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Abstract

In addition to search queries and the corresponding click-through
information, search engine logs record multidimensional information
about user search activities, such as search time, location, vertical,
and search device. Multidimensional mining of search logs can provide
novel insights and useful knowledge for both search engine users and
developers. In this paper, we describe our topic-concept cube project,
which addresses the business need of supporting multidimensional min-
ing of search logs effectively and efficiently. We answer two challenges.
First, search queries and click-through data are well recognized sparse,
and thus have to be aggregated properly for effective analysis. Second,
there is often a gap between the topic hierarchies in multidimensional
aggregate analysis and queries in search logs. To address those chal-
lenges, we develop a novel topic-concept model that learns a hierarchy
of concepts and topics automatically from search logs. Enabled by
the topic-concept model, we construct a topic-concept cube that sup-
ports online multidimensional mining of search log data. A distinct
feature of our approach is that, in addition to the standard dimensions
such as time and location, our topic-concept cube has a dimension of
topics and concepts, which substantially facilitates the analysis of log
data. To handle a huge amount of log data, we develop distributed
algorithms for learning model parameters efficiently. We also devise
approaches to computing a topic-concept cube. We report an empiri-
cal study verifying the effectiveness and efficiency of our approach on
a real data set of 1.96 billion queries and 2.73 billion clicks.
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1 Introduction

Search logs in search engines record rich information about user search ac-
tivities. In addition to search queries and the corresponding click-through
information, the related information is also recorded on multiple attributes,
such as search time, location, vertical, and search device. Multidimensional
mining of such rich search logs can provide novel insights and useful knowl-
edge for both search engine users and developers. Let us consider two mul-
tidimensional analysis tasks.

A multidimensional lookup (lookup for short) specifies a subset of
user queries and clicks using multidimensional constraints such as time, loca-
tion and general topics, and requests for the aggregation of the user search
activities. For example, by looking up “the top-5 electronics that were
most popularly searched by the users in the US in December 2009”, a busi-
ness analyst can know the common interests of search engine users on topic
“Electronics”. Moreover, search engine developers can use the results from
the lookup to improve query suggestion, document ranking, and sponsored
search. Multidimensional lookups can be extended in many ways to achieve
advanced business intelligence analysis. For example, using multiple lookups
with different multidimensional constraints, one may compare the major in-
terests about electronics from users in different regions such as the US, Asia,
and Europe.

A multidimensional reverse lookup (reverse lookup for short) is
concerned about the multidimensional group-bys where one specific object is
intensively queried. For example, using reverse lookup “What are the group-
bys in time and region where Apple iPad was popularly searched for?”, an
iPad accessory manufacturer can find the regions where the accessories may
have a good market. Using the results from the reverse lookup, a search en-
gine can improve its service by, for example, locality-sensitive search. Again,
reverse lookups can be used to compose advanced business intelligence anal-
ysis. For example, by organizing the results from the reverse lookup about
iPad, one may keep track of how iPad becomes popular in time and in re-
gion, and also compare the trend of iPad with those of iPod and iPhone.
This is interesting to both business parties and users.

As search engines have accumulated rich log data, it becomes more and
more important to develop a service that supports multidimensional mining
of search logs effectively and efficiently. To answer multidimensional analyt-
ical queries online, a data warehousing approach is a natural choice, which
pre-computes all multidimensional aggregates offline. However, traditional
data warehousing approaches only explore a series of statistical aggregates
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1 ipad

2 apple ipad

3 ipad 32g

4 kindle

5 amazon kindle
(a)

1 ipad

2 kindle

3 iphone

4 xbox 360

5 wii
(b)

Table 1: Answers to “the top-5 electronics that were most popularly searched
by the users in the US in December 2009” by (a) individual queries and (b)
concepts.

such as MIN, MAX, and AVG; they cannot summarize the semantic information
of user queries and clicks. In particular, multidimensional analysis on search
log data presents two special challenges.

Challenge 1: sparseness of queries in log data. Queries in search
engine logs are usually very sparse, since users may formulate different
queries for the same information need [8]. For example, to search for Ap-
ple iPad, users may issue queries such as “ipad”, “apple ipad”, “ipad 32g”,
“i pad apple”, and so on. Aggregating only on individual queries cannot
summarize user information needs recorded in logs comprehensively. For
example, when a business analyst asks for “the top-5 electronics that were
most popularly searched by the users in the US in December 2009”, a näıve
method may simply count the frequency of the queries in the topic of “Elec-
tronics” and return the top-5 most frequently asked queries. Due to the
sparseness of queries in the logs, the analyst may get an answer with many
redundant queries, such as the one shown in Table 1(a). Instead, if we can
summarize various query formulations of the same information need and
provide non-duplicate answers (e.g., Table 1(b)), the user experience can
be improved greatly. Similarly, in reverse lookup, when an iPad accessary
manufacturer asks the question “What are the group-bys in time and region
where Apple iPad was popularly searched for?”, the system should consider
not only aggregates of the query “Apple iPad” but also its various formula-
tions. To address the sparseness of log data, we have to aggregate queries
and click-through data in logs.

Challenge 2: mismatching between topic hierarchies used in an-
alytics and those learned from log data. More often than not, people
use different topic hierarchies in searching detailed information and sum-
marizing analytic information. For example, when users search electronics
on the web, often the queries are about specific products, brand names,
or features. A query topic hierarchy automatically learned from log data
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in a data-driven approach depends on the distribution and occurrences of
user queries. “Apple products” may be a popular topic. When an analyst
explores a huge amount of log data, she may bear in her mind a product
taxonomy (e.g., a well adopted ontology), such as TV & video, audio, mo-
bile phones, cameras & camcorders, computers, and so on being the first
level categories. The analytic topic hierarchy may be very different from
the query topic hierarchy learned from log data. For example, the “Apple
products” in the query topic hierarchy corresponds to multiple topics in the
analytic topic hierarchy. This mismatching in topic hierarchies is partly due
to the different information needs in web search and web log data analy-
sis. Web searches often opt for detailed information, while web log analysis
usually tries to summarize and characterize popular user behavior patterns.
To bridge the gap, we need to map the aggregates from logs to an analytic
topic hierarchy.

In this paper, we describe our topic-concept cube project that builds a
multidimensional service on search log data. We make the following contri-
butions.

First, we tackle the sparseness of queries in logs and the gap between
concept taxonomy in analytics and queries in logs by a novel concept-topic
model. Figure 1 illustrates our idea. We first mine click-through information
in search logs and group similar queries into concepts. Intuitively, users
with the same information need tend to click on the same URLs. Therefore,
various query formulations, for example, of Apple ipad, such as “ipad”,
“apple ipad”, “ipad 32g”, and “i pad apple”, can be grouped into the same
concept, since all of them lead to clicks on the web page www.apple.com/

ipad. More interestingly, some misspelled queries, such as “apple ipda”
and “apple ipade”, can also be clustered into this concept, since they also
lead to clicks on the ipad page. Once we summarize queries and clicks into
concepts, we will answer lookups and reverse lookups by concepts instead of
individual queries. For each concept, we use the most frequently asked query
as the representative of the concept. In this way, we can effectively avoid
redundant queries in lookup answers. At the same time, we can effectively
cover all relevant queries in reverse lookup answers.

Our concept-topic model further maps concepts to topics in a given tax-
onomy, which is essentially a query classification problem. For example,
suppose a concept consists of queries “apple ipad”, “ipad 32g”, etc., we clas-
sify them into the topic “Electronics”. Compared with classifying individual
queries to topics, mapping concepts has several advantages. For example,
for a misspelled query “apple ipda”, the classification problem becomes much
easier once we know that this query belongs to a concept that also contains
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Figure 1: The hierarchy of topics, concepts, queries, and clicks.

other queries such as “apple ipad”. Moreover, through the content of the web
pages that are commonly clicked as answers to the queries in the concept,
we may further enrich the features to classify “apple ipda”.

Our concept-topic model provides the “semantic” aggregates for search
log data. Those concepts and topics not only provide us a meaningful way
to answer lookups and reverse lookups, but also serve as an important di-
mension for multidimensional analysis and exploration.

Second, to handle large volumes of search log data, which may contain
billions of queries and clicks, we develop distributed algorithms to learn
the topic-concept models efficiently. In particular, we develop a strategy to
initialize the model parameters such that each machine only needs to hold a
subset of parameters much smaller than the whole set. We further develop
a heuristic data partition method to improve the efficiency of the training
process.

Third, to serve online multidimensional mining of search log data, we
build a topic-concept cube. In addition to the standard dimensions such
as time and location, a topic-concept cube has a dimension of topics and
concepts, such as “electronics” and “Apple iPad” used in the lookup and
reverse lookup examples. We devise effective approaches for computing a
topic-concept cube. In particular, queries are assigned to a hierarchy of
concepts and topics in the materialization of the cube.

Finally, we conduct extensive experiments on a real log data set con-
taining 1.96 billion queries and 2.73 billion clicks. We examine the effec-
tiveness of the topic-concept model as well as the efficiency and scalability
of our training algorithms. We also demonstrate several concrete examples
of lookups and reverse lookups answered by our topic-concept cube system.
The experimental results clearly show that our approach is effective and
efficient.

