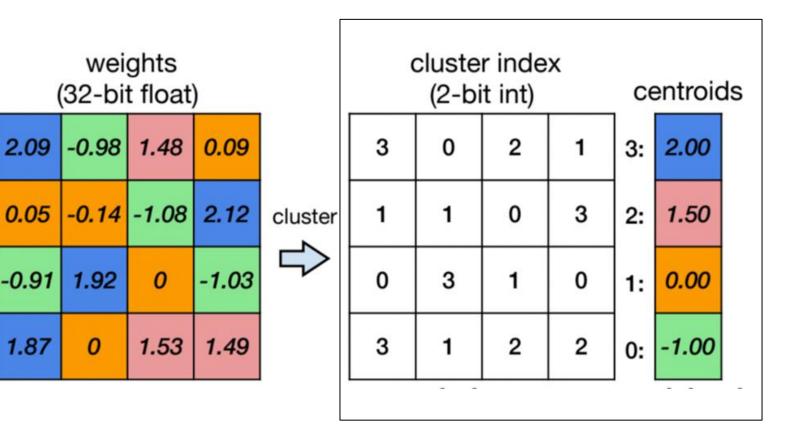
	wei (32-bi	ghts t float)		(r inde t int)	x
2.09	-0.98	1.48	0.09		3	0	2	
0.05	-0.14	-1.08	2.12	cluster	1	1	0	
-0.91	1.92	0	-1.03		0	3	1	
1.87	о	1.53	1.49		3	1	2	
						- <u>-</u>		



reconstructed weights (32-bit float)

2.00	-1.00	1.50	0.00
0.00	0.00	-1.00	2.00
-1.00	2.00	0.00	-1.00
2.00	0.00	1.50	1.50

Stored weights after clustering



reconstructed weights (32-bit float)

2.00	-1.00	1.50	0.00
0.00	0.00	-1.00	2.00
-1.00	2.00	0.00	-1.00
2.00	0.00	1.50	1.50

Retrieved weights to be used at inference time



	reconstructed weights (32-bit float)			
	52-01	l noai)	
2.00	-1.00	1.50	0.00	
0.00	0.00	-1.00	2.00	
-1.00	2.00	0.00	1.00	
-1.00	2.00	0.00	-1.00	
2.00	0.00	1.50	1.50	
2.00	0.00			

centroids

2.00

1.50

0.00

0: -1.00

3:

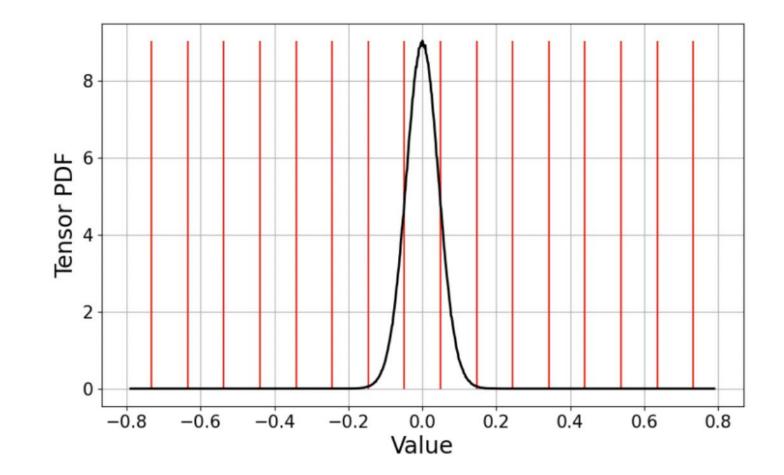
2:

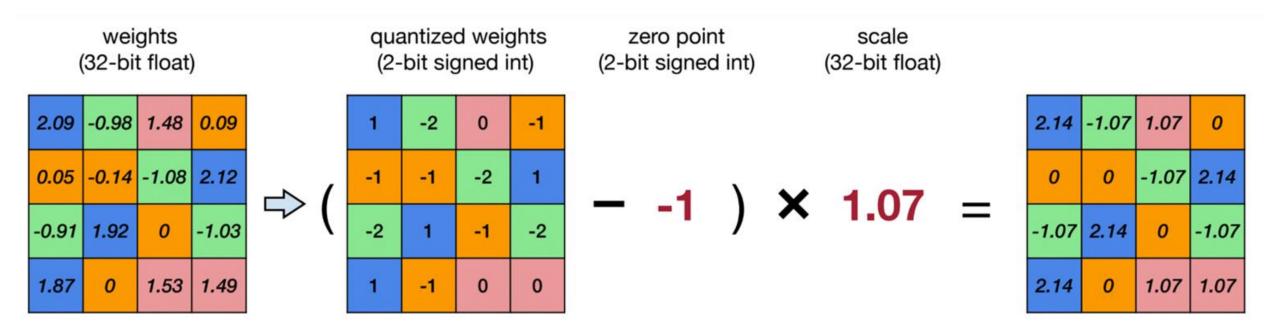
1:

K-Means Quantization vs Linear Quantization

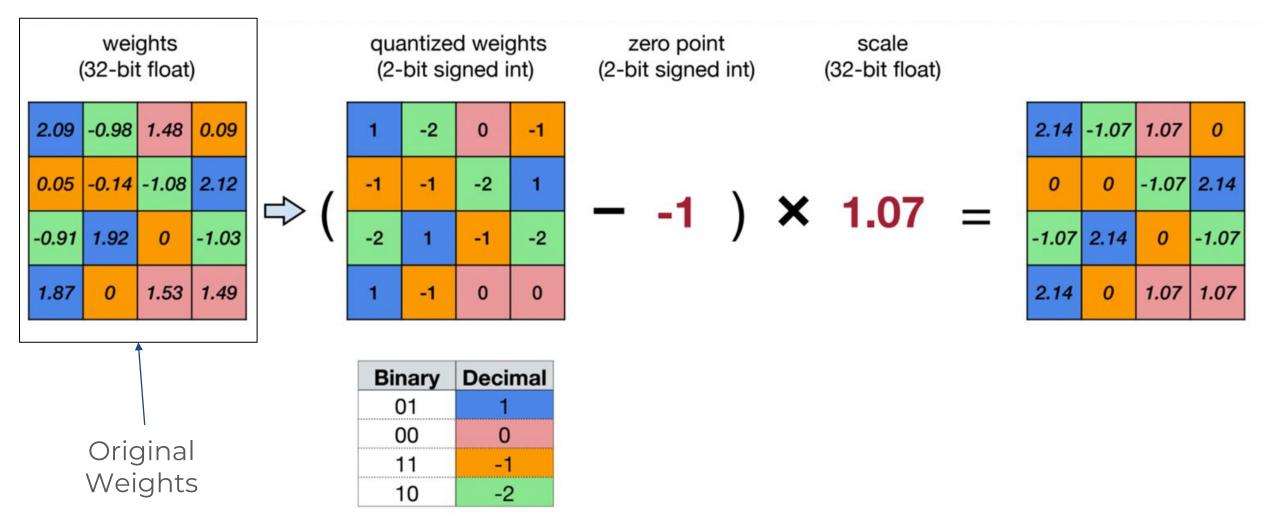
	2.09-0.981.480.090.05-0.14-1.082.12-0.911.920-1.031.8701.531.49	3 0 2 1 3: 2.00 1 1 0 3 2: 1.50 0 3 1 0 1: 0.00 3 1 2 2 0: -1.00	$ \begin{pmatrix} 1 & -2 & 0 & -1 \\ -1 & -1 & -2 & 1 \\ -2 & 1 & -1 & -2 \\ 1 & -1 & 0 & 0 \end{pmatrix}1) \times 1.07 $
		K-Means-based Quantization	Linear Quantization
Storage	Floating-Point Weights	Integer Weights; Floating-Point Codebook	Integer Weights
Computation	Floating-Point Arithmetic	Floating-Point Arithmetic	Integer Arithmetic

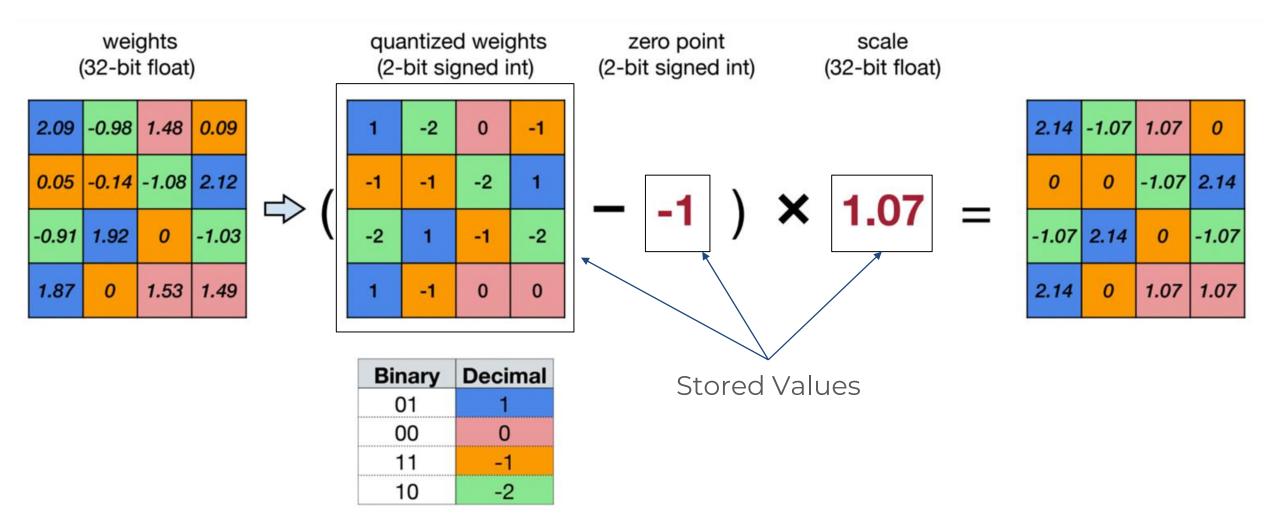
- Apply linear function on weights and hidden state activations from floating point values (r) to integer values (q)
- Original weights (black), Quantized bins (red)

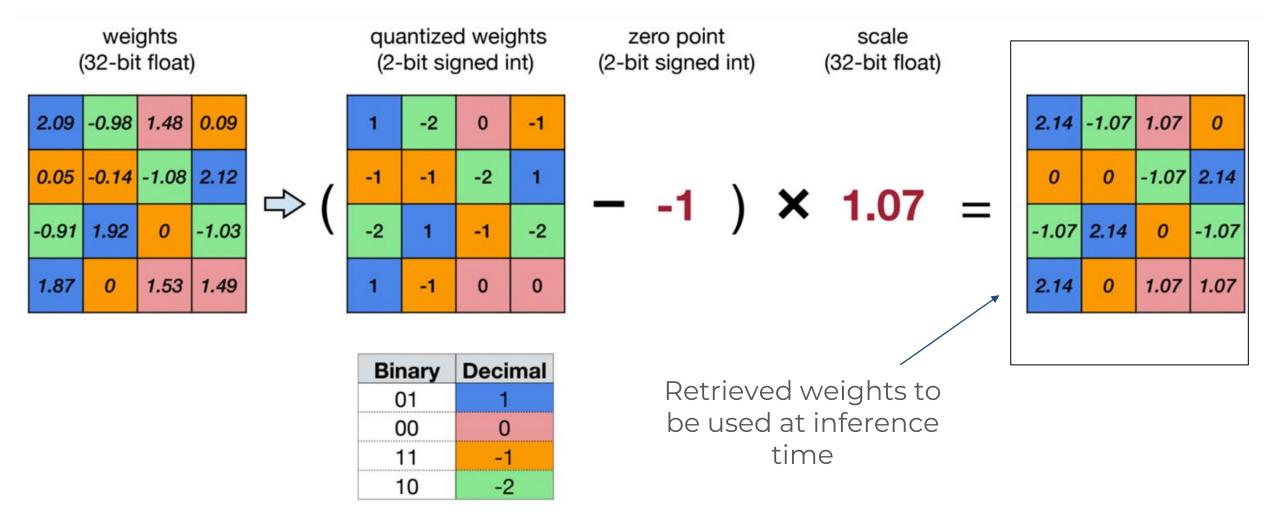




Binary	Decimal
01	1
00	0
11	-1
10	-2







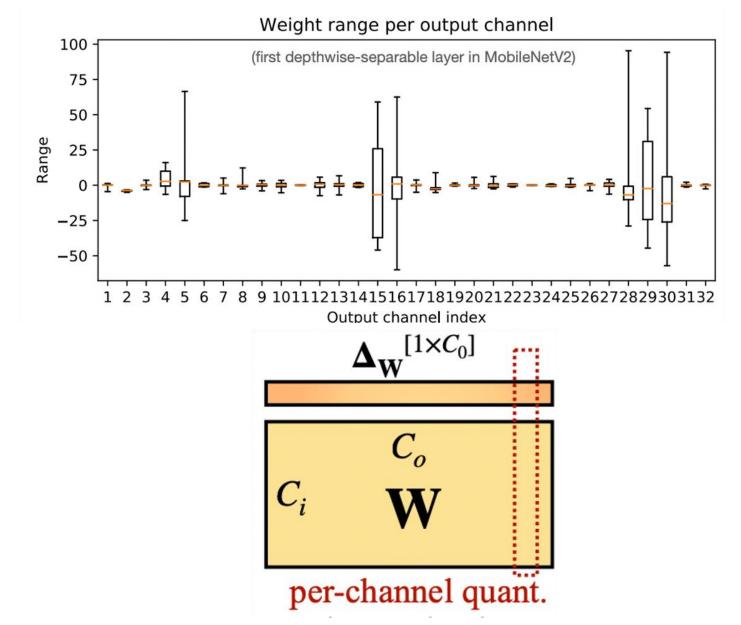
Efficient LLMs

Quantization

- o Background
- o K-Means vs. Linear Quantization
- Quantization Granularity
- Quantization Aware Training (QAT) vs Post-Training Quantization (PTQ)
- LLM Quantization (LLM.int8(), SmoothQuant, AWQ, 1-bit LLMs)
- Sparsity (Mixture of Experts, Deja Vu: Contextual Sparsity)
- Efficient Inference Systems (vLLM, StreamingLLM, MHA/GQA/MQA)
- Parameter Efficient Fine-Tuning (BitFit, Adapter, Prompt Tuning, LoRA)

Weight Granularity

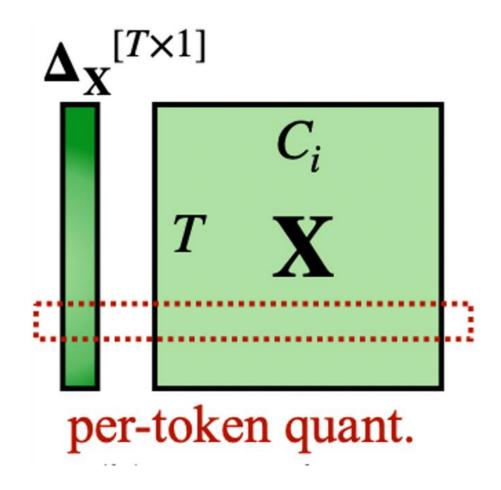
- Weight matrices will often have different variances along each output channel
- High variance in weights means that applying linear quantization will result in large performance degradation
- To fix this, we can perform
 linear quantization along each
 channel of the weight tensor
 separately



SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models[Xiao et. al., ICML 2023]

Activation Granularity

- Activations can have a similar
 problem whereby the variance
 by channel can be quite
 different
- The variance by token can also differ dramatically
- When applying quantization, we should split up channels, tokens to take this into account



SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models[Xiao et. al., ICML 2023]

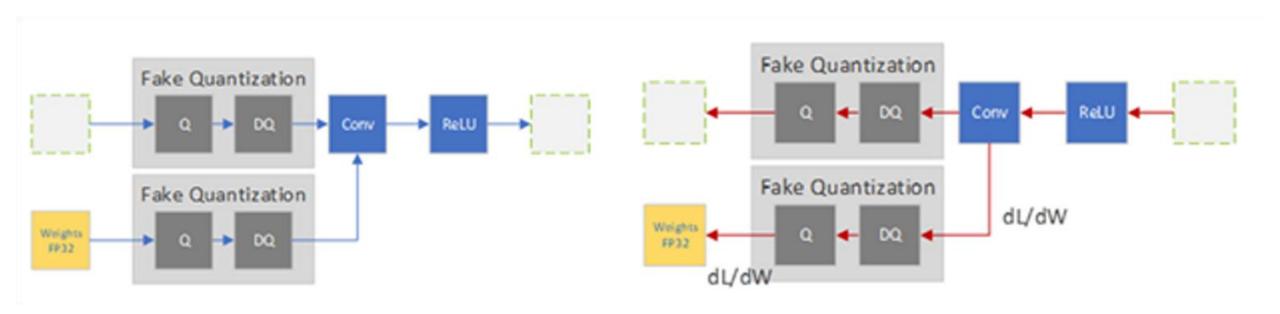
Efficient LLMs

Quantization

- o Background
- o K-Means vs. Linear Quantization
- o Quantization Granularity
- Quantization Aware Training (QAT) vs Post-Training Quantization (PTQ)
- LLM Quantization (LLM.int8(), SmoothQuant, AWQ, 1-bit LLMs)
- Sparsity (Mixture of Experts, Deja Vu: Contextual Sparsity)
- Efficient Inference Systems (vLLM, StreamingLLM, MHA/GQA/MQA)
- Parameter Efficient Fine-Tuning (BitFit, Adapter, Prompt Tuning, LoRA)

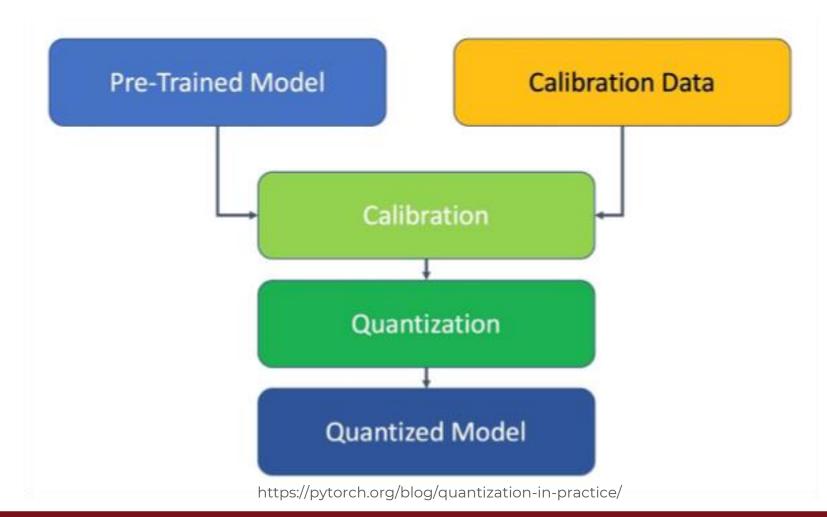
Quantization Aware Training (QAT)

Quantize while training



Post Training Quantization (PTQ)

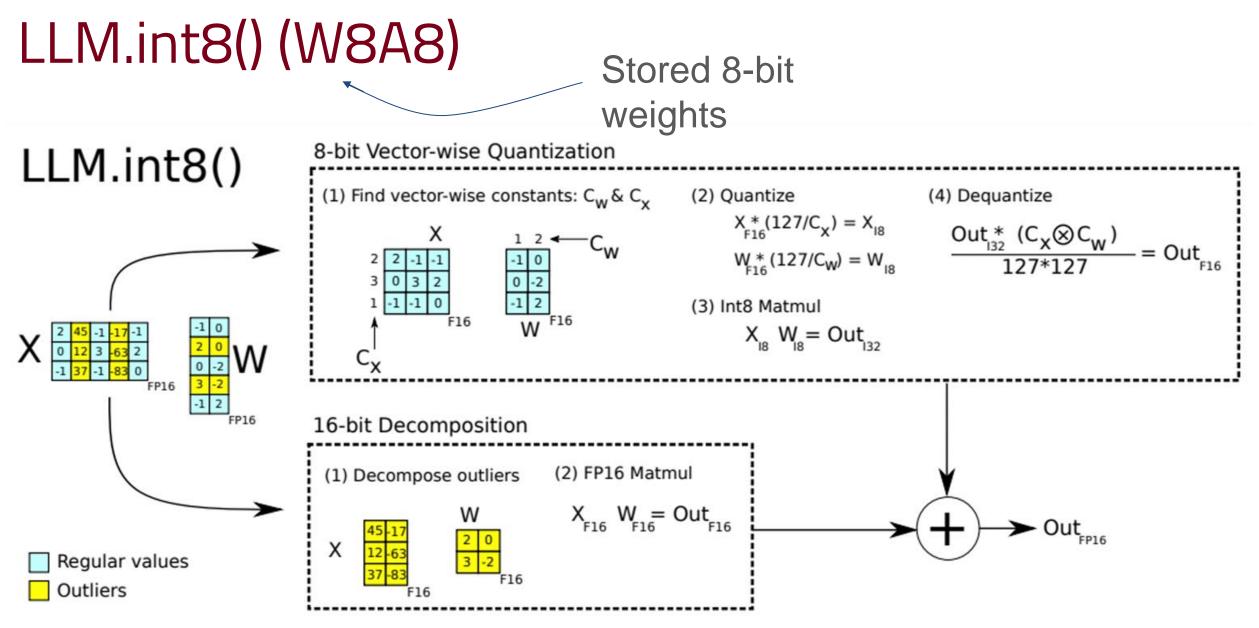
Quantize after training



Efficient LLMs

Quantization

- o Background
- o K-Means vs. Linear Quantization
- o Quantization Granularity
- Quantization Aware Training (QAT) vs Post-Training Quantization (PTQ)
- LLM Quantization (LLM.int8(), SmoothQuant, AWQ, 1-bit LLMs)
- Sparsity (Mixture of Experts, Deja Vu: Contextual Sparsity)
- Efficient Inference Systems (vLLM, StreamingLLM, MHA/GQA/MQA)
- Parameter Efficient Fine-Tuning (BitFit, Adapter, Prompt Tuning, LoRA)