The rest of the paper is organized as follows. We present the framework
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Uid Time Stamp Location Type Value

U1 100605110843 Seattle, WA, US Query “wsdm 2011”
U2 100605110843 Vancouver, BC, CA Query “you tube”
U1 100605110846 Seattle, WA, US Click wsdm2011.org

. . . . . . . . . . . . . . .

Figure 2: A search log as a stream of query and click events with multidi-
mensional information.

of our system in Section 2, review the related work in Section 3, describe the
topic-concept model in Section 4, and develop the distributed algorithms for
learning the topic-concept model from large-scale log data in Section 5. Sec-
tion 6 discusses computing topic-concept cubes. We report the experimental
results in Section 7, and conclude the paper in section 8.

2 Our Framework

When a user raises a query to a search engine, a set of URLs are returned by
the search engine as the search results. The user may browse the snippets
of the top search results and selectively click on some of them. A search
log can be regarded as a sequence of query-and-click events by users. For
each event, a search engine may record the type and content of the event as
well as some other information such as the time stamp, location, and device
associated with the event. Figure 2 shows a small segment of a search log.

Some dimensions of search events may have a hierarchical structure. For
example, the location dimension can be organized into levels of country →
state → city, and the time dimension can be represented at levels of year →
month → day → hour. Therefore, the multi-dimensional, hierarchical log
data can be naturally organized into a raw log data cube [12], where each
cell is a group-by using the dimensions. For example, a cell may contain all
query-and-click events of time “February 2010” and location “Washington
State”.

We can aggregate the query-and-click events in a cell and derive a click-
through bipartite, where each query node corresponds to a unique query in
the cell and each URL node corresponds to a unique URL, as demonstrated
in Figure 3(a). An edge eij is created between query node qi and URL node
uj if uj is a clicked URL of qi. The weight wij of edge eij is the total number
of times when uj is a clicked result of qi among all events in the cell.

A click-through bipartite can be represented as a query-URL matrix
(QU-matrix for short), where each row corresponds to a query node qi and
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Figure 3: An example of (a) click-through bipartite and (b) QU-matrix.
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Figure 4: The framework of our system.

each column corresponds to a URL node uj . The value of entry nij is simply
the weight wij between qi and uj , as shown in Figure 3(b).

The QU-matrix at a cell is often sparse. Moreover, QU-matrix represents
information at the level of individual queries and URLs. As discussed before,
we need to summarize and aggregate the information in a QU-matrix to
facilitate online multidimensional analysis. This will be achieved by the
topic-concept model to be developed in Section 4.

Figure 4 shows the framework of our system. In the offline stage, we first
form a raw log data cube by partitioning the search log data along various
dimensions and at different levels. For each cell of the raw log data cube,
we construct a click-through bipartite and derive the QU-matrix. Then, we
materialize the cube by learning topic-concept models that summarize the
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distributions of topics and concepts on the QU-matrix for each cell. The
resulting data cube is called the topic-concept cube. In the online stage,
we use the learned model parameters to support multidimensional lookups,
reverse lookups, and advanced analytical explorations.

3 Related Work

Supporting multidimensional online analysis of large-scale search log data is
a new problem. To the best of our knowledge, the most related work to our
project is a query traffic analysis service provided by a major commercial
search engine1. The service allows users to look up and compare the hottest
queries in specified time ranges, regions, verticals, and topics. However,
the service organizes the user interests at only two levels: the lower indi-
vidual query level containing individual queries, and the higher topic level
consisting of 27 topics such as “Health” and “Entertainment”.

As will be illustrated in our experiment results, using only 27 topics
seems insufficient to summarize user interests from time to time. Instead,
a richer hierarchical structure of topics learned from search logs, as imple-
mented in our project, is more effective in multidimensional analysis. For
example, after browsing the hottest queries in topic “Entertainment”, a user
may want to drill down to a subtopic “Entertainment/Film”. The current
two layer structure in the existing project can only provide limited analysis
power.

Moreover, using individual queries to represent user interests seems in-
effective. It is well recognized that users may formulate various queries for
the same information need. Therefore, the search log data at the individ-
ual query level may be sparse. For example, the system returns queries
“games”, “game”, “games online”, and “free games” as the 1st, 2nd, 7th,
and 8th hottest queries, respectively, on topic “Game” in the US. Clearly,
those queries carry similar information needs. To make the analysis more
effective, as achieved by the topic-concept model in our project, we need
to summarize similar queries into concepts and represent user interests by
concepts instead of individual queries.

To a broader extent, our project is related to the previous studies on
search query traffic patterns, user interest summarization, data cube com-
putation, and spatiotemporal mining.

Several previous studies explored the patterns of query traffic with re-
spect to various aspects, such as time, locations, and search devices. For ex-

1Due to the policy of Microsoft, we do not reveal the name of the search engine men-
tioned here.
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ample, Beitzel et al. [7] investigated how the web query traffic varied hourly.
Backstrom et al. [4] reported a correlation between the locations referred
in queries and the geographic focus of the users who issued those queries.
Kamvar et al. [16] presented a log-based comparison on the distribution and
variability of search tasks that users performed from three platforms, namely
computers, iPhones, and conventional mobile phones. However, those stud-
ies mainly focused on the general trends of user query traffic without mining
user interests from the log data.

Previous approaches to summarizing user search queries can be divided
into two categories: the clustering approaches and the categorization ap-
proaches. A clustering approach groups similar queries and URLs in an
unsupervised way. For example, Zhao et al. [22] identified events in a time-
series of click-through bipartites derived from search logs. Each event con-
sists of a set of queries and clicked URLs that evolve synchronously along
the time-series. In [5, 6, 8, 20], the authors clustered the click-through
bipartites and grouped similar queries into concepts. A categorization ap-
proach classifies queries into a set of pre-defined topics in a supervised way.
For example, Shen et al. [19] leveraged the search results returned by a
search engine and converted the query categorization problem into a text
categorization problem. Both the clustering and categorization approaches
are effective to summarize user interests into events, concepts, or topics.
However, they do not consider how the interests vary with respect to var-
ious dimensions such as time and locations. Consequently, those methods
cannot be directly used to support lookups and reverse lookups as well as
advanced online multidimensional exploration.

Grey et al. [12] developed data cubes as the core of data warehouses
and OLAP systems. A data cube contains aggregated numeric measures
with respect to group-bys of dimensions. Zhang et al. [21] proposed a topic
cube that extends the traditional data cube with a measure in a hierarchy
of topics. Each cell in the cube stores the parameters learned from a topic
modeling process. Users can apply the OLAP operations such as roll-up and
drill-down along both standard dimensions and the topic dimension. The
system was built on a single machine. There are several critical differences
between our topic-concept cube and the topic cube [21]. The topic model
pLSA [13] used in [21] targets at modeling documents, which involves only
two types of variables, namely the terms as observed variables and the topics
as hidden variables. However, to summarize the common interests in search
log data, we have to consider more variables, especially, queries and clicked
URLs as observed variables, and concepts and topics as hidden variables.
Therefore, the traditional pLSA model cannot be applied in our project.
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Figure 5: A graphical representation of TC-model.

Consequently, the methods to materialize our topic-concept cubes are very
different from those to materialize the topic cubes. Moreover, we reported
an empirical study on a much larger set of real data, containing billions of
queries and clicks, and processed in a distributed environment.

Mei et al. studied mining temporal [17] and spatiotemporal [18] patterns
from text data. The authors discovered interesting evolutionary theme pat-
terns in documents with respect to time and locations. A major difference
between those studies and our work is that the previous studies only con-
sidered a flat level of topics instead of a hierarchy of topics and concepts.
Therefore, the previous studies cannot support users’ roll-up and drill-down
operations along the TC-dimension. Moreover, those previous studies also
targeted at modeling documents and applied the traditional pLSA model.
As mentioned above, the task of modeling log data involve much more com-
plex variables and thus the traditional pLSA model cannot be directly ap-
plied in our work.

4 Topic-Concept Model

We propose a novel topic-concept model (TC-model for short), a graphical
model as shown in Figure 5, to describe the generation process of a QU-
matrix. Essentially, we assume that a user bears some search intent in mind
when interacting with a search engine. The search intent belongs to certain
topics and focuses on several specific concepts. Based on the search intent,
the user formulates queries and selectively clicks on search results.

From the search log data, we can observe user queries q and clicks u.
Following the convention of graphical models, these two observable variables
are represented by black circles in Figure 5. Since user search intents cannot
be observed, the topics t and concepts c are latent variables, which are
represented by white circles.

Let Q and U be the sets of unique queries and unique URLs in a QU-
matrix, respectively. Let C and T be the sets of concepts and topics to
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model user interests. The training process of the topic-concept model is
to learn four groups of model parameters Θ = (Φ,∆,ΥQ,ΥU ). Here, the
prior topic distribution Φ = {P (tk)}, where tk ∈ T and P (tk) is the prior
probability that a user’s search intent involves topic tk. The concept gen-
eration distribution ∆ = {P (cl|tk)}, where cl ∈ C, tk ∈ T , and P (cl|tk)
is the probability that topic tk generates concept cl. The query generation
distribution ΥQ = {P (qi|cl)}, where qi ∈ Q, cl ∈ C, and P (qi|cl) is the prob-
ability that concept cl generates query qi. The URL generation distribution
ΥU = {P (uj |cl)}, where uj ∈ U , cl ∈ C, and P (uj |cl) is the probability that
concept cl generates a click on URL uj .

Given that a user bears a search intent on specific concepts c, we assume
that (1) the formulation of queries is conditionally independent of the clicks
on search results, i.e., P (q, u|c) = P (q|c) ·P (u|c); and (2) both the formula-
tion of queries and the clicks on search results are conditionally independent
of the topics t of the search intent, i.e., P (q, u|t, c) = P (q, u|c). Then, the
likelihood for each entry (qi, uj) in the QU-matrix can be factorized as fol-
lows.

L(qi, uj ; Θ) =
(∑

tk∈T
∑

cl∈C P (qi, uj , cl, tk; Θ)
)nij

=
(∑

tk∈T
∑

cl∈C P (tk)P (cl|tk)P (qi|cl)P (uj |cl)
)nij (1)

where nij is the value of entry (qi, uj) in the QU-matrix. The likelihood for
the whole QU-matrix D is L(D; Θ) =

∏
qi,uj

P (qi, uj ; Θ).
Since the data likelihood is hard to be maximized analytically, we ap-

ply the Expectation Maximization (EM) algorithm [11]. The EM algorithm
iterates between the E-step and the M-step. The E-step computes the ex-
pectation of the log data likelihood with respect to the distribution of the
latent variables derived from the current estimation of the model parame-
ters. In the M-step, the model parameters are estimated to maximize the
expected log likelihood found in the E-step. We have the following equations
for the E-step in the r-th iteration.

P r(cl|qi, uj) ∝
∑
tk

(
P r−1(tk) · P r−1(cl|tk)

·P r−1(qi|cl) · P r−1(uj |cl)
)

(2)

P r(tk|qi, uj) ∝
∑
cl

(
P r−1(tk) · P r−1(cl|tk)

·P r−1(qi|cl) · P r−1(uj |cl)
)

(3)

In the M-step of the r-th iteration, the model parameters are updated by
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the following equations.

P r(tk) =

∑
qi,uj

nijP
r(tk|qi, uj)∑

tk′

∑
qi,uj

nijP r(tk′ |qi, uj)
(4)

P r(qi|cl) =
∑

uj
nijP

r(cl|qi, uj)∑
qi′ ,uj

ni′jP r(cl|qi′ , uj)
(5)

P r(uj |cl) =
∑

qi
nijP

r(cl|qi, uj)∑
qi,uj′

nij′P r(cl|qi, uj′)
(6)

P r(cl|tk) =
∑

qi,uj
nijP

r(cl|qi, uj)P r(tk|qi, uj)∑
cl′

∑
qi,uj

nijP r(cl′ |qi, uj)P r(tk|qi, uj)
(7)

5 Learning Large TC-models

Although the EM algorithm can effectively learn the parameters in TC-
models, there are still several challenges to apply it on huge search log data.
In Section 5.1, we will develop distributed algorithms for learning TC-models
from a huge amount of data. In Section 5.2, we will discuss the model
initialization steps. Last, in Sections 5.3 and 5.4, we will develop effective
heuristics to reduce the number of parameters to learn in each machine.

5.1 Distributed Learning of Parameters

Search logs typically contain billions of query-and-click events involving tens
of millions of unique queries and URLs. To address this challenge, we de-
velop distributed algorithms for the E-step and M-step.

In our learning process, a QU-matrix is represented by a set of (qi, uj , nij)
tuples. Since a query usually has a small number of clicked URLs, a QU-
matrix is very sparse. We only need to record the tuples where nij > 0.
We first partition the QU-matrix into subsets and distribute each subset to
a machine (called a process node). Then we carry out the E-step and the
M-step.

In the E-step of the r-th iteration (Algorithm 1), each process node
loads the current estimation of the model parameters and scans the as-
signed subset of training data once. For each tuple (qi, uj , nij), the pro-
cess node enumerates all the concepts cl such that P r−1(qi|cl) > 0 and
P r−1(uj |cl) > 0. For each enumerated concept cl, the process node fur-
ther enumerates each topic tk such that P r−1(cl|tk) > 0 and evaluates the
value vk,l = P r−1(tk)P

r−1(cl|tk)P r−1(qi|cl)P r−1(uj |cl). The values of vk,l
are summed up to estimate P r(cl|qi, uj) and P r(tk|qi, uj) using Equations 2
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Algorithm 1 The r-th round E-step for each process node.

Input: the subset of training data S; the model parameters Θr−1 of the
last round

1: Load model parameters Θr−1;
2: for each tuple (qi, uj , nij) in S do
3: σij = 0;
4: for each topic tk ∈ T do σt

ijk = 0;

5: let Cij = {cl|P r−1(qi|cl) > 0 && P r−1(uj |cl) > 0};
6: for each concept cl ∈ Cij do
7: σc

ijl = 0;

8: for each topic tk ∈ T such that P r−1(cl|tk) > 0 do
9: v = P r−1(tk)P

r−1(cl|tk)P r−1(qi|cl)P r−1(uj |cl);
10: σc

ijl+ = v; σt
ijk+ = v; σij+ = v;

11: for each concept cl ∈ Cij do
12: for each topic tk ∈ T such that P r−1(cl|tk) > 0 do
13: output(qi, uj , cl, tk, nij , σ

c
ijl/σij , σ

t
ijk/σij);

and 3, respectively. Finally, we output the probabilities for the latent vari-
ables. Those results will serve as the input of the M-step.

In the M-step, we estimate the model parameters based on the probabil-
ities of the hidden variables. According to Equations 4-7, the estimation for
each parameter involves a sum over all the queries and URLs. Since the ma-
trix is distributed on multiple machines, the summation involves aggregating
the intermediate results across machines, which is particularly suitable for a
Map-Reduce system [10]. In general, Map-Reduce is a programming model
for distributed processing of large data sets. In the map stage, each process
node receives a subset of data as input and produces a set of intermediate
key/value pairs. In the reduce stage, each process node merges all interme-
diate values associated with the same intermediate key and outputs the final
computation results.

In the map stage of the M-step, each process node receives a subset of
tuples (qi, uj , cl, tk, nij , σ

c
ijl/σij , σ

t
ijk/σij). For each tuple, the process node

emits four key-value pairs as shown in Table 2. In the reduce stage, the
process nodes simply sum up all the values with the same key and update
the model parameters using Equations 4-7.
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Key Value Key Value

⟨tk⟩ nij · σt
ijk/σij ⟨qi, cl⟩ nij · σc

ijl/σij
⟨cl, tk⟩ nij · σc

ijl · σt
ijk/σ

2
ij ⟨uj , cl⟩ nij · σc

ijl/σij

Table 2: The key/value pairs at the map stage of the r-th round of M-step.

5.2 Model Initialization

The Topic-Concept model consists of four sets of parameters, Φ,∆,ΥQ and
ΥU . We first initialize the query-and-click generation probabilities ΥQ and
ΥU by mining the concepts from the click-through bipartite. We then initial-
ize the prior topic probabilities Φ and the concept generation probabilities
∆ by assigning concepts to topics.

To mine concepts from a click-through bipartite, we cluster queries from
the query-URL bipartite graph by a two-step propagation approach [9]. For
each query cluster Ql, we find the set of URLs Ul such that each URL u ∈ Ul

is connected with at least one query in Ql. In the first step of propagation,
Ql is expanded to Q′

l such that each query q′ ∈ Q′
l is connected with at least

one URL u ∈ Ul. In the second step of propagation, Ul is expanded to U ′
l

such that each URL u′ ∈ U ′
l is connected with at least one query q′ ∈ Q′

l.
Finally, we represent each concept cl by the pair of query and URL sets
(Q′

l, U
′
l ), and initialize the query and URL generation probabilities by

P 0(qi|cl) ∝
∑
uj∈U ′

l

nij ; P 0(uj |cl) ∝
∑
qi∈Q′

l

nij ,

where nij is the value of entry (qi, uj) in the QU-matrix.
After deriving the set of concepts C, we consider the set of topics T .

Although we may automatically mine topics by clustering concepts, in prac-
tice, there are several well-accepted topic taxonomies, such as Yahoo! Direc-
tory [3], Wikipedia [2], and ODP [1]. We use the ODP topic taxonomy in
this paper, though others can be adopted as well.

The ODP taxonomy is a hierarchical structure where each parent topic
subsumes several sub topics, and each leaf topic is manually associated with
a list of URLs by the ODP editors. Given a set of topics at some level in the
taxonomy, we can initialize the concept generation probabilities P (cl|tk) as
follows.

According to Bayes Theorem, P (cl|tk) ∝ P (cl)P (tk|cl). The prior proba-
bility P (cl) indicates the popularity of concept cl and the probability P (tk|cl)
indicates how likely cl involves topic tk. Suppose cl is represented by the
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query-and-URL sets (Q′
l, U

′
l ). The popularity of cl can be estimated by

P̂ (cl) ∝
∑

qi∈Q′
l,uj∈U ′

l
nij , where nij is the value of entry (qi, uj) in the QU-

matrix. To tell how likely cl involves topic tk, we merge the text content of
the URLs u ∈ U ′

l into a pseudo-document dl. Then, the problem of estimat-
ing P (tk|cl) is converted into a text categorization problem, and P (tk|cl) can
be estimated by applying any text categorization techniques (e.g., [14, 15])
on the pseudo-document dl. Based on the estimated P̂ (cl) and P̂ (tk|cl), we
initialize the parameters by

P 0(cl|tk) ∝ P̂ (cl)P̂ (tk|cl); P 0(tk) ∝
∑
cl

P̂ (cl)P̂ (tk|cl).