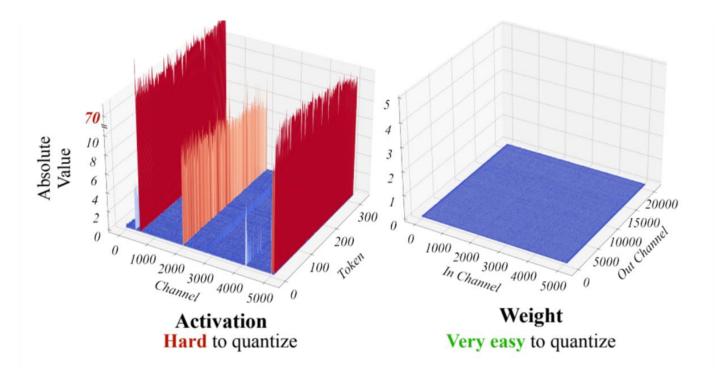


LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale [Dettmers et. al., NeurIPS 2022]

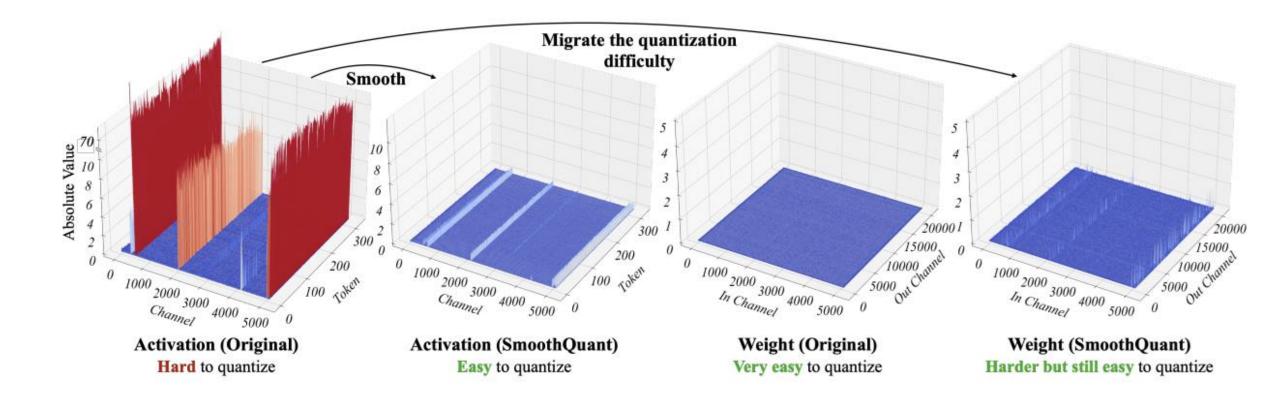
CSCI 5541 NLP

SmoothQuant (W8A8)

Observation: High variance channels are fixed in activations in LLM FFN layers-weights have relatively little difference in variance

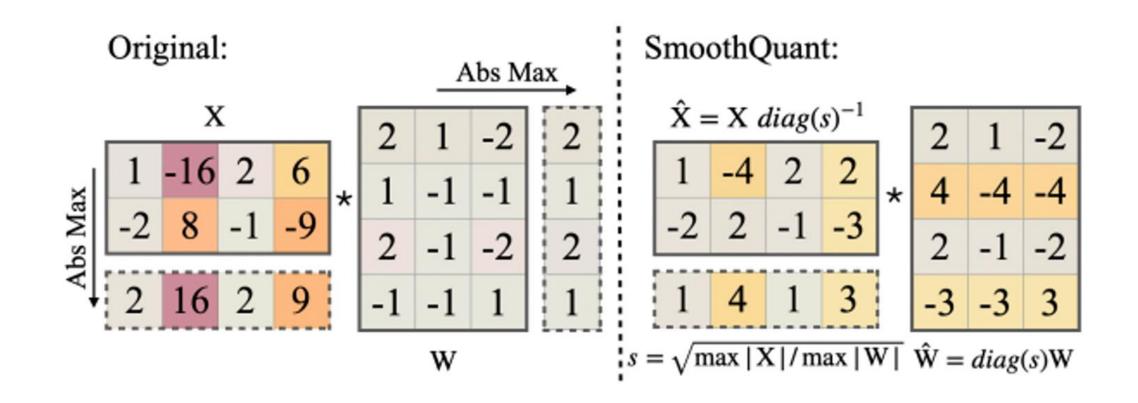


SmoothQuant (W8A8)

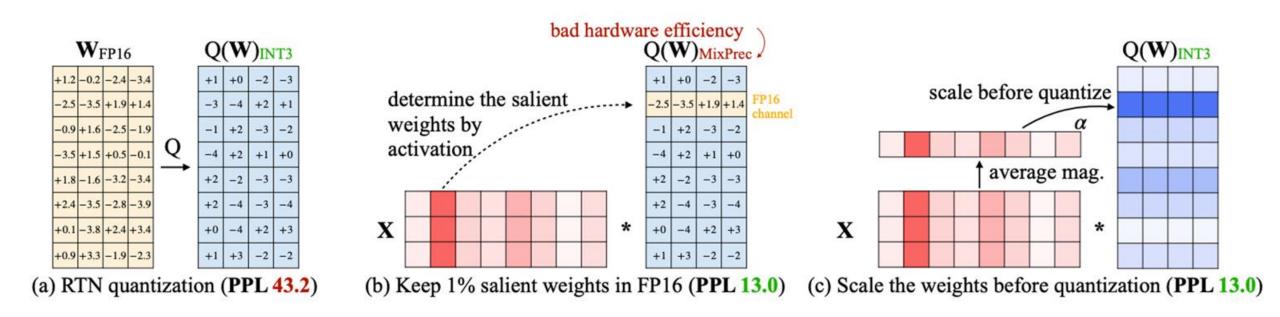


SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models[Xiao et. al., ICML 2023]

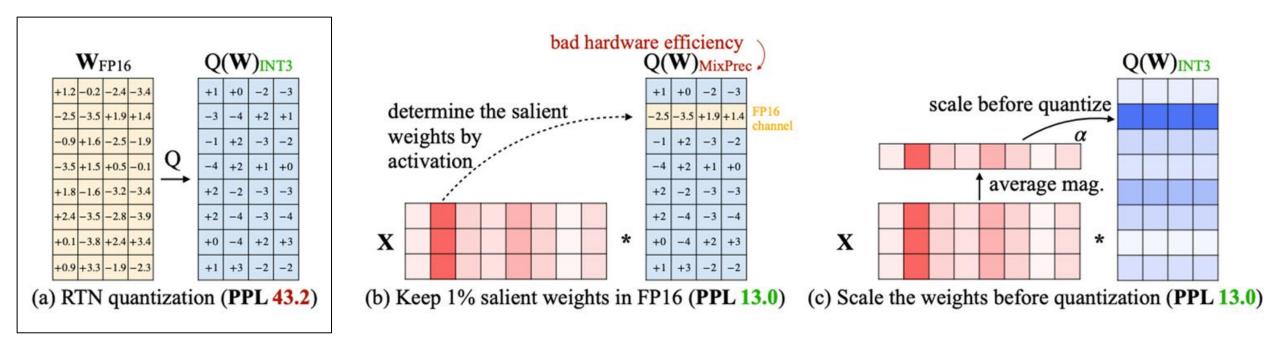
SmoothQuant (W8A8)



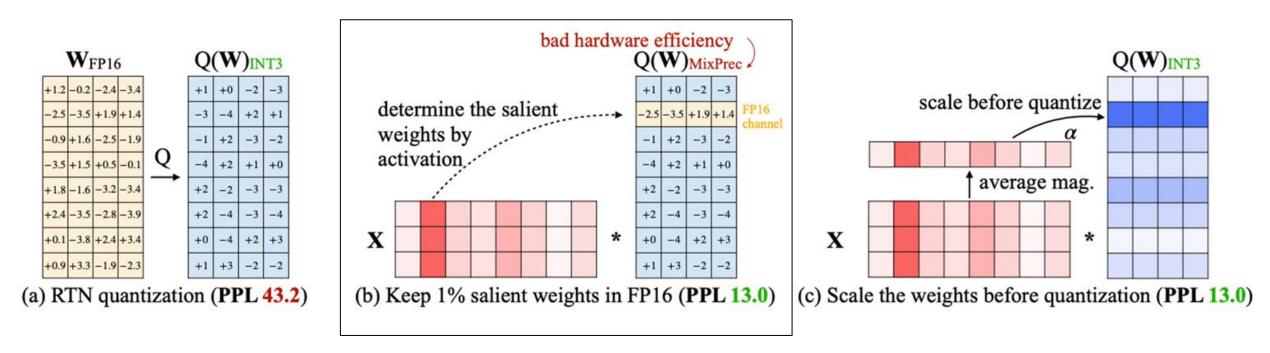
SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models[Xiao et. al., ICML 2023]



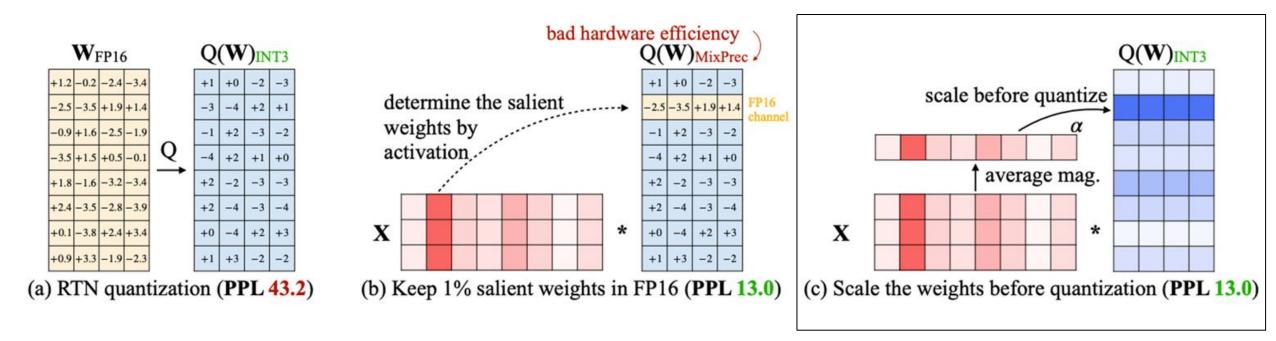
Normal quantization on LLMs performs poorly due to outliers in the model's hidden state



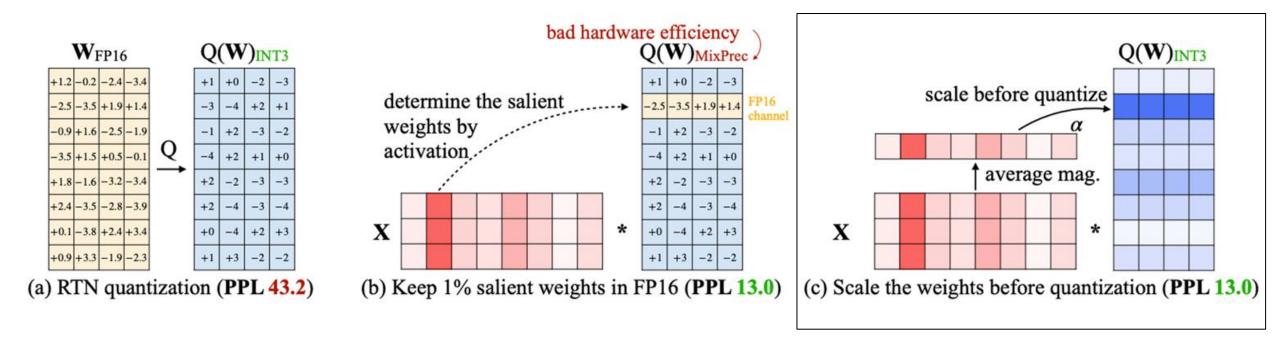
LLM.int8() can resolve these issues, but mixed precision matrix multiplication is hardware inefficient



As in SmoothQuant, we can resolve this issue by shifting the difficulty to the weights using a scaling factor.