Why do we still need the EM iterations given that we can estimate all the
model parameters in the initialization stage? The EM iterations can improve
the quality of concepts and topics by a mutual reinforcement process. In
the TC-model, the probabilities P (q|c) and P (u|c) assign queries and URLs
to concepts, while the probabilities P (c|t) assign concepts to topics. In the
initialization stage, those two types of probabilities are estimated indepen-
dently. If two queries/URLs belong to the same concept, it is more likely
that they belong to the same topic, and vice versa. Therefore, if we jointly
consider those two types of probabilities, we may derive more accurate as-
signments of concepts and topics. In the EM iterations, the relationship
between concepts and topics is captured by the probabilities P (c|q, u) and
P (t|q, u), which contribute to the increase of the data likelihood. In our
experiments on a real data set, the data likelihood is increased by 11% after
the EM iterations.

5.3 Reducing Re-estimated Parameters

As described in Section 5.1, in the E-step, each process node estimates
P (cl|qi, uj) and P (tk|qi, uj) on the basis of the last round estimation of
parameters Φ,∆,ΥQ, and ΥU . Let Nt, Nc, Nq, Nu be the numbers of topics,
concepts, unique queries, and unique URLs, respectively. The sizes of the
parameter sets are |Φ| = Nt, |∆| = Nt ·Nc, |ΥQ| = Nq ·Nc, and |ΥU | = Nu ·
Nc. In practice, we usually have tens of millions of unique queries and URLs
in the search log data, which may form millions of concepts. For example, in
the real data set in our experiments, we have 11.76 million unique queries, 9.5
million unique URLs, 4.71 million concepts, and several hundred topics. The
total size of the parameter space reaches 1014. Consequently, it is infeasible
to hold the full parameter space into the main memory of a process node.

To reduce the number of parameters to be re-estimated, we analyze the
cases when the model parameters remain zero during the EM iterations.
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Suppose a process node receives a subset S of training data in the E-step,
we give a tight superset Θ(S) of the nonzero model parameters that need to
be accessed by the process node in the E-step. In our experiments, |Θ(S)|
for each process node is several orders of magnitudes smaller than the size
of full parameters space. Each process node only needs to process a subset
of Θ(S).

Lemma 1. The query generation probability at the r-th iteration P r(qi|cl) =
0 if P 0(qi|cl) = 0.

Proof. Let U be the whole set of unique URLs. From Equation 2, if P r−1(qi|cl) =
0, then P r(cl|qi, uj) = 0 holds for every uj ∈ U . According to Equation 5, if
P r(cl|qi, uj) = 0 holds for every uj ∈ U , then P r(qi|cl) = 0. Therefore, we
have P r−1(qi|cl) = 0 ⇒ P r(qi|cl) = 0. Using simple induction, we can prove
P 0(qi|cl) = 0 ⇒ P 0(qi|cl) = 0.

Similarly, we can prove the following lemma.

Lemma 2. The URL generation probability at the r-th iteration P r(uj |cl) =
0 if P 0(uj |cl) = 0.

Let us consider the concept generation probabilities P (cl|tk). We call
a pair (qi, uj) belongs to concept cl, denoted by (qi, uj) ∈ cl, if nij > 0,
P 0(qi|cl) > 0, and P 0(uj |cl) > 0. Two concepts cl and cl′ are associated if
there exists a pair (qi, uj) belonging to both concepts. Trivially, a concept
is associated with itself. Let A(cl) be the set of concepts associated with cl,
and QU(cl) be the set of pairs (qi, uj) that belong to at least one concept
associated with cl, i.e., QU(cl) = {(qi, uj)|∃cl′ ∈ A(cl), (qi, uj) ∈ cl′}. We
have the following.

Lemma 3. The concept generation probability at the r-th iteration P r(cl|tk) =
0 if ∀cl′ ∈ A(cl), P

r−1(cl′ |tk) = 0.

Proof. According to the definitions, for any (qi, uj) ̸∈ cl, one of the following
three predicates holds (1) nij = 0; (2) P 0(qi|cl) = 0; or (3) P 0(uj |cl) =
0. If nij = 0, from Equation 7, (qi, uj) does not contribute to P r(cl|tk).
Otherwise, if P 0(qi|cl) = 0 or P 0(uj |cl) = 0, according to Lemmas 1 and 2,
we have either P r−1(qi|cl) = 0 or P r−1(uj |cl = 0). From Equation 2, if
either P r−1(qi|cl) = 0 or P r−1(uj |cl) = 0, then P r(cl|qi, uj) = 0. Therefore,
Equation 7 can be re-written as

P r(cl|tk) ∝
∑

(qi,uj)∈cl

nijP
r(cl|qi, uj)P r(tk|qi, uj). (8)
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Now we only need to focus on P r(tk|qi, uj) for pairs (qi, uj) ∈ cl. Ac-
cording to the definition of A(cl), for any pair (qi, uj) ∈ cl and concept
cl′′ /∈ A(cl), either P 0(qi|cl′′) = 0 or P 0(uj |cl′′) = 0 holds. Using Lemmas 1
and 2, we can rewrite Equation 3 for every pair (qi, uj) ∈ cl as

P r(tk|qi, uj) ∝
∑

cl′∈A(cl)

P r−1(tk) · P r−1(cl′ |tk)

· P r−1(qi|cl′) · P r−1(uj |cl′). (9)

According to Equation 9, if ∀cl′ ∈ A(cl), P
r−1(cl′ |tk) = 0, then P r(tk|qi, uj) =

0 holds for every (qi, uj) ∈ cl. Further according to Equation 8, if P r(tk|qi, uj) =
0 holds for every (qi, uj) ∈ cl, then P r(cl|tk) = 0. Therefore, if ∀cl′ ∈ A(cl),
P r−1(cl′ |tk) = 0, then P r(cl|tk) = 0.

Lemma 3 suggests that at each round of iteration, a concept cl propagates
its nonzero topics tk (i.e., topics such that P (cl|tk) > 0) one step further to
all its associated concepts.

To further explore the conditions for P r(cl|tk) = 0, we build a concept
association graph G(V,E), where each vertex v ∈ V represents a concept
c, and two concepts ca and cb are linked by an edge eab ∈ E if they are
associated with each other. In the association graph, two concepts ca and
cb are connected if there exists a path between ca and cb. The connected
componentN∗(ca) of concept ca consists of all concepts cb that are connected
with ca. The distance between two concepts ca and cb is the length of the
shortest path between ca and cb in the graph. If ca and cb are not connected,
the distance is set to ∞. The set of m-step neighbors Nm(ca) (1 ≤ m < ∞)
of concept ca consists of the concepts whose distance from ca is at most m.
We have the following lemma by recursively applying Lemma 3.

Lemma 4. The concept generation probability at the r-th iteration P r(cl|tk) =
0 if ∀cl′ ∈ Nm(cl) (1 ≤ m ≤ r), P r−m(cl′ |tk) = 0. Moreover, P r(cl|tk) = 0
if ∀cl′ ∈ N∗(cl), P

0(cl′ |tk) = 0.

Using Lemmas 1-4, we can give a tight superset of the parameters needed
in the E-step for any subset S of training data. Let (qi, uj , nij) be a train-
ing tuple in S. In the E-step, we enumerate the concepts cl such that
P r−1(qi|cl) > 0 and P r−1(uj |cl) > 0. According to Lemmas 1 and 2, to pro-
cess (qi, uj , nij), we can enumerate only those concepts C ′

ij = {cl|(qi, uj) ∈
cl}.

We consider the nonzero parameters for each concept cl. Using Lem-
mas 1 and 2, the nonzero query and URL generation probabilities are simply
Υ+

Q(cl) = {P (qi|cl)|P 0(qi|cl) > 0} and Υ+
U (cl) = {P (uj |cl)|P 0(uj |cl) > 0},
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respectively. Furthermore, let T (cl) = {P (cl|tk)|P 0(cl|tk) > 0} and T ∗(cl) =∪
cl′∈N∗(cl)

T (cl′). Using Lemma 4, the nonzero concept generation proba-

bilities are ∆+(cl) = {P (cl|tk)|tk ∈ T ∗(cl)}.
Let C ′

S be the set of concepts that are enumerated for the training tuples
in S, i.e., C ′

S =
∪

sij∈S C ′
ij . We summarize the above discussion as follows.

Theorem 1. Let S be a subset of training data, the set of nonzero param-
eters need to be accessed in the E-step for S is a subset of Θ(S), where

Θ(S) =

{P (tk)},
∪

cl∈C′
S

Υ+
Q(cl),

∪
cl∈C′

S

Υ+
U (cl),

∪
cl∈C′

S

∆+(cl)

 .