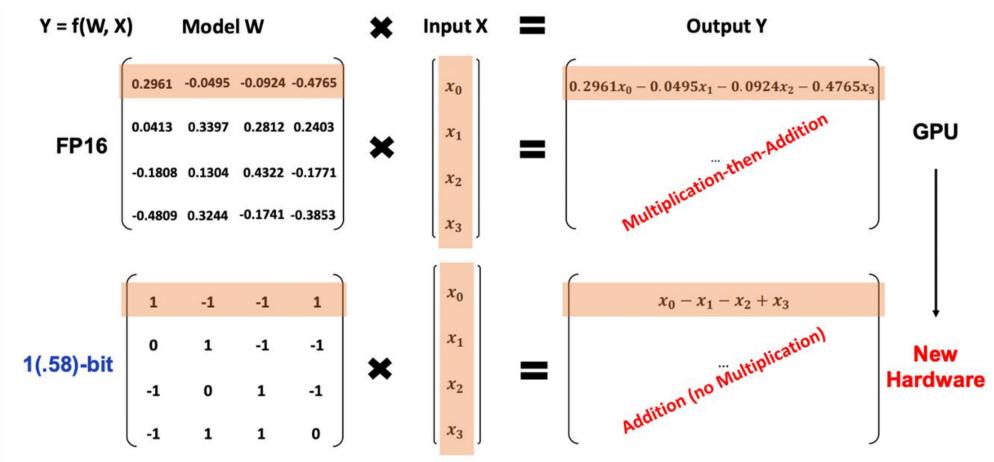


Where Smoothquant quantizes both activations and weights, AWQ only quantizes the weights



Era of 1-bit LLMs (W1.58A8)

Weight-only QAT algorithm that uses only weights in {-1, 0, 1}



The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits [Ma et al., 2024]

Era of 1-bit LLMs (W1.58A8)

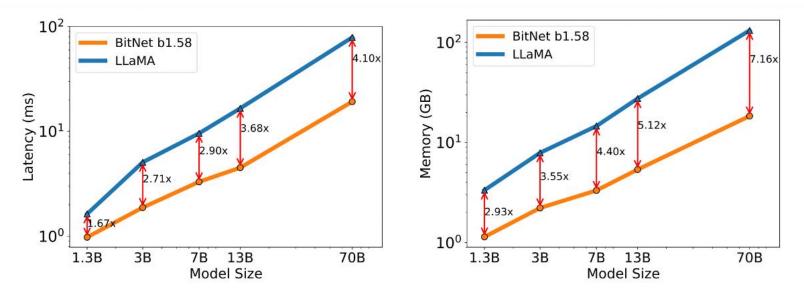


Figure 2: Decoding latency (Left) and memory consumption (Right) of BitNet b1.58 varying the model size.

Models	Size	Max Batch Size	Throughput (tokens/s)		
LLaMA LLM	70B	16 (1.0x)	333 (1.0x)		
BitNet b1.58	70B	176 (11.0x)	2977 (8.9x)		

Table 3: Comparison of the throughput between BitNet b1.58 70B and LLaMA LLM 70B.

The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits [Ma et al., 2024]

Efficient LLMs

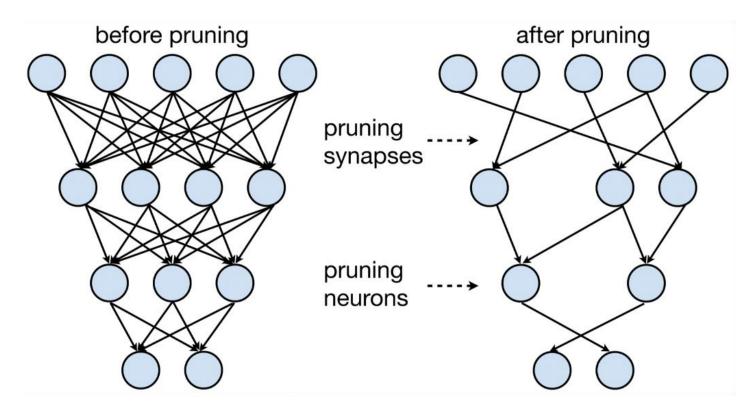
Quantization

- o Background
- o K-Means vs. Linear Quantization
- o Quantization Granularity
- Quantization Aware Training (QAT) vs Post-Training Quantization (PTQ)
- LLM Quantization (LLM.int8(), SmoothQuant, AWQ, 1-bit LLMs)

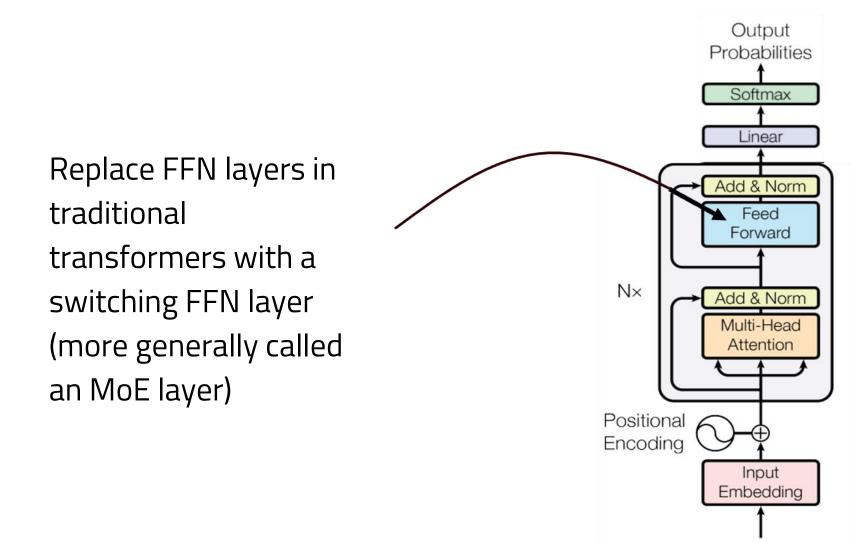
Sparsity (Mixture of Experts, Deja Vu: Contextual Sparsity)

- Efficient Inference Systems (vLLM, StreamingLLM, MHA/GQA/MQA)
- Parameter Efficient Fine-Tuning (BitFit, Adapter, Prompt Tuning, LoRA)

Even though our model may have many parameters, we can get speedups by only using a much smaller number of those parameters for a given instance

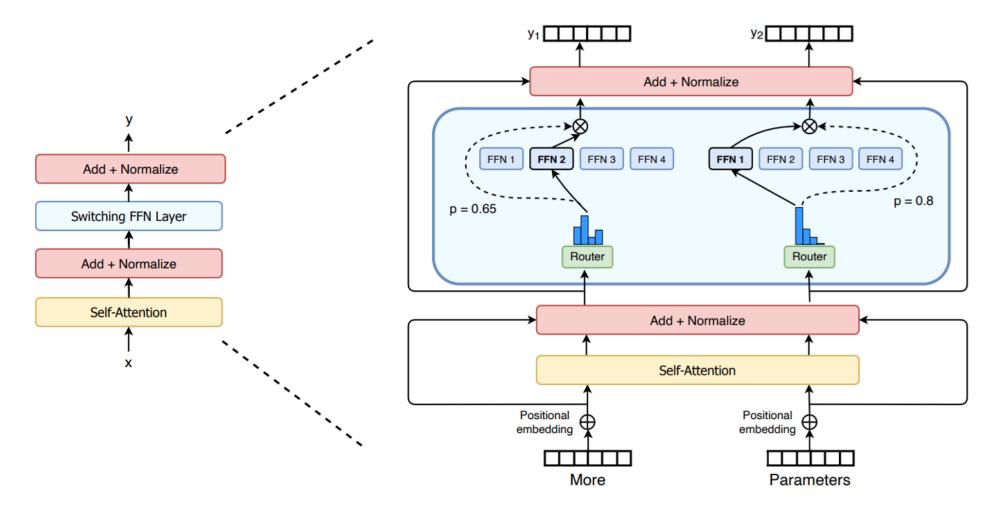


Mixture of Experts (MoE)

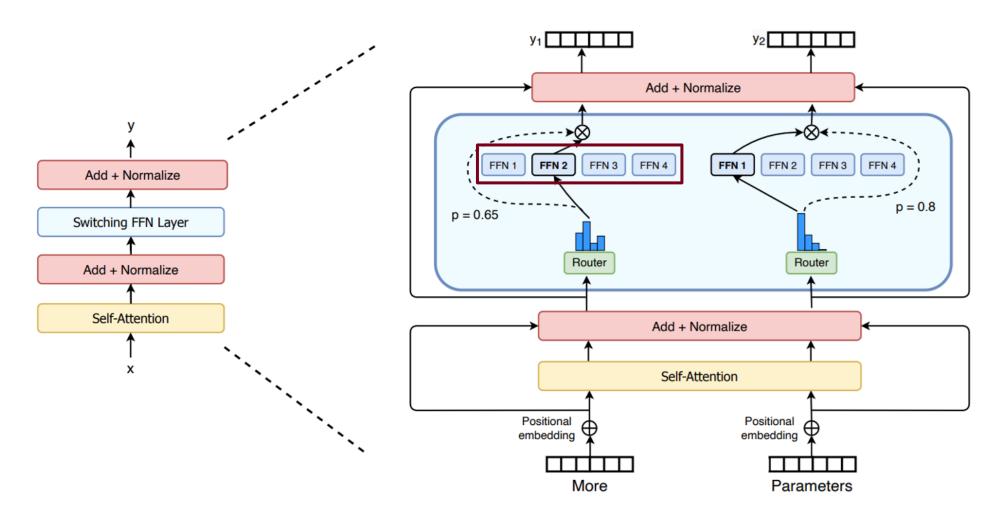


Inputs

Mixture of Experts (MoE)

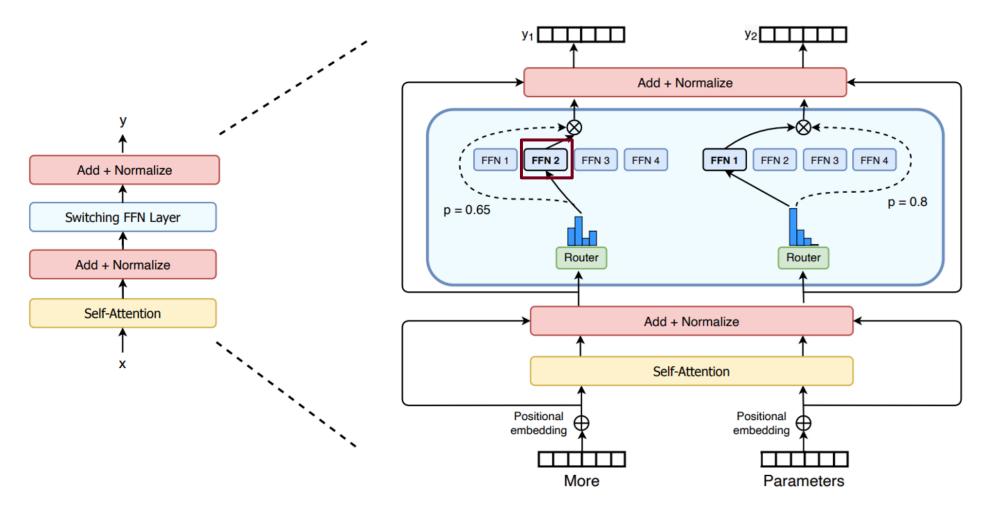


Mixture of Experts (MoE) Four FFN layers



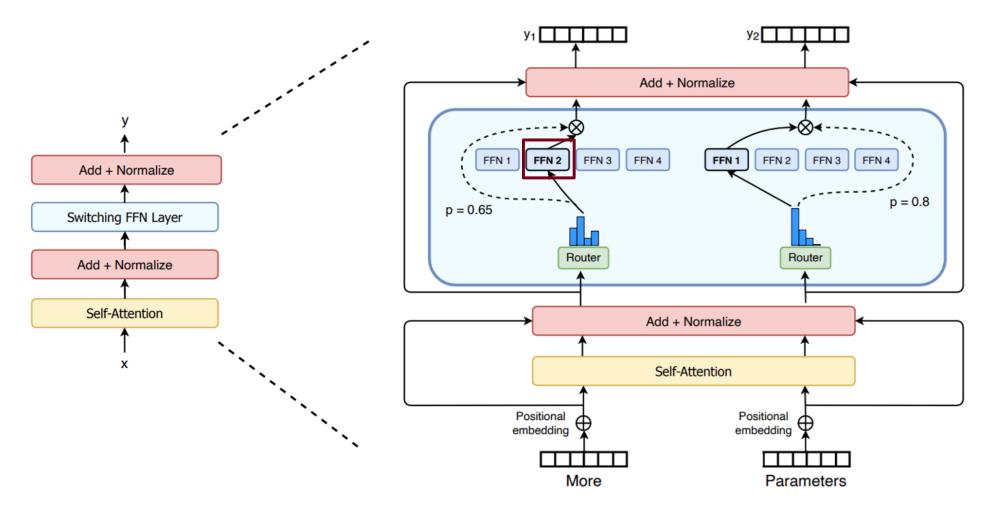
Mixture of Experts (MoE)

Only one is used per token



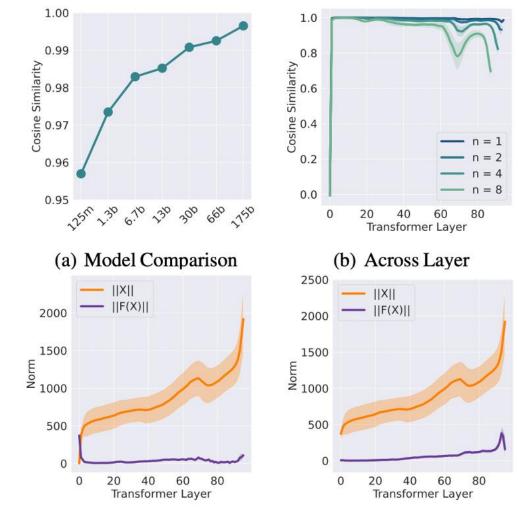
Mixture of Experts (MoE)

Only 25% of the FFN parameters are used for a single token



Deja Vu: Contextual Sparsity

Observation 1: Model activations change very little between consecutive layers of a network



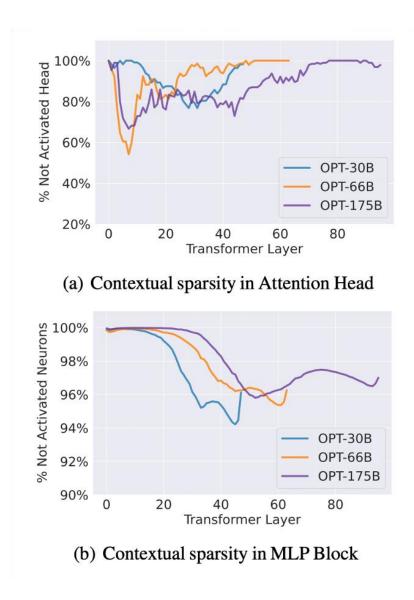
(c) Residual Around Attention

Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time [Liu et al., 2023]

(d) Residual Around MLP

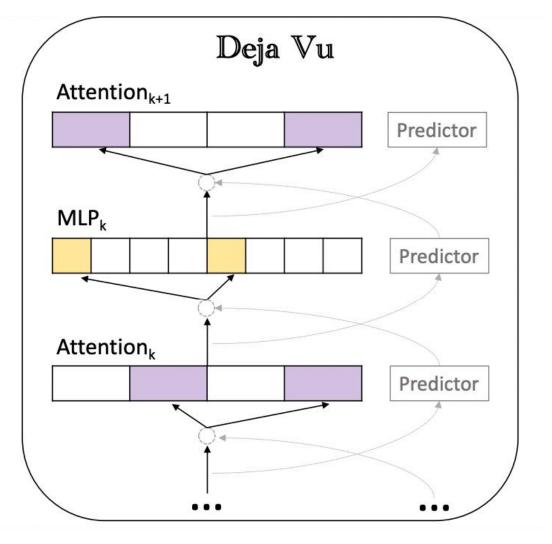
Deja Vu: Contextual Sparsity

Observation 2: Most attention heads and most neurons are not used



Deja Vu: Contextual Sparsity

Sparsification: Use predictors in each layer to determine which neurons to activate and which attention heads to use – ignore all unpredicted heads/neurons



Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time [Liu et al., 2023]

Efficient LLMs

Quantization

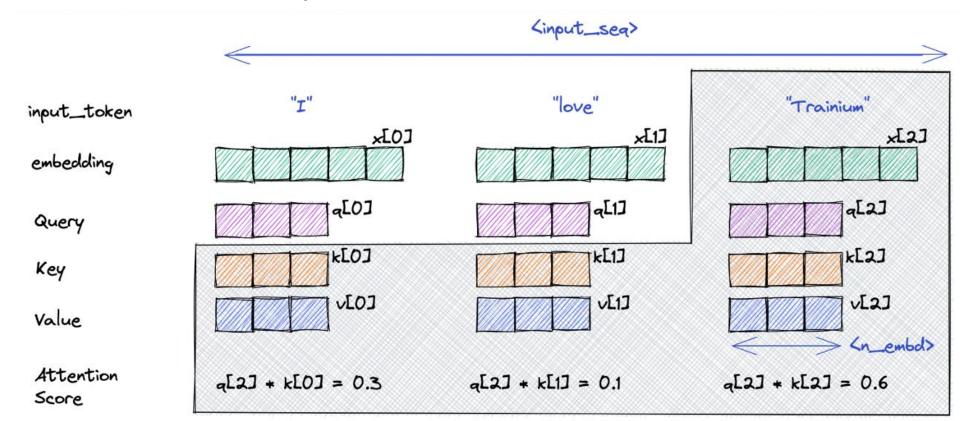
- o Background
- o K-Means vs. Linear Quantization
- o Quantization Granularity
- Quantization Aware Training (QAT) vs Post-Training Quantization (PTQ)
- LLM Quantization (LLM.int8(), SmoothQuant, AWQ, 1-bit LLMs)
- Sparsity (Mixture of Experts, Deja Vu: Contextual Sparsity)

Efficient Inference Systems (vLLM, StreamingLLM, MHA/GQA/MQA)

Parameter Efficient Fine-Tuning (BitFit, Adapter, Prompt Tuning, LoRA)

The KV-Cache

The transformer needs to have access to the keys and values for all previous tokens in all layers for all heads when



https://awsdocs-neuron.readthedocs-hosted.com/en/latest/general/appnotes/transformers-neuronx/generative-IIm-inference-with-neuron.html

The KV-Cache

In total, we must store

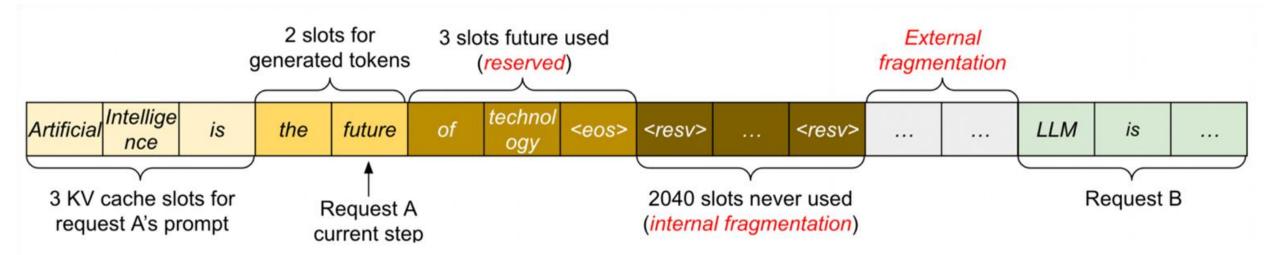
Batch_size * seq_len * num_heads * num_layers * emb_dim * 2

separate values in the kv cache

vLLM

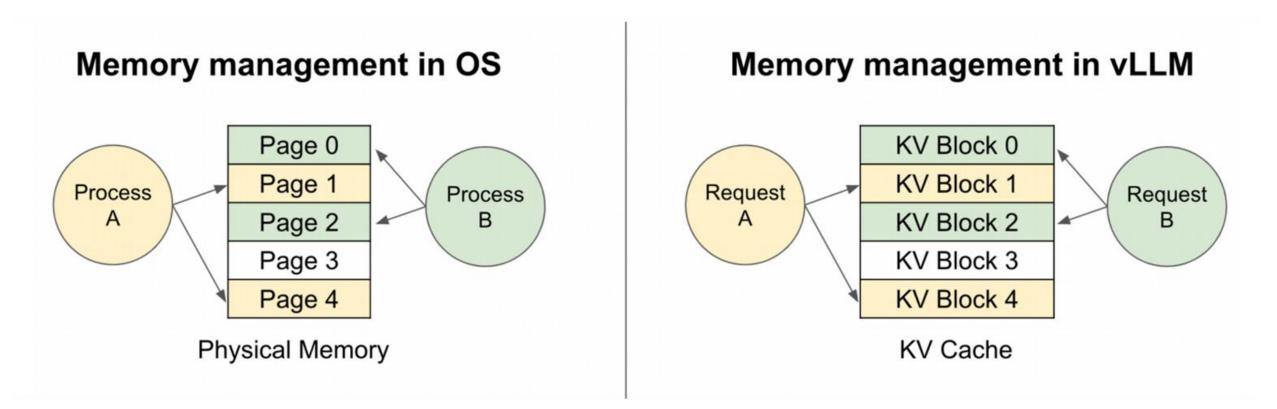
How does a large LLM service (large ChatGPT) handle multiple incoming requests with respect to the KV-cache?