In practice, a concept association graph can be highly connected. That
is, for any two concepts ca and cb, there likely exists a path ca, cl1, . . . , clm, cb.
In some cases, although each pair of adjacent concepts on the path are re-
lated to each other, the two end concepts ca and cb of the path may be about
dramatically different topics. As discussed before, in the EM iterations, each
concept propagates its nonzero topics to its neighbors. Consequently, after
several rounds of iterations, two totally irrelevant concepts ca and cb may
exchange their nonzero topics through the path ca, cl1, . . . , clm, cb. To avoid
over propagation of the nonzero topics, we may constrain the propagation up
to ς steps. Specifically, for each concept cl, let T (cl) = {P (cl|tk)|P 0(cl|tk) >
0} and T ς(cl) =

∪
cl′∈Nς(cl)

T (cl′), we constrain the concept generation prob-

ability P (cl|tk) = 0 if tk ̸∈ T ς(cl). In our experiments, we find that the
nonzero topics propagated from the neighbors of more than one step away
are often noisy. Therefore, we set ς to 1.

Theorem 1 greatly reduces the number of parameters to be re-estimated
in process nodes in practice. For example, when we use 50 process nodes
in our experiments, each process node only needs to re-estimate 62 million
parameters, which is about 10−7 of the size of the total parameter space.
In practice, 62 million parameters may still be too many for a machine
with small memory, e.g., less than 2GB. In this case, the process node can
recursively split the assigned training data Sn into smaller blocks Snb ⊂ Sn

until the necessary nonzero parameters Θ(Snb) for each block can be loaded
into the main memory. Then, the process node can carry out the E-step
block by block. We report the details of the experiment in Section 7.2.

5.4 A Heuristic Data Partition Method

In the distributed training of the TC-model, we need to partition the whole
data set into several slices and allocate one slice of data to one process node.
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A straightforward method to partition the training data D is to randomly
assign an equal size of subset Sn ⊆ D to the n-th process node pn, where
|Sn| = |D|/N and N is the total number of process nodes. If each process
node can hold all the necessary nonzero parameters Θ(Sn) into the main
memory, we simply carry out the E-step. Otherwise, we have to recursively
split Sn into smaller blocks Snb ⊂ Sn until the necessary nonzero parameters
Θ(Snb) for each block can be loaded into the main memory. Then, we can
carry out the E-step block by block.

To carry out the E-step for each block, the process node pn has to scan
the whole file of the nonzero parameters and keep those in Θ(Snb) in main
memory. In practice, the file of nonzero parameters is usually large, and
the cost for disk reading is expensive. For example, in our experiments, the
size of the parameter file is about 4GB and it takes about 420 seconds to
scan the file once for loading parameters. Compared with the runtime of
the inference process for a block of about 0.15 million training tuples, which
is about 230 seconds, the efficiency of the E-step is heavily influenced by
the number of times the parameter file has to be scanned, which is also the
number of blocks to be processed. To improve the efficiency, we want to
reduce the number of blocks for the process nodes.

To address the above challenges, let us consider two training tuples sij1
and sij2. Suppose sij1 involves concepts Cij1 = {c1, c2, c3} and sij2 involves
concepts Cij2 = {c1, c2, c4}. Since Cij1 is heavily overlapped with Cij2, the
E-step on those two training tuples sij1 and sij2 share many parameters. If
they are assigned to the same process node, the node actually only needs
to keep the parameters for four concepts (i.e., c1, c2, c3, c4), instead of six
concepts (i.e., |Cij1|+|Cij2|). Based on this idea, we adopt a greedy approach
and try to assign the tuples which involve common concepts on the same
process node.

Algorithm 2 shows our data partition method. The method has a master-
slave structure, where each process node pn acts as a slave. The master
maintains two tables. The concept size table records the estimated size
|Υ+

Q(cl)| + |Υ+
U (cl)| + |∆+(cl)| of the nonzero parameters for each concept

cl. The client memory table traces the current size of the free memory for
each client. Each slave pn maintains a concept ID list which records the
IDs of the concepts whose nonzero parameters will be loaded into the main
memory by pn during the E-step. Moreover, to facilitate the look up of the
concept list Cij for each training tuple (qi, uj , nij), we create two mapping
tables. The query mapping table records for each query qi the concepts cl if
P 0(qi|cl) > 0. Similarly, the URL mapping table records for each URL uj
the concepts cl if P

0(uj |cl) > 0. Since these two tables are usually large,
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Algorithm 2 A heuristic data partition method
Input: The whole set of training data D;
Output: A subset of training data for each process node;

Master Side: Host Program
Initialize: Concept size list: Ls and client memory list: Lm;

1: for each tuple (qi, uj , nij) ∈ D do
2: if no client has free memory then
3: initialize Lm;
4: broadcast message “Start E-step”;

// derive Cij ;
5: broadcast message “Lookup (i, j)”;
6: receive concept lists Qi and Uj from each client;
7: let Cij ⇐ intersect the concepts in Qi and Uj ;

// select the node to process (qi, uj , nij);
8: broadcast message “Bid Cij”;
9: receive the concept list C+

n from each client;
10: for each process node do
11: M+

n = 0;
12: for each concept c ∈ C+

n do M+
n + = Ls[c];

13: choose the client pnmin with the minimum M+
n

14: send message “Process (qi, uj , nij , Cij)” to client pnmin;
15: Lm[pnmin]+ = min{M+

n };

Slave Side: Daemon Program
Input: messages from the server;
Initialization: The query mapping table Mq and the URL mapping table Mu, the
subset of training data Dn, and the concept ID list Lc;

1: for each Master’s command do
2: if command == “Start E-step” then
3: load parameters for the concepts in Lc;
4: call E-step (Algorithm 1) on Dn;
5: Lc = ∅;
6: if command == “Lookup (i, j)” then
7: if qi ∈ Mq then return Mq[i];
8: if uj ∈ Mu then return Mu[j];
9: if command == “Bid Cij” then

10: C+
n = ∅;

11: for each c ∈ Cij do if c ̸∈ Lc then C+
n ∪ = c;

12: return C+
n ;

13: if command == “Process (qi, uj , nij , Cij)” then
14: Dn∪ = (qi, uj , nij , Cij);
15: for each c ∈ Cij do if c ̸∈ Lc then Lc∪ = c;
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they can be distributed to the process nodes where each node is responsible
for the mapping of a subset of queries and a subset of URLs.

In the data partition process, the master scans the training tuples sij =
(qi, uj , nij) one by one. For each tuple, the master sends a message (i, j)
to all the process nodes. The process nodes will check their query and
URL mapping tables and return the IDs of the concepts cl to the master
if P 0(qi|cl) > 0 or P 0(uj |cl) > 0. Then, the master derives an ID list
IDij = {l|P 0(qi|cl) > 0 && P 0(uj |cl) > 0}.

In the second round of communication, the master sends the ID list IDij

to all the process nodes. Each process node pn reports to the master a list
C+
n of concept IDs which appear in IDij but do not exist in its concept ID

table. This means that if sij is to be processed on pn, the process node need
to add the nonzero parameters for the concepts with IDs in C+

n into the
memory. The master will look up the concept size table and find out for
each pn the memory cost M+

n for the nonzero parameters for the concepts
with IDs in C+

n . Finally, the master will assign sij to the process node with
the smallest M+

n . If that process node has reached the limit of memory, sij
will be assigned to the process node which has the next smallest M+

n , and
so on. If the smallest M+

n is claimed by multiple process nodes, the master
will assign sij to the one with the largest free memory.

Once the recipient node is determined, the master will send it a mes-
sage (qi, uj , nij , IDij). The process node will save it for the future E-step.
Finally, the master updates the client memory table and the recipient node
updates the local concept table accordingly. At the point when all process
nodes reach the limit of memory, the E-step is carried out based on the
current assignment of training tuples. After the E-step, the same proce-
dure continues until all the training data have been processed. An empirical
study of the effectiveness of the heuristic data partition method is described
in Section 7.2.

6 Cube Construction and Request Answering

Similar to a traditional data cube, a topic-concept cube (TC-cube for short)
contains some standard dimensions such as time and locations. However,
a TC-cube differs from a traditional data cube in several critical aspects.
First, for each cell in a TC-cube, we learn the TC-models from the training
data in the cell and use the model parameters as the measure of the cell.
Those parameters allow us to effectively answer lookups and reverse lookups
introduced in Section 1. Second, a TC-cube contains a special topic-concept
dimension (TC-dimension for short) as shown in Figure 1.
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Figure 6: The cube construction methods on (a) standard dimension and
(b) TC-dimension.

To materialize a TC-cube, we need to address three questions. First,
how to materialize on the standard dimensions? Second, how to materialize
on the TC-dimension? Finally, how to combine the materialization on both
the standard dimensions and the TC-dimension to materialize the whole
TC-cube? In the following, we will address these three questions in detail.