-Originally, most systems just assign fixed sized blocks of memory to each incoming request. How to improve?



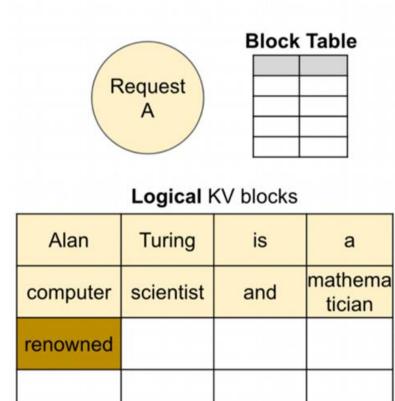
Efficient Memory Management for Large Language Model Serving with PagedAttention (Kwon et al., 2023)

Let's adopt a similar approach to that found in virtual memory!



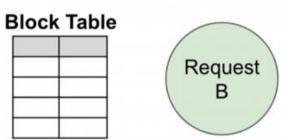
Efficient Memory Management for Large Language Model Serving with PagedAttention (Kwon et al., 2023)

vLLM



Flysical KV DIOCKS										
computer	scientist	and	mathem atician							
Artificial	Intellige nce	is	the							
renowned										
future	of	technolog y								
Alan	Turing	is	а							

Physical KV blocks

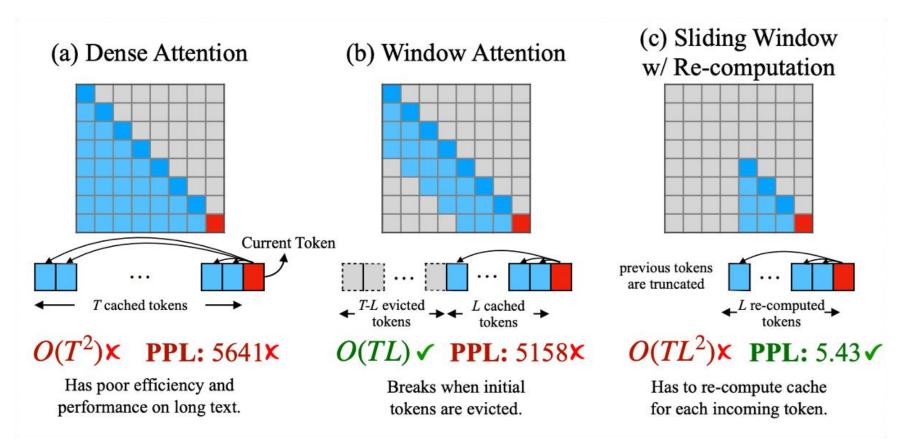


Logical KV blocks

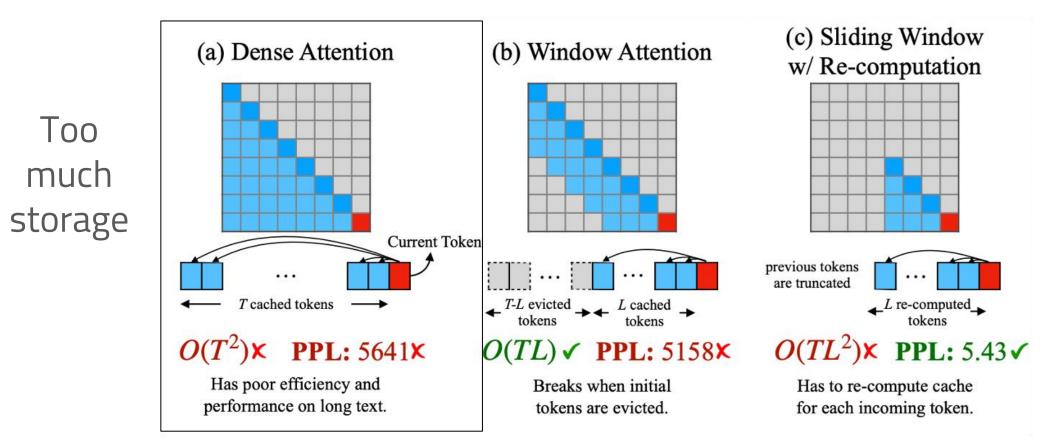
Artificial	Intelligence	is	the
future	of	technology	

Efficient Memory Management for Large Language Model Serving with PagedAttention (Kwon et al., 2023)

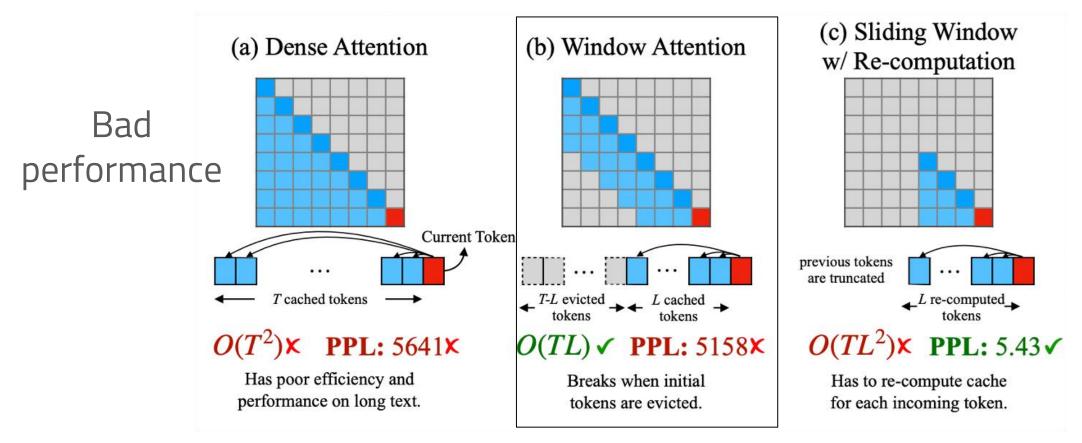
How can we extend models to have much longer context length at minimal cost?



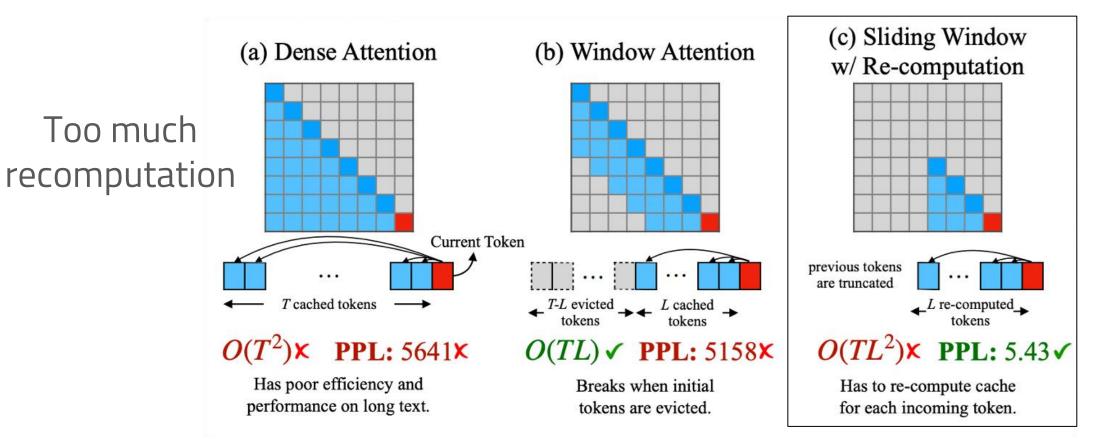
How can we extend models to have much longer context length at minimal cost?



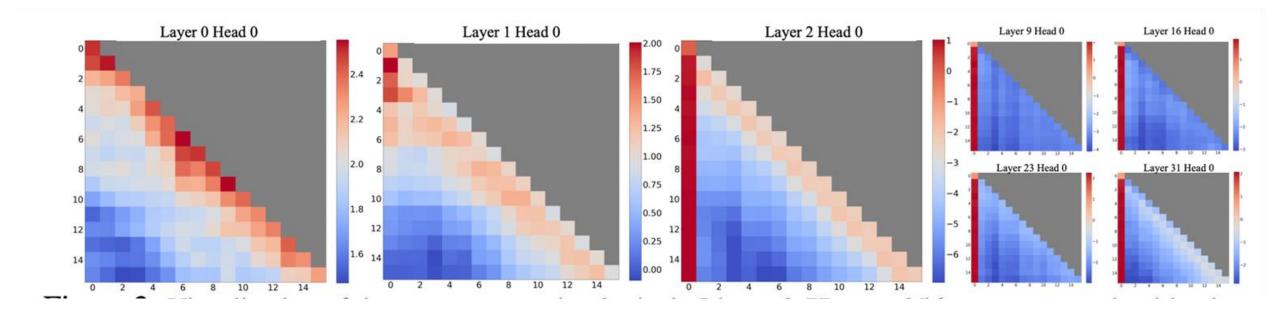
How can we extend models to have much longer context length at minimal cost?

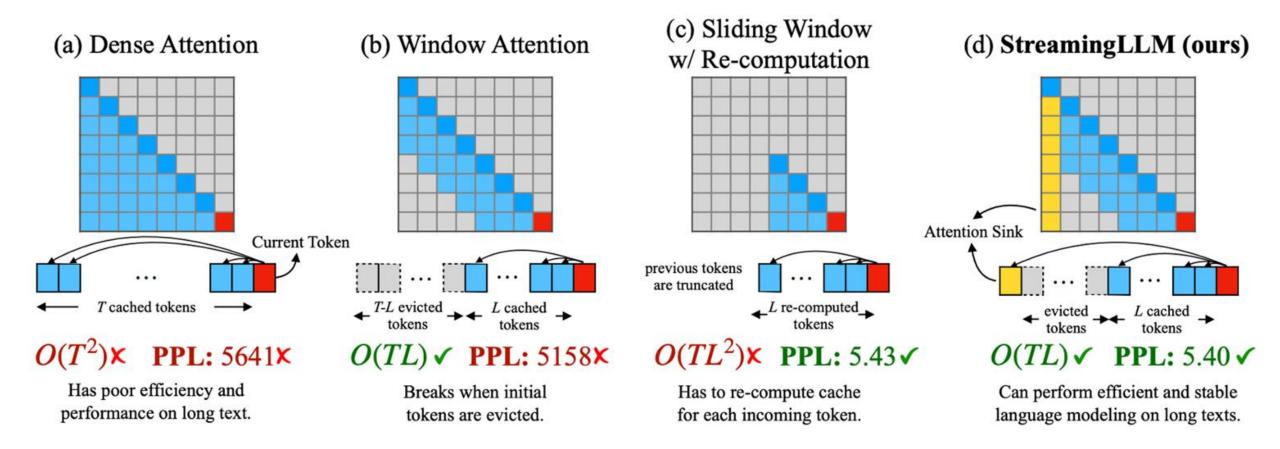


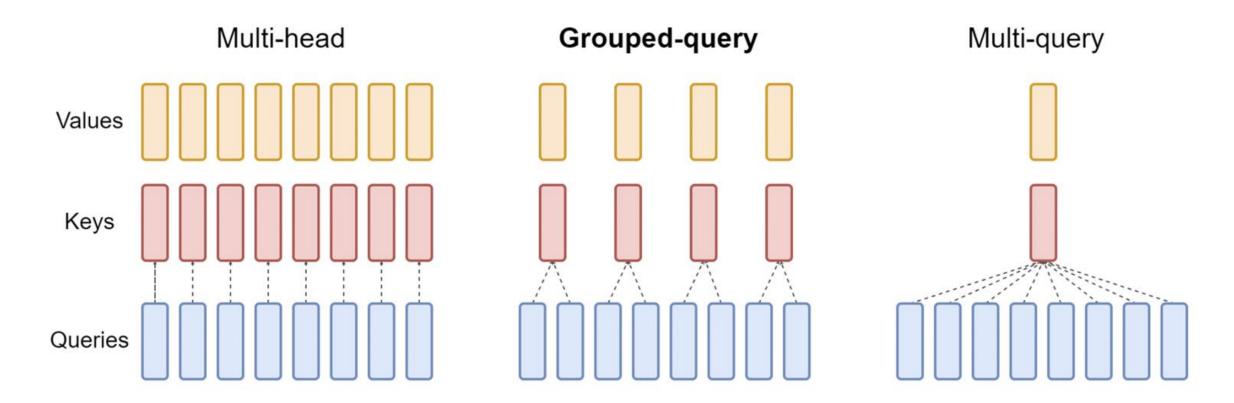
How can we extend models to have much longer context length at minimal cost?



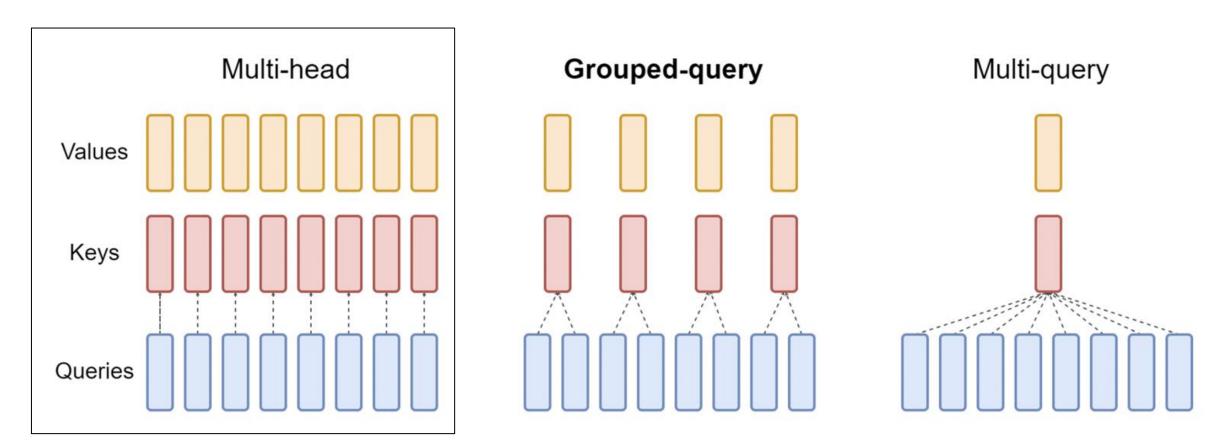
Observation: Most attention is either placed on the first token or to tokens that the model has recently seen.



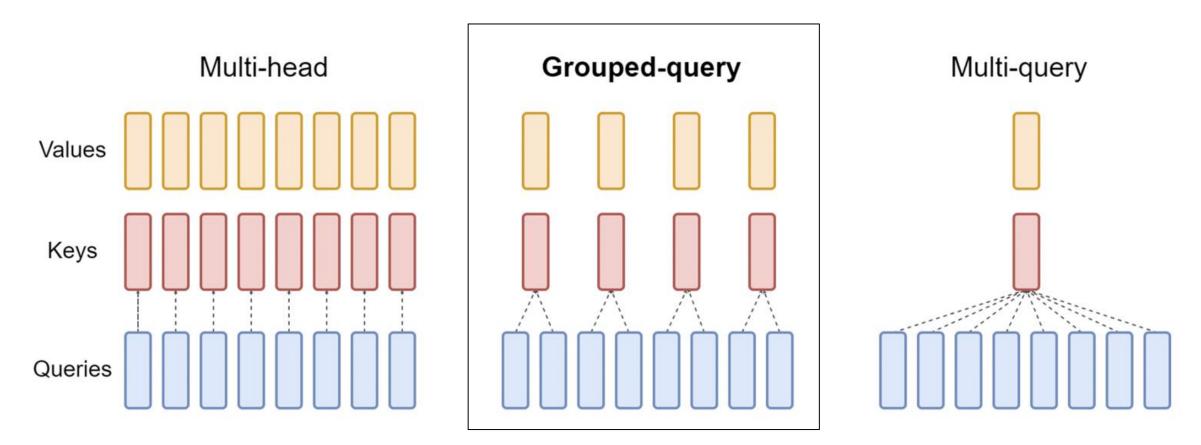




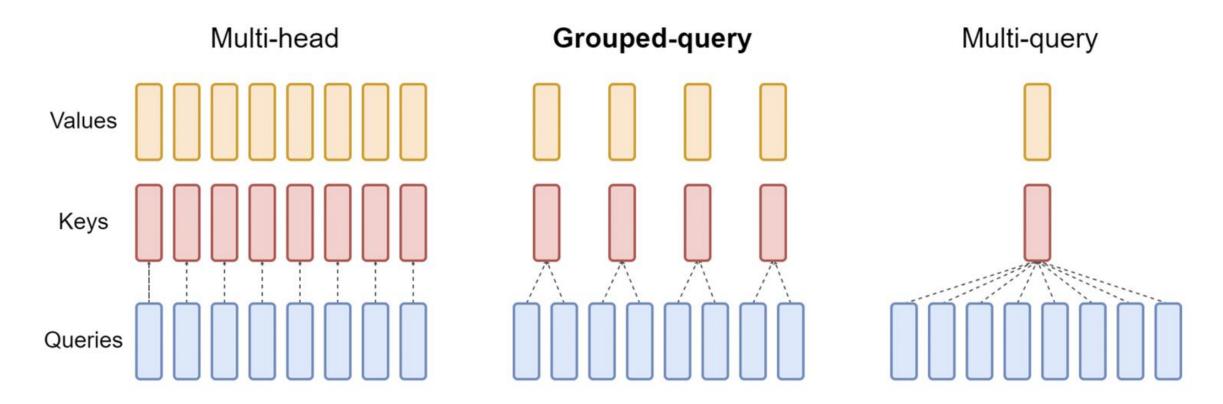
Each attention head calculates separate keys and values for each token



Attention heads are split into groups. Each group has one key/value per token.



Attention heads share the same keys and values for each token

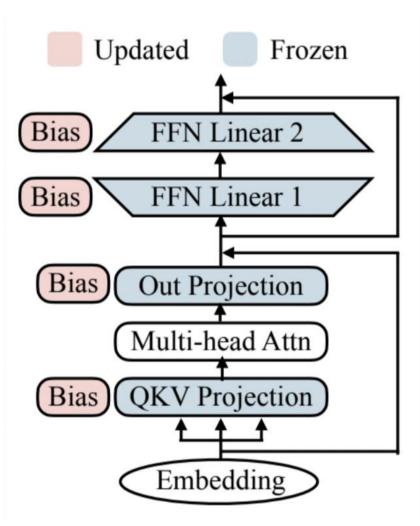


Efficient LLMs

Quantization

- o Background
- o K-Means vs. Linear Quantization
- o Quantization Granularity
- Quantization Aware Training (QAT) vs Post-Training Quantization (PTQ)
- LLM Quantization (LLM.int8(), SmoothQuant, AWQ, 1-bit LLMs)
- Sparsity (Mixture of Experts, Deja Vu: Contextual Sparsity)
- Efficient Inference Systems (vLLM, StreamingLLM, MHA/GQA/MQA)
- Parameter Efficient Fine-Tuning (BitFit, Adapter, Prompt Tuning, LoRA)

BitFit



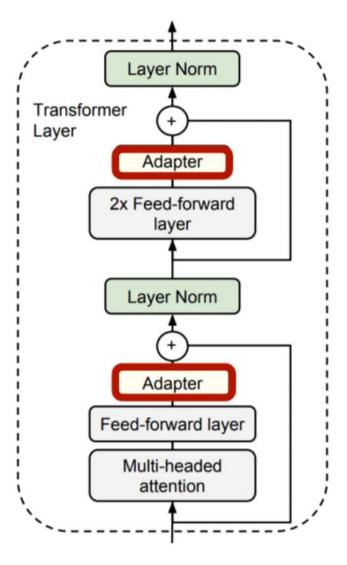
Update only the bias parameters

		%Param	QNLI	SST-2	MNLIm	MNLImm	CoLA	MRPC	STS-B	RTE	QQP	Avg.
	Train size		105k	67k	393k	393k	8.5k	3.7k	7k	2.5k	364k	-
(V)	Full-FT [†]	100%	93.5	94.1	86.5	87.1	62.8	91.9	89.8	71.8	87.6	84.8
(V)	Full-FT	100%	$91.7 {\pm} 0.1$	$93.4{\pm}0.2$	$85.5 {\pm} 0.4$	85.7±0.4	62.2 ± 1.2	90.7±0.3	90.0 ± 0.4	71.9 ± 1.3	87.5±0.4	84.1
(V)	Diff-Prune [†]	0.5%	93.4	94.2	86.4	86.9	63.5	91.3	89.5	71.5	86.6	84.6
(V)	BitFit	0.08%	91.4±2.4	93.2±0.4	$84.4 {\pm} 0.2$	$84.8{\pm}0.1$	63.6±0.7	$91.7{\pm}0.5$	90.3±0.1	73.2±3.7	85.4±0.1	84.2
(T)	Full-FT [‡]	100%	91.1	94.9	86.7	85.9	60.5	89.3	87.6	70.1	72.1	81.8
(T)	Full-FT [†]	100%	93.4	94.1	86.7	86.0	59.6	88.9	86.6	71.2	71.7	81.5
(T)	Adapters [‡]	3.6%	90.7	94.0	84.9	85.1	59.5	89.5	86.9	71.5	71.8	81.1
(T)	Diff-Prune [†]	0.5%	93.3	94.1	86.4	86.0	61.1	89.7	86.0	70.6	71.1	81.5
(T)	BitFit	0.08%	92.0	94.2	84.5	84.8	59.7	88.9	85.5	72.0	70.5	80.9

Table 1: BERT_{LARGE} model performance on the GLUE benchmark validation set (V) and test set (T). Lines with \dagger and \ddagger indicate results taken from Guo et al. (2020) and Houlsby et al. (2019) (respectively).