6.1 Materialization on Standard Dimensions

As illustrated in Figure 6(a), in a standard dimension, the training data
in a non-leaf level cell C1 is split into its children cells C21, . . . , C2M . For
example, C1 may contain the set of training tuples D1 from the US, while
each child cell C2m (1 ≤ m ≤ M) may contain the set of training tuples
D2m from one state of the US. In general, D21, . . . D2M form a partition of
D1. A näıve method to materialize the standard dimension is to follow the
initialization steps in Section 5.2 for each cell and learn the TC-models from
scratch. However, since the training data D2m in a child cell is a subset of
D1, the topics and concepts may not differ dramatically between a child cell
and a parent cell. Hence, we may develop two methods. In the top-down
method, we may inherit the trained parameters Θ1 for the parent cell C1 to
initialize the parameters for a child cell C2m. Alternatively, in the bottom-up
method, we may aggregate the trained parameters Θ21, . . . ,Θ2M of the child
cells to initialize the parameters for the parent cell C1. In the following, we
discuss these two methods in detail. We compare the performance of these
two methods in Section 7.3.
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6.1.1 A Top-down method

As illustrated in Figure 6(a), in the top-down method, high level cells are
materialized before the low level ones. Without loss of generality, suppose
we already compute the model parameters Θ1 for a cell C1 and want to
materialize the parameters Θ2 for a cell C2 which is a child cell of C1. Let
D1 and D2 be the sets of query-and-click events in C1 and C2, respectively.
Obviously, D2 ⊆ D1.

One way to materialize C2 is to follow the initialization steps in Sec-
tion 5.2 and learn the TC-model from scratch. Can we find a better ini-
tialization method such that the number of EM iterations can be reduced?
Since D2 ⊆ D1, the topics and concepts in D2 only partially differ from
those in D1. Therefore, we may consider using the trained parameters for
C1 to initialize the parameters for C2. In the following, we first describe
how to project the concepts in C1 to C2, and then discuss how to initialize
the parameters for C2 using those in C1.

Let c1l be a concept in C1, which is represented by a pair of query and
URL sets (Q1l, U1l). Let Q2 and U2 be the sets of queries and URLs in D2,
respectively. We can project c1l on C2 by calculating Q2l = Q1l ∩ Q2 and
U2l = U1l ∩ U2. Then, the concept c2l can be represented by the projected
pair (Q2l, U2l). Correspondingly, the initial query and URL generation prob-
abilities in cell C2, denoted by P 0

2 (qi|c2l) and P 0
2 (uj |c2l), respectively, can

be estimated by P 0
2 (qi|c2l) ∝

∑
uj∈U2l

n2,ij and P 0
2 (uj |c2l) ∝

∑
qi∈Q2l

n2,ij ,

where n2,ij is the count of (qi, uj) pairs in D2.
Let us consider how to initialize the concept generation probability P 0

2 (c2l|tk)
and the topic prior probability P 0

2 (tk) in cell C2. We assume the projection
of concepts from C1 to C2 does not change the meaning of the concepts.
In other words, if a concept c1l in C1 involves a topic tk, so does its pro-
jected image c2l in C2. Based on this assumption, the probability P2(tk|c2l)
of concept c2l belonging to topic tk can be inherited from P1(tk|c1l) ∝
P1(tk)P1(c1l|tk). Then the initial concept generation probability in cell C2,
denoted by P 0

2 (c2l|tk), can be estimated by P 0
2 (c2l|tk) ∝ P2(c2l)P2(tk|c2l),

and the initial topic prior probability in cell C2, denoted by P 0
2 (tk), can

be estimated by P 0
2 (tk) ∝

∑
c2l

P2(c2l)P2(tk|c2l), where the concept prior
probability P2(c2l) can be estimated by the count of (qi, uj) pairs in D2, i.e.,
P2(c2l) ∝

∑
qi∈Q2l,uj∈U2l

n2,ij . After initializing the parameters, we carry
out the EM algorithm for C2 as described in Section 5.

23



6.1.2 A Bottom-up method

In the bottom-up method, we want to estimate the parameters Θ1 for a
higher level cell C1 (Figure 6(a)). In the similar spirit of the top-down
method, we initialize Θ1 based on the trained parameters Θ21, . . .Θ2M for
C1’s child cells C21, . . . , C2M .

Let the concepts c2l1, . . . , c2lM be the projected images of cell c1l in child
cells C21, . . . , C2M of parent C1, respectively. The query generation proba-
bility of concept c1l, denoted by P1(qi|c1l), can be initialized by aggregating
those of its projected images, i.e., P 0

1 (qi|c1l) ∝
∑

m n2lmP (qi|c2lm), where
n2lm =

∑
qi,uj

n2,ij,m and n2,ij,m is the count of (qi, uj) pairs in cell C2m

(1 ≤ m ≤ M). Similarly, we can initialize the URL generation probabilities.
For concept generation probabilities P1(c1l|tk), we again assume that the

meaning of concepts does not change across different level of cells. We initial-
ize P1(c1l|tk) in three steps. First, we estimate the probability P2lm(tk|c2lm)
for concept c2lm in cell C2m to involve topic tk by P2lm(tk|c2lm) ∝ P2m(tk) ·
P2m(c2lm|tk). In the second step, we estimate the probability Pl(c1l|tk) for
concept c1l to involve topic tk by aggregating those probabilities from c1l’s
projected images, i.e,. P1(tk|c1l) ∝

∑
m n2lmP2m(tk|c2lm). Finally, the con-

cept generation probability can be initialized by P 0
1 (c1l|tk) ∝ P1(c1l)P1(tk|c1l),

where P1(c1l) ∝
∑

qi,uj
n1,ij and n1,ij is the count of (qi, uj) pairs in c1l. The

topic prior probability can be initialized by P 0
1 (tk) ∝

∑
c1l

P1(c1l)P1(tk|c1l).

6.2 Materialization on TC Dimension

The topic-concept model assigns the concepts to a set of topics. Given
a taxonomy of topics, such as ODP [1], the TC dimension organizes the
queries and clicks into a hierarchy of topics and concepts (see Figure 1).
To materialize the cube on the TC dimension, we can first learn a topic-
concept model with respect to any level of topics in the hierarchy. Then, we
can materialize the model parameters with respect to other levels of topics
by either a top-down method or a bottom-up method.

Different from the standard dimensions, the topic-concept dimension has
the same set of training data at different levels. As a result, the initial
concepts derived from the clustering results on the training data are the
same for all the levels. Therefore, when we roll up or drill down along the TC
dimension, it is reasonable to assume that only the topic prior probabilities
P (tk) and the concept generation probabilities P (cl|tk) change substantially
with respect to the different sets of topics at different level, while the query
and URL generation probabilities, i.e., P (qi|cl) and P (uj |cl) do not change
much at different levels. In the following, we only focus on the initialization
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of P (tk) and P (cl|tk).
Without loss of generality, let T1 = {t1k} be the set of topics at some

level of a given topic taxonomy, and T2 = {t2kn} be the set of topics one level
lower than T1. In particular, t2kn is a sub topic of t1k, where 1 ≤ n ≤ N1k

and N1k is the number of sub topics of t1k.
As illustrated in Figure 6(b), the top-down method along the TC di-

mension materialize the model parameters Θ1 with respect to T1 before the
materialization of parameters Θ2 with respect to T2. Given the parameters
P1(t1k) and P1(cl|t1k) with respect to T1, the initialization of P 0

2 (t2kn) and
P 0
2 (cl|t2kn) is straightforward as follows. First, we can distribute the mass of

prior probability P1(t1k) evenly to its children t2kn (1 ≤ n ≤ N1k), i.e., the
initial topic prior probability P 0

2 (t2kn) = P1(t1k)/N1k. Second, we inherit
the concept generation probability of topic t2kn from that of its parent t1k,
i.e., P 0

2 (cl|t2kn) = P1(cl|t1k).
In the bottom-up method, we initialize the parameters for a higher level

topic t1k by aggregating those of its sub topics t2kn (Figure 6(b)). To be spe-
cific, the topic prior probability can be initialized by P 0

1 (t1k) =
∑

n P2(t2kn)
and the concept generalization probability can be initialized by P 0

1 (cl|t1k) ∝∑
n P2(cl|t2kn).

6.3 Materializing the whole TC-cube

We have two alternative approaches to materializing the whole TC-cube
that consists of both standard dimensions and the TC-dimension. The
standard-dimension-first approach starts with a specific topic level in the
TC-dimension and materializes a raw log data cube along the standard di-
mensions. Then, it materializes along the TC-dimension for each cell in the
raw log data cube. The TC-dimension-first approach specifies a layer in
the standard dimensions and processes the topic hierarchy level by level for
each cell in the specified layer. In the second step, it materializes the cells in
other layers of the standard dimensions. To better illustrate the difference
between these two approaches, let us consider the following simple example.

Suppose the TC-dimension of a cube consists of only two levels T1 and T2.
Further suppose there is only one standard dimension with two layers in the
cube. The top layer contains a single cell C11 and the bottom layer consists
of two cells C21 and C22. Finally, suppose we adopt the top-down methods
on both the standard dimension and the TC-dimension. The standard-
dimension-first approach first learns the TC-model for C11 with respect to
T1. Then, it materializes C21 and C22 with respect to T1 along the standard
dimension. After that, it materializes along the TC-dimension for each cell.
That means, it computes the model parameters in C11, C21, and C22 with
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respect to T2, respectively. The TC-dimension-first approach also starts
with the TC-model for C11 with respect to T1. However, in the second
step, it does not materialize C21 and C22 with respect to T1. Instead, it
materialize C11 with respect to T2 along the TC-dimension. In the third
step, it materializes C21 and C22 with respect to T1 and T2, respectively,
along the standard dimension. The key difference is as the following. In
the standard-dimension-first approach, the TC-model for C21 and C22 with
respect to T2 are initialized by the parameters of C21 and C22 with respect
to T1, respectively. On the other hand, in the TC-dimension-first approach,
the TC-model for C21 and C22 with respect to T2 are initialized by the
parameters of C11 with respect to T2.