BitFit: Simple Parameter-efficient Fine-tuning for Transformer-based Masked Language-models [Zeken et al, ACL 2021]

Adapter



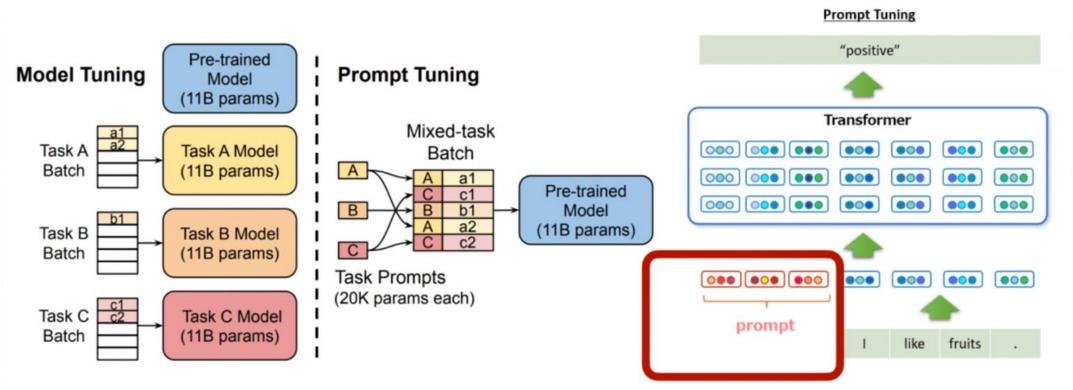
Add trainable layers after each feedforward layer

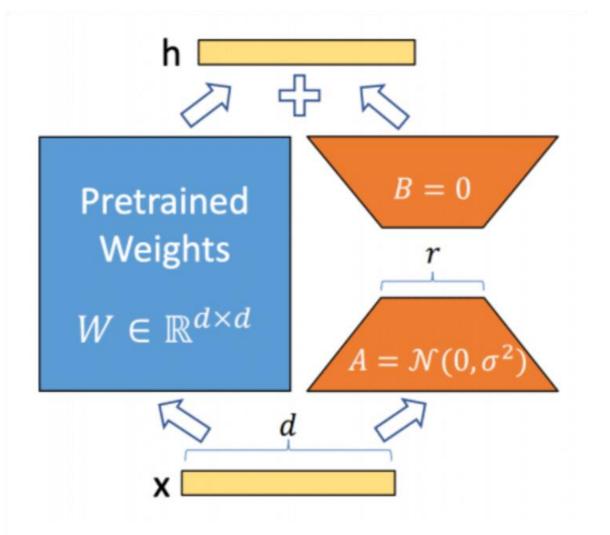
	Total num params	Trained params / task	CoLA	SST	MRPC	STS-B	QQP	MNLI _m	MNLI _{mm}	QNLI	RTE	Total
BERTLARGE	9.0×	100%	60.5	94.9	89.3	87.6	72.1	86.7	85.9	91.1	70.1	80.4
Adapters (8-256)	$1.3 \times$	3.6%	59.5	94.0	89.5	86.9	71.8	84.9	85.1	90.7	71.5	80.0
Adapters (64)	$1.2 \times$	2.1%	56.9	94.2	89.6	87.3	71.8	85.3	84.6	91.4	68.8	79.6

Parameter-Efficient Transfer Learning for NLP [Houlsby et al, ICML 2019]

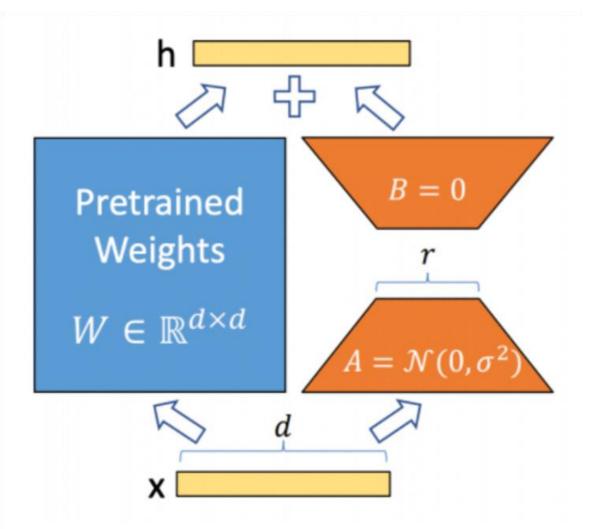
Prompt Tuning (Soft Prompting)

Train a continuous, learnable prompt in embedding space for each task we are training on





- Hypothesizes that fine-tuning results in only low rank updates
- Thus, we may approximate the updates themselves as low-rank and train on this low-rank approximation directly



 $\mathbf{h} = \mathbf{W}\mathbf{x}$

h = Wx + BAx

LoRA

Model & Method	# Trainable Parameters		SST-2	MRPC	CoLA	QNLI	QQP	RTE	STS-B	Δνσ
	1 arameters	WINLI	551-2	MIC	COLA	QULL	VQI	KIL	919-D	Avg.
RoB _{base} (FT)*	125.0M	87.6	94.8	90.2	63.6	92.8	91.9	78.7	91.2	86.4
RoB _{base} (BitFit)*	0.1M	84.7	93.7	92.7	62.0	91.8	84.0	81.5	90.8	85.2
RoB _{base} (Adpt ^D)*	0.3M	$87.1_{\pm.0}$	$94.2{\scriptstyle \pm.1}$	$88.5{\scriptstyle\pm1.1}$	$60.8_{\pm.4}$	$93.1{\scriptstyle \pm.1}$	$90.2 {\scriptstyle \pm .0}$	$71.5_{\pm 2.7}$	$89.7{\scriptstyle \pm.3}$	84.4
RoB_{base} (Adpt ^D)*	0.9M	$87.3_{\pm.1}$	$94.7{\scriptstyle\pm.3}$	$88.4_{\pm.1}$	$62.6 \pm .9$	$93.0_{\pm.2}$	$90.6 {\scriptstyle \pm.0}$	$75.9_{\pm 2.2}$	$90.3_{\pm.1}$	85.4
RoB _{base} (LoRA)	0.3M	$87.5_{\pm.3}$	$95.1_{\pm.2}$	$89.7_{\pm.7}$	$63.4_{\pm 1.2}$	$93.3_{\pm.3}$	$90.8_{\pm.1}$	$\pmb{86.6}_{\pm.7}$	$91.5_{\pm.2}$	87.2
RoB _{large} (FT)*	355.0M	90.2	96.4	90.9	68.0	94.7	92.2	86.6	92.4	88.9
RoB _{large} (LoRA)	0.8M	$\textbf{90.6}_{\pm.2}$	$96.2 {\scriptstyle \pm .5}$	$\textbf{90.9}_{\pm 1.2}$	68.2 _{±1.9}	$\textbf{94.9}_{\pm.3}$	$91.6_{\pm.1}$	$\textbf{87.4}_{\pm 2.5}$	$\textbf{92.6}_{\pm.2}$	89.0
RoB _{large} (Adpt ^P)†	3.0M	90.2 _{±.3}	96.1 _{±.3}	$90.2_{\pm.7}$	68.3±1.0	94.8 ±.2	91.9 ±.1	83.8 _{±2.9}	92.1 _{±.7}	88.4
RoB _{large} (Adpt ^P) [†]	0.8M	90.5±.3	96.6±.2	$89.7_{\pm 1.2}$	$67.8_{\pm 2.5}$	94.8±.3	$91.7_{\pm .2}$	$80.1_{\pm 2.9}$	$91.9_{\pm.4}$	87.9
RoB _{large} (Adpt ^H)†	6.0M	$89.9_{\pm.5}$	$96.2_{\pm.3}$	$88.7_{\pm 2.9}$	$66.5_{\pm 4.4}$	$94.7_{\pm .2}$	$92.1_{\pm.1}$	$83.4_{\pm 1.1}$	$91.0_{\pm 1.7}$	87.8
RoB _{large} (Adpt ^H) [†]	0.8M	$90.3_{\pm.3}$	$96.3_{\pm.5}$	$87.7_{\pm 1.7}$	$66.3_{\pm 2.0}$	$94.7_{\pm .2}$	$91.5_{\pm.1}$	$72.9_{\pm 2.9}$	$91.5_{\pm.5}$	86.4
RoB _{large} (LoRA)†		$\textbf{90.6}_{\pm.2}$	$96.2_{\pm.5}$	$\textbf{90.2}_{\pm 1.0}$	$68.2{\scriptstyle \pm 1.9}$	$\textbf{94.8}_{\pm.3}$	$91.6_{\pm.2}$	$\textbf{85.2}_{\pm 1.1}$	$\textbf{92.3}_{\pm.5}$	88.6
DeB _{XXL} (FT)*	1500.0M	91.8	97.2	92.0	72.0	96.0	92.7	93.9	92.9	91.1
DeB _{XXL} (LoRA)	4.7M	$91.9_{\pm .2}$	$96.9_{\pm.2}$	$92.6_{\pm.6}$	$\textbf{72.4}_{\pm 1.1}$	$\textbf{96.0}_{\pm.1}$	$\textbf{92.9}_{\pm.1}$	$\textbf{94.9}_{\pm.4}$	$\textbf{93.0}_{\pm.2}$	91.3

Table 2: RoBERTa_{base}, RoBERTa_{large}, and DeBERTa_{XXL} with different adaptation methods on the GLUE benchmark. We report the overall (matched and mismatched) accuracy for MNLI, Matthew's correlation for CoLA, Pearson correlation for STS-B, and accuracy for other tasks. Higher is better for all metrics. * indicates numbers published in prior works. † indicates runs configured in a setup similar to Houlsby et al. (2019) for a fair comparison.

Efficient inference algorithms in LLMs lead to lower cost, faster inference, and smaller models

- Quantization and sparsity are the primary techniques for realizing these efficiencies
- PEFT techniques allow for faster fine-tuning with smaller storage requirements

Open Source Models

- \Box Llama (Meta) \rightarrow
 - https://huggingface.co/docs/transformers/en/model_doc/llama
- \Box Mixtral (Mistral) \rightarrow
 - https://huggingface.co/docs/transformers/en/model_doc/mixtral
- □ DBRX (Databricks) → <u>https://huggingface.co/databricks/dbrx-base</u>
- □ Grok (xai) \rightarrow <u>https://huggingface.co/xai-org/grok-1</u>
- $\Box \text{ Gemma (Google)} \rightarrow \underline{\text{https://huggingface.co/google/gemma-2b-it}}$

Repos to Make Models More Efficient

- $\square Megablocks (MoE library) \rightarrow \underline{https://github.com/databricks/megablocks}$
- \Box LLM.int8() \rightarrow <u>https://huggingface.co/blog/hf-bitsandbytes-integration</u>
- □ AutoAWQ (AWQ integration) → <u>https://github.com/casper-hansen/AutoAWQ</u>
- $\Box \text{ LoRA} \rightarrow \underline{\text{https://huggingface.co/docs/diffusers/en/training/lora}$
- □ QLoRA (not covered here) \rightarrow <u>https://huggingface.co/blog/4bit-</u> <u>transformers-bitsandbytes</u>