6.4 Request answering

After materializing the whole TC-cube, we answer the lookups and reverse
lookups using the model parameters in the TC-cube. Since the number of
model parameters can be large, we store the parameters distributively on
a cluster of process nodes, where each node contains the parameters for
a set of cells. When the system receives a lookup request, for example,
“(time=Dec., 2009; location=US; topic=Games)”, it will delegate the query
to the process node where the model parameters of the corresponding cell
are stored. Then the process node will select the top k concepts c with
the largest concept generation probabilities P (c|t = Games). For each top
concept, the process node will use the query q with the largest P (q|c) as
the representative query. Finally, the system returns a list of representative
queries of the top concepts as the answer to the lookup request.

To answer the reverse lookups, we build inverted lists that map key
words to concepts. The inverted list can be stored distributively on a clus-
ter of process nodes, where each node takes charge of a range of key words.
Suppose a user requests a reverse lookup about “hurricane Bill”. The sys-
tem will delegate the key words to the corresponding node that stores the
inverted list for “hurricane Bill”. The node retrieves from the inverted list
the set of concepts Churricane Bill where each concept is related to “hurri-
cane Bill”. The system then broadcasts the concepts in Churricane Bill to all
the nodes that store the model parameters. Each node checks the mea-
sures of all its cells and reports (Dval, Count) for each cell, where Dval
consists of the corresponding values of the standard dimensions of the cell,
and Count is the frequency of the concepts in Churricane Bill in the cell, i.e.,
Count =

∑
c∈Churricane Bill

∑
qi,uj∈c nij , where nij is the value of entry (qi, uj)

in the QU-matrix of the cell. If the user specifies the levels of the standard
dimensions, for example, time@day; location@country, the system returns

26



No. baseline TC cube P (c|t)
1 games games 0.020
2 game pogo 0.013
3 cheats maxgames 0.012
4 wow aol games 0.011
5 lottery wow heroes 0.010
6 xbox killing games 0.009
7 games online addicted games 0.008
8 free games age of war 0.008
9 wii powder game 0.008
10 runescape monopoly online 0.008

Table 3: The top ten queries returned by our TC-cube and the baseline for
lookup “(time=ALL; location=US; topic=Games)”.

the Dvals of the top k cells that match the specified levels of the standard
dimension. If the user does not specify the levels, the system will answer
the request at the default levels. The user can further drill down or roll up
to different levels.

7 Experiments

In this section, we report the results from a systematic empirical study using
a large search log from a major commercial search engine. The extracted
log data set spans for four months and contains 1.96 billion queries and
2.73 billion clicks from five markets, i.e., the United States, Canada, United
Kingdom, Malaysia, and New Zealand. In the following, we first demon-
strate the effectiveness of our approach using several examples of the lookup
and reverse lookup requests. Then, we examine the efficiency and scalability
of our distributed training algorithms for the TC-model.

7.1 Lookups and Reverse Lookups Examples

In this subsection, we show some real examples for the lookups and reverse
lookups answered by our system. We use the query traffic analysis service by
a major commercial search engine as the baseline. Please refer to Section 3
for a more detailed description of the baseline.

Table 3 compares the results for the lookup request (time = ALL; loca-
tion = US; topic = Games) returned by our system and the baseline. Since
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card games P (c|t) gambling P (c|t)
pogo 0.020 sun bingo 0.004

gogirlsgames 0.004 wink bingo 0.004
solitaire 0.004 tombola 0.003
aol games 0.003 skybet 0.003

scrabble blast 0.003 ladbrokes 0.002

party games P (c|t) puzzles P (c|t)
tombola 0.003 pogo 0.006
oyunlar 0.003 sudoku 0.004

fashion games 0.003 meriam webster 0.003
drinking games 0.002 thesaurus com 0.003

evite 0.002 mathgames 0.002

Table 4: The top queries returned by TC-cube for four sub topics of “Games”
in the US.

the baseline does not group similar queries into concepts, the top 10 results
are quite redundant. For example, the 1st, 2nd, 7th, and 8th queries are
similar. Our system summarizes similar queries into concepts and selects
only one query as the representative for each concept. Consequently, the
top 10 queries returned by our system are more informative. We further re-
quest the top results for four sub topics of “Games”, namely “card games”,
“gambling”, “party games”, and “puzzles”. The queries returned by our
system are informative (Table 4). However, the baseline only organizes the
user queries by a flat set of 27 topics; it does not support drilling down to
sub topics.

As an example for reverse lookup, we asked for the group-bys where
the search for Hurricane Bill was popular by a request “(time@day, loca-
tion@state, keyword=‘hurrican bill’)”. Purposely we misspelled the keyword
“hurricane” to “hurrican” to test the summarization capability of our TC-
model. Our system can infer that the keyword “hurrican bill” belongs to the
concept that consists of queries “hurricane bill”, “hurrican bill”, “huricane
bill”, “projected path of hurricane bill”, “hurricane bill 2009” and some other
variants. Therefore, the system sums up the frequencies of all the queries
in the concept and answers the top five states during the days in August
2009 (Figure 7). Figure 8 visualizes the trend of the popularity of the whole
concept according to the output of the reverse lookup. The dates in the
figure indicate when the concept was most intensively searched in different
states in the US. Interestingly, the trend shown in Figure 8 reflects well the
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Figure 7: The top five states of US where Hurricane Bill was most intensively
search in Aug. 2009.

Figure 8: The trajectory of Hurricane Bill.

trajectory and the influence of the hurricane geographically and temporally,
which indicates that the real world events can be reflected by the popular
queries issued to search engines. However, when we sent the same request
to the baseline, it answered that the search volume was not enough to show
trend. The reason is that the baseline may only consider the query that
exactly matches the misspelled keyword “hurrican bill”, which may not be
searched often.

7.2 Training TC-models

The TC-model was initialized as described in Section 5.2. We derived 4.71
million concepts, which involve 11.76 million unique queries and 9.5 million
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Figure 9: The data likelihood and the average percentage of parameter
changes during EM iterations.

unique URLs. On average, a concept consists of 4.68 unique queries and 6.77
unique URLs. We further chose the second level of the ODP [1] taxonomy
and applied the text classifier in [14] to categorize the concepts into the
483 topics. For each concept, we kept the top five topics returned by the
classifier.

From the raw log data, we derived 23 million training tuples where each
training tuple is in the form (qi, uj , nij) and nij is the number of times URL
uj was clicked on as answers to query qi.

Figures 9(a) and (b) show the data likelihood and the average percentage
of parameter changes with respect to the number of EM iterations. The
iteration process converges fast; the data likelihood and parameters do not
change much (less than 0.1%) after five iterations. The results suggest that
our initialization methods are effective to set the initial parameters close to
a local maximum. Moreover, the data likelihood increases by 11% after ten
iterations. As explained in Section 5.2, this indicates that the EM algorithm
is effective to improve the quality of the TC-model by jointly mining the
assignments of concepts and topics in a mutual reinforcement process.

Figures 10(a) and (b) show the runtime of the E-step and the M-step
with respect to the percentage of the complete data set with 50, 100, and
200 process nodes, respectively. Each process node has a four-core 2.67GHz
CPU and 4GB main memory while 2GB is used in EM iteration and the rest
for system usage. We observe the following in Figure 10(a). First, the more
process nodes used, the shorter runtime for the E-step. The runtime needed
for the E-step on the complete data set by 50, 100, and 200 process nodes
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Figure 10: The scalability of the E-step and the M-step.

is approximately in ratio 4:2:1. This suggests that our algorithm scales well
with respect to the number of process nodes. Second, the more process nodes
are used, the more scalable is the E-step. For example, when 50 process
nodes were used, the runtime increased dramatically when 40%, 70%, and
100% of the data was loaded. As explained in Section 5.3, if the training
data for a process node involves too many parameters to be held in the
main memory, the algorithm recursively splits the training data into blocks
until the parameters needed by a block can be held in the main memory.
Therefore, the runtime of the E-step mainly depends on the number of disk
scans of the parameter file, i.e., the number of blocks to be processed. When
we used 50 process nodes, each node split the assigned training data into
2, 3, and 4 blocks when 40%, 70%, and 100% of the complete data set
was used for training, respectively. This explains why the runtime increases
dramatically at those points. When we used 200 nodes, each node can
process the assigned data without splitting even for the complete data set.
Consequently, the runtime increases linearly.

In Figure 10(b), the runtime of M-step increases almost linearly with
respect to the data set size, indicating the good scalability of our algorithm.
Interestingly, the runtime of the M-step does not change much with respect
to the number of process nodes. This is because the major cost of the map-
reduce process of the M-step is the merging of parameters, which is done on
a single machine. This bottleneck costs the M-step much longer time than
the E-step.

Table 5 evaluates the effectiveness of Theorem 1. We executed the E-
step on the complete data set with 50, 100, and 200 process nodes, re-
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# pn |S| |Θ(S)| # nonezero
Ratio # B

parameters

50 460,062 62,325,884 56,682,113 5.7 e-7 4

100 230,031 35,368,823 30,370,194 3.0 e-7 2

200 115,015 18,656,725 15,821,818 1.6 e-7 1

Table 5: The effectiveness of Theorem 1.

# pn |S| Random Partition Our Partition Method
|Θ(S)| Ratio # B |Θ(S)| Ratio # B

3 7,667,712 280,376,458 2.8002 e-6 15 91,379,849 9.1264 e-7 5
5 4,600,627 252,181,397 2.5186 e-6 13 40,606,079 4.0554 e-7 3
10 2,300,314 185,471,181 1.8523 e-6 10 14,444,786 1.4426 e-7 1

Table 6: A comparison of the random partition and our partition method.

spectively. For each setting, e.g., using 50 nodes, we recorded the average
number of training tuples |S| assigned to each process, the average number
of the estimated nonzero parameters Θ(S) by Theorem 1, the average num-
ber of nonzero parameters after ten iterations, the ratio of the average size of
Θ(S) over the size of the whole parameter space, and the number of blocks
processed by each process node. Table 5 suggests the following. First, the
average size of Θ(S) over the size of the whole parameter space is very small,
in the order of 10−7. This means Theorem 1 can greatly reduce the number
of parameters to be held by each process node. Moreover, the size of the
estimated nonzero parameters is close to that of nonzero parameters during
the iterations. This indicates that the superset of nonzero parameters given
by Theorem 1 is tight.

Table 6 compares the performance by random partition and our heuristic
partition method (Section 5.4), where |S| is the average size of training set
assigned to each process node, |Θ(S)| is the average size of the estimated set
of nonzero parameters needed by each process node, the column “Ratio” is
the ratio of |Θ(S)| over the size of the whole parameter space, and column
“# B” is the number of blocks need to be processed by each process node.
Since our partition method tries to put the training examples which share
the same nonzero parameters on the same process node as much as possible,
the size of Θ(S) and the number of blocks to be processed for each process
node is much smaller than those under random partition. As shown in
Figure 10(a), the major cost of the E-step is the number of disk scan for each
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Figure 11: The top-down method vs. the näıve method on the standard
dimensions: (a) date and (b) location.

block. Consequently, our data partition method can improve the efficiency of
the E-step substantially, especially when a limited number of process nodes
are available.

7.3 Empirical study on cube construction

In this subsection, we report the results of an empirical study on different
options to materialize the standard dimensions, the TC-dimension, and the
whole TC-cube. In this study, we used the time and location as two standard
dimensions. The top cell C1 consists of the full data set D1. Along the stan-
dard time dimension, the full data set splits into four subsets Dt

21, . . . , D
t
24,

where each subset consists of one month data and constitutes one child cell
Ct
2nt

(1 ≤ nt ≤ 4). Along the standard location dimension, each child cell

C l
2nl

(1 ≤ nl ≤ 5) corresponds to one of the five countries, i.e., the United
States, Canada, United Kingdom, Malaysia, and New Zealand, and contains
the corresponding subset Dl

2nl
of training data. We adopted the top two lev-

els of topics of ODP [1] in the TC-dimension, which consists of 16 and 483
topics, respectively.

Figure 11 compares the top-down method and the näıve method on
the standard dimensions. As described in Section 6.1.1, in the top-down
method, we inherit the model parameters from the parent cell, while in the
näıve method, we initialize the model parameters from scratch (i.e., using
the initialization method in Section 5.2). Figure 11(a) shows the log data
likelihood with respect to the number of EM iterations summed over the
four month cells Ct

21, . . . , C
t
24. We can see the top-down method achieves

higher initial likelihoods than that by the näıve method after initialization.
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Figure 12: The bottom-up method vs. the näıve method on the standard
dimensions: (a) date and (b) location.

However, both methods needed about five iterations to converge, and thus
took similar runtime. Moreover, both methods converged to comparable
likelihoods. Therefore, we may choose any of them to materialize the stan-
dard time dimension. Figure 11(b) shows the log data likelihood summed
over the five country cells C l

21, . . . , C
l
25 with respect to the number of EM

iterations. This figure illustrates similar trends with those in Figure 11.
Figure 12 compares the bottom-up method and the näıve method on

the standard dimensions. As described in Section 6.1.2, in the bottom-up
method, we aggregate the model parameters of the child cells to initialize
those for the parent cell, while in the näıve method, we initialize the model
parameters from scratch. Figures 12 shows the log data likelihoods in the
parent cell C1 with respect to the number of EM iterations. The model pa-
rameters were initialized by aggregating those of month cells (Figure 12(a))
and country cells (Figure 12(b)) by the bottom-up method, respectively.
The bottom-up method achieves higher initial likelihoods than that by the
näıve method after initialization. Again, both methods needed about five
iterations to converge, and they converged to comparable likelihoods. There-
fore, these two methods have comparable performance. Considering both
Figures 11 and 12, we may choose any of the bottom-up, top-down, and
näıve methods to materialize the standard dimensions.

Figures 13(a), (b), and (c) compare the bottom-up method and the näıve
method on the TC-dimension in (a) the full data cell, (b) the month cells,
and (c) the country cells, respectively. As described in Section 6.2, in the
bottom-up method, we initialize the model parameters for the parent topic
level by aggregating those from the child topic level, while in the näıve
method, we initialize the model parameters from scratch. In all the three
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Figure 13: The bottom-up method vs. the näıve method on the TC-
dimension in (a) full data cell, (b) month cells, and (c) country cells.

figures, we observe similar trends. That is, the bottom-up method achieves
higher initial data likelihood than that of the näıve method. However, both
methods have comparable performance in efficiency and effectiveness.

We also compared the top-down method and the näıve method on the
TC-dimension. The top-down method was much slower than the näıve
method. The reason is that when we inherit the model parameters from
the upper level topics, most of the concept generation probabilities P (c|t)
for the lower level topics are nonzero. In this case, the superset of nonzero
parameters estimated by Theorem 1 can still be very large. Consequently,
each process node needs to partition the assigned training tuples into many
blocks and scan the large parameter file many times. Therefore, in the
TC-dimension, we may consider either the bottom-up method or the näıve
method.

Finally, we compare the two options to materialize the whole TC-cube,
i.e., the standard-dimension-first method and the TC-dimension-first method.
In our study, the parent cell C1 consists of the full data set D1. There are
two types of child cells: the four month child cells Ct

2nt
(1 ≤ nt ≤ 4) and

the five country child cells C l
2nl

(1 ≤ nl ≤ 5). For each cell, there are two
topic levels T1 and T2, which are the top two topic levels in the ODP tax-
onomy [1]. According to the above experimental results, we may choose
any of the three options, i.e., the bottom-up, top-down, or näıve method, to
materialize along the standard dimensions. Moreover, we may choose either
the bottom-up or the näıve method to materialize along the TC-dimension.
Therefore, to materialize the whole TC-cube, a possible standard-dimension-
first approach consists of four steps: (1) materialize the second topic level
T2 of the parent cell C1 from scratch (i.e., using the initialization method
in Section 5.2); (2) materialize the second topic level T2 of the child cells
C2 by the top-down method along the standard dimensions; (3) materialize
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Figure 14: The standard-dimension-first method vs. the TC-dimension-first
method in (a) month cells and (b) country cells.

the first topic level T1 of the parent cell C1 by the bottom-up method along
the TC-dimension; and (4) materialize the first topic level T1 of the child
cells C2 by the bottom-up method along the TC-dimension. Analogously,
a possible TC-dimension-first approach consists of the following four steps:
(1) materialize the second topic level T2 of the parent cell C1 from scratch;
(2) materialize the first topic level T1 of the parent cell C1 by the bottom-up
method along the TC-dimension; (3) materialize the second topic level T2 of
the child cells C2 by the top-down method along the standard dimensions;
and (4) materialize the first topic level T1 of the child cells C2 by the top-
down method along the standard dimensions. The only difference between
the two approaches is in step (4). Therefore, we only focus on the fourth
step of the two approaches.

Figures 14(a) and (b) show the log data likelihoods with respect to the
number of EM iterations by the standard-dimension-first approach and the
TC-dimension-first approach in month cells and country cells, where the log
data likelihoods are the sums over those of the four month cells and the
five country cells, respectively. Both figures show similar trend. First, the
standard-dimension-first approach has higher initial log data likelihood than
that of the TC-dimension-first approach. This suggests the aggregation of
the model parameters learned from the same data set is more accurate than
those directly inherited from the larger parent data set. Second, both ap-
proaches need the same number of iterations to converge, and they converge
to comparable likelihoods. Therefore, it does not make much difference to
materialize the standard dimensions first or the TC-dimension first.
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8 Conclusion

In this paper, we described our topic-concept cube project that supports
online multidimensional mining of search logs. We proposed a novel topic-
concept model to summarize user interests and developed distributed algo-
rithms to automatically learn the topics and concepts from large-scale log
data. We also explored various approaches for efficient materialization of
TC-cubes. Finally, we conducted an empirical study on a large log data set
and demonstrated the effectiveness and efficiency of our approach. A proto-
type system that can provide public online services is under development.
